当前位置:文档之家› 4计算材料物理-第二章

4计算材料物理-第二章

《材料物理》 课程教学大纲

《材料物理》课程教学大纲 一、课程名称(中英文) 中文名称:材料物理 英文名称:Physics of Materials 二、课程代码及性质 课程代码:0801142 课程性质:专业基础课、专业必修课 三、学时与学分 总学时:40(理论学时:40学时;实践学时:0学时) 学分:2.5 四、先修课程 大学物理、材料科学基础 五、授课对象 本课程面向材料科学与工程专业、功能材料专业学生开设。 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 本课程的教学目的: 1、掌握材料物理(能带论、晶格振动、材料磁性)的基本理论,具备解决和分析问题的能力; 2、掌握功能材料的物理(电学、热学、磁学、光学)现象与本质规律,培养学生开发新型功能材料的能力; 3、了解功能材料的发展趋势和动态,培养学生学习新知识的能力。

七、教学重点与难点: 教学重点: 影响材料物理性质的基本理论。晶体结合、能带论、晶格振动与热学性质、

材料的磁性 教学难点: 能带论、材料的磁性、材料的介电性、超导电性 八、教学方法与手段: 教学方法: (1)以课堂讲授为主,阐述该课程的基本内容,保证主要教学内容的完成; (2)从材料的物理性质及物理现象为引导、探讨产生光、电、磁的材料物理本质,掌握重要的理论。。 教学手段: (1)运用现代教学工具,在课堂上通过PPT讲授方式,实现图文并茂,形象直观; (2)强调研究思路的创新过程,注重理论与实践相结合。每一个基本理论学习介绍后再增加介绍其带来新功能材料与器件的研究突破,引导学生的学习兴趣。 九、教学内容与学时安排 (1)总体安排 教学内容与学时的总体安排,如表2所示。 (2)具体内容 各章节的具体内容如下: 绪论(2h) 第一章晶体结构(4h) 1.1 晶格的周期性 1.2晶格的对称性 1.3 倒格子 1.4 准晶 第二章晶体结合 (4h) 2.1晶体结合的普遍描述 2.2 晶体结合的基本类型及特性

材料力学第二章计算题

1. 杆系结构如图所示,已知杆AB 、AC 材料相同,[]160=σMPa ,横截面积分别为 9.706=1A mm 2,314=2A mm 2,试确定此结构许可载荷[P ]。(15分) 2. 在图示直径为d=10mm 的等直圆杆,沿杆件轴线作用F1、F2、F3、F4。已知:F1=6kN ,F2=18kN ,F3=8kN ,F4=4kN ,弹性模量E=210GPa 。试求各段横截面上的轴力及作轴力图并求杆的最大拉应力及压应力。 3.图示吊环,载荷F=1000KN ,两边的斜杆均由两个横截面为矩形的钢杆构成,杆的厚度和宽度分别为b=25mm ,h=90mm ,斜杆的轴线与吊环对称,轴线间的夹角为а=200 。钢的许用应力[б]=120Mpa 。试校核斜杆的强度。 4.钢质圆杆的直径d=10mm,F=5kN,弹性模量E=210GPa ,试作轴力图并求杆的最大正应力。 5.图示板状硬铝试件,中部横截面尺寸a =2mm ,b =20mm 。试件受轴向拉力P =6kN 作

用,在基长l =70mm 上测得伸长量?l =0.15mm ,板的横向缩短?b =0.014mm 。试求板材料的弹性模量E 及泊松比。 6.钢制直杆,各段长度及载荷情况如图。各段横截面面积分别为A 1=A 3=300mm 2,A 2=200mm 2。材料弹性模量E =200GPa 。材料许用应力[σ]=210MPa 。试作杆的轴力图并校核杆的强度。 7.图示钢杆的横截面面积为2 200mm A =,钢的弹性模量GPa E 200=,求各端杆的应变、伸长及全杆的总伸长 。 8.等截面实心圆截面杆件的直径d=40mm ,材料的弹性模量E=200GPa 。AB =BC =CD =1m ,在B 、C 、D 截面分别作用有P 、2P 、2P 大小的力,方向和作用线如图所示,P=10KN 。①做此杆件的轴力图;②求此杆件内的最大正应力;③求杆件C 截面的铅垂位移。 1m 1m 1m 3kN 7kN 6kN C B A D 2m 4m B A C q=5kN/m

材料力学习题册答案-第2章-拉压

第二章 轴向拉压 一、 选择题 1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) A.平动 B.转动 C.不动 D.平动加转动 2.轴向拉伸细长杆件如图2所示,则正确的说法是 ( C ) A.1-1、2-2面上应力皆均匀分布 B.1-1、2-2面上应力皆非均匀分布 C. 1-1面上应力非均匀分布,2-2面上应力均匀分布 D.1-1 面上应力均匀分布,2-2面上应力非均匀分布 F P P 1 1 2 2 图1 图2 3.有A 、B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线( B )材料的弹性模量E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。 A B C 图3 ε σ B A C 图4 p α h b a 图5 4.材料经过冷却硬化后,其( D )。 A .弹性模量提高,塑性降低 B .弹性模量降低,塑性提高 C .比利极限提高,塑性提高 D .比例极限提高,塑性降低 5.现有钢铸铁两种杆件,其直径相同。从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A )。 A .1杆为钢,2 杆为铸铁 B .1杆为铸铁,2杆为钢 C .2杆均为钢 D .2杆均为铸铁 6.如图5所示木接头,水平杆与斜杆成角,其挤压面积A 为( A )。 A .bh B .bh tg C .bh/cos D .bh/(cos -sin ) 7.如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为( C ),计算挤压面积为 ( D ) A . B . C . D (3d+D )

二、填空题 1.直径为d 的圆柱体放在直径为D =3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P ,则基座剪切面的剪力 。 F F h h D d 图6 P d t D 图7 2.判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生 相对错动 趋势的平面;挤压面是构件 相互挤压 的表面。 三、试画下列杆件的轴力图 2 3 1 1 2 F F F F 3 + -解: 2KN 1 1 2 2 3 3 18KN 3KN 25KN 10KN + -15KN 10KN 解: 四、计算题 1.作出图示等截面直杆的轴力图,其横截面积为,指出最大正应力发生的截面,并计 算相应的应力值。 4KN 10KN 11KN 5KN A B C D 解:+ + -轴力图如下: 4KN 5KN

材料物理

选择题 1.下列缺陷属于线缺陷的是位错属于面缺陷的是堆垛层错 2在特定应力循环次数时不发生断裂的前提下,材料所能承受的最大应力称为疲劳强度 3固溶强化对材料性质的影响描述错误的是合金的电导率高于纯金属 4制约超导技术获得应用的关键性能指标是临界温度 5下列电子器件中,半导体热电仪不是利用半导体p-n节制成的6在交变电场的作用下,实际电介质电容器的电流超前电压的相位小于90度 7不具备亚铁磁性的是ZnO·Fe2O3 8马氏体相变不属于扩散型相变9过共析钢中奥氏体降温时析出的渗碳体属于重构型相变 10具有统计性和球对称性的是径向分布函数 11表面存在裂纹的脆性材料可以采用弯曲试验来测定材料的力学性能 12下列说法中对冷加工的优点描述错误的是冷加工会增加电导率与耐腐蚀性 13半导体最大用途是制成p-n结14下列物性参数中,不是用来描述电介质材料的介电性能的是压电系数 15热释电材料不具备的物理性能是铁电性 16原子磁矩的空间有序分布使磁矩互相抵消,宏观自发磁化强度为零,描述的是反铁磁体 17一定是二级相变的是铁磁相变 18描述非晶态金属和合金的结构模型中,较好的是无序密堆硬球模型。 19属于强磁性的是亚铁磁性 20关于材料影响铁磁性的因素,说法正确的是温度升高使得Ms Br Hc均降低 21不属于半导体的敏感效应的是巴克豪森效应 22关于影像材料到典型的因素正确的是一般情况下固溶体的电阻率高于组元的电阻率 23下面利用压电材料热释电性能的是红外探测器 24关于铁磁性和铁电性,不正确的是都以存在畴结构为充分条件 25不属于静载压入法的是肖氏硬度 26关于高温蠕变性能,不正确的是蠕变发生机理与应力水平无关 填空题 1共晶体系具有最低共同熔点 2复合材料通常有颗粒增强纤维增强层片增强三种形式 3解释金属材料导电现象的理论经历了经典自由电子论量子自由电子论能带理论三个发展阶段 4外电场作用下,电介质内部产生的感应偶极距的现象,称为电介质的极化,介电常数反映了电介质材料在电场中极化的特性。 5电介质的漏导电流包含两部分体积电流和表面电流 6对固体进行击穿试验时,总是在气体或液体环境媒质中,击穿往往发生在击穿强度比较低的气体或液体环境媒质中,这种现象称为边缘效应 7铁电畴在外电场的作用下,总是趋向与外电场方向一致,称为畴转向 8在磁场中磁化时,铁磁体的尺寸或者体积发生变化的现象称为磁致伸缩 9序参量在高对称相等于零,在低对称相不等于零。 10对于发生扩散的相变,新相的 长大过程可以粗分为界面控制 和扩散控制两类 11根据杂质原子在晶体中占据 方式可以将杂质缺陷分为两 类:替位式杂质缺陷和填隙杂 质缺陷 12材料在低温下发生塑性形变 的主要原因是位错的滑移,在 高温下发生的蠕变主要原因 是位错的攀移。 13置于外磁场中的超导体会表 现出完全的抗磁性,如果将 放在磁性材料的上方,超导 体就会悬浮起来,这种现象 称为迈斯纳效应。 14P-n结具有单向导电性,正偏 时呈导通状态;反偏时呈截止状 态 15材料的电极化强度时电介质 单位体积内的电偶极距的矢 量和,它反映了电介质在电 场作用下的极化强度 16铁电材料或者压电材料中是 否存在对称中心?否 17物质的磁性材料来源于材料 的电子结构。电子磁矩的相互 作用,决定了磁性材料的类型 和磁性能 18非晶态固体的基本特征是长 程无序短程有序 19利用异质结制备太阳能电池 时,朝向太阳光一侧的半导体的 禁带宽度大一些。 20大多数警惕的自发极化随着 温度的增加而下降,热释电常数 为负值 21矫顽场强与温度和频率有关, 通常温度增加,矫顽场强下降, 频率增加,矫顽场强增大 22设立方磁晶各向异性常数为 K1=-5.48,K2=-2.47,则 [100],[110],[111]轴中的易磁化 轴是[111],难磁化轴是[100] 23磁各向异性一般包括应力的 各向异性形状各向异性磁晶 各向异性等 24压电功能材料一般利用压电 材料的压电功能,热释电功 能,铁电功能,电致伸缩功能 或电光功能 判断题 1螺型位错的特点是其滑移方向 和伯格斯矢量都与位错线垂直 错 2激光实质上就是一种自发辐射 所产生的相干光源,具有单色 性、相干性、方向性和高亮度的 特点。错 3电介质的介电常数越大,极化 能力越强对 4对于介质损耗较高的固体电介 质材料,在高频下的主要击穿形 式就是电击穿错 5在有序-无序相变中,短程有序 度越高。长程有序度就越高错 6带负电的负离子空位和被它束 缚的价电子所形成的色心就是F 心错 7固溶体合金中,溶剂原子和溶 质原子的尺寸差别越大,固溶强 化的效果越差错 8如果处于高能级上的电子数小 于处于低能级上的电子数,受激 辐射就会超过光吸收所产生的 自发辐射,产生激光错 9任何电介质在外电场作用下都 会发生尺寸变化,即产生应变。 应变大小与所加电压成正比,这 种现象叫做电致伸缩错 10马氏体相变中普遍存在热滞 现象对 11位错攀移要比滑移困难得多 对 12离子晶体中,成为正电中心的 点缺陷有负离子空位和正填隙 离子对 13离子晶体中,成为负点中心的 点缺陷有正离子空位和负填隙 离子对 14离子晶体中的消脱基缺陷有 数目相同的正负离子空位对 15肖脱基缺陷存在的可能性要 比福伦科尔缺陷的可能性大得 多对 16时效强化的合金可以在高温 下使用错 17共晶反应的一个特征是具有 很低的熔点对 18二氧化硅氧化钠玻璃可以再 远低于二氧化硅熔点的温度下 制造是利用了共晶反应对 19共析反应是指从一个液相转 变成两个固相的反应错 20共晶反应是指从一个液相转 变成两个固相的反应对 21由于掺杂数量很少,所以非本 征半导体中由于掺杂原子而形 成的载流子称为少数载流子错 22光致发光现象可以在金属中 产生错 23余晖时间短的荧光材料适合 做夜光材料错 24.180°畴壁比90°畴壁要厚 错 25钛酸钡晶体在120°,0°, -90°都具有发生铁电相变,因此 它的居里温度有三个错 26电致伸缩效应在任何电介质 中都存在对 27压电体在外电场作用下只有 压电效应而无电致伸缩错 28计算院子的总自旋磁矩时,需 考虑原子中所有的电子贡献错 次化工小的方向是易磁化方向, 磁化功大的方向是难磁化方向 对 29在特定的外界条件下,一个体 系的演化方向应符合该体系的 特定热力学函数的自发变化趋 势对 30马氏体相变只能发生钢铁材 料中错 31晶界是马氏体形核的有利位 置错 32序参量在高对称相等于0,在 低对称相则不等于0 对 33选参量不连续变化的相变称 为一级相变对 34一般,非均匀形核的形核功低 于均匀形核的形核功对 35对于发生扩散的相变,长大过 程可粗分为界面控制盒扩散控 制两类对 36扩散控制的长大速率取决于 靠近界面的原子迁移过程对 37非晶模型可以用来描述非晶 锗或硅膜的结构错 38非晶态金属和合金的结构适 合用于无序密堆积硬球模型来 描述对 39无规则网络结构模型用于描 述非晶硅和非晶锗对 40原子磁矩不为零的必要条件 是存在未排满的电子层对 41量子自由电子理论和能带理 论均认为电子随能量的分布服 从FD分布对 42由于晶格热震动的加剧,金属 盒半导体的电阻率均随温度的 升高而增大错 43直流电位差计法和四点探针 法测量电阻率均可以消除接触 电阻的影响对 44凡是铁电体一定同时具具备 压电效应和热释电效应对 45硬度数值的物理意义取决于 所采用的硬度试验方法对 46对于高温力学性能,所需温度 高低仅具有相对的意义对 概念题 1弗伦科尔缺陷:原子脱离正常 格点位置后,形成填隙原子,这 样的热缺陷称为弗伦科尔缺陷 2弥散强化:是指将多相组织混 合在一起所获得的材料强化效 应。 3热击穿:当固体电介质在电场 作用下,由电导和介质损耗产生 的热量超过试样通过传导,对流 和辐射散发的热量时,试样中的 热平衡就被破坏,试样温度不断 上升,最终造成永久性的热破 坏,这就是热击穿。 4电畴:由自发极化方向形同的 晶胞所组成的小区域被称为电 畴 5铁磁性:有些物质放入外磁场 时:感应出和磁场方向相同的磁 化强度,磁化率大于零,但其数 值很大,约为10的一次方到10 的六次方,这些物质的磁化曲线 M-H时非线性的复杂函数,反复 磁化时出现磁滞现象,这就是物 质的铁磁性。 6点缺陷:在一个或几个院子的 微观区域内,原子的排列偏离理 想周期结构而形成空位,填隙原 子,杂质原子等的缺陷。 7超导现象:某些金属合金或者 化合物,在冷却到绝对零度附近 某一特定温度时,材料的电阻变 为零,电流可以在材料中无限地 流动,这种现象称为超导现象。 8压电效应:由于机械力的作用 而使介质发生极化的现象称为 正压电效应。如果把外电场加载 这种晶体上,改变其极化状态, 在晶体的某些方向上也将产生 形变,这就是逆压电效应。二者 统称压电效应。 9磁致伸缩:在磁场中磁化时, 铁磁体的尺寸或者体积发生变 化的现象称为磁致伸缩。 10对称残缺:在结构相变时,晶 体的对称性发生变化。高对称相 的某些对称元素在低对称相时 不再存在,即失去了某些对称元 素,这成为对称性残缺。 11极化:沿电场方向产生电偶极 距或者电偶极矩改变,是材料对 外电场的响应。 12蠕变:一定应力下随时间演唱 产生的缓慢变形,一般在高温下 进行。 简答题 1,简述本征半导体的导电机理 答:本征半导体的禁带宽度较 小,具有足够热能的电子能够越 过禁带,从价带被激发到导带, 成为自由电子。被激发的电子原 来占据的价带能级上则留下一 个空位,称为空穴。电子和空穴 都是携带电荷的载流子。在半导 体材料上加上电压,导带上的电 子朝正极移动,价带上的空穴则 向负极移动,电子和空穴两种载 流子丁香移动形成电流。 3,比较铁磁体和亚铁磁体两种 磁性材料的异同 相同点:都具有长程磁有序结 构,都属于强磁性物质,具有自 发极化,有磁畴和磁滞现象,存 在居里点,在居里点以上顺磁 性。 不同点:磁性不同,铁磁体强于 亚铁磁体。磁有序结构不同,铁 磁体的相邻原子磁矩平行排列, 而亚铁磁体的相邻原子磁矩反 平行排列,但磁矩大小不等。 4,说明非晶态固体与晶态固体 的最基本区别并指出非晶态固 体的结构特征 非晶态固体与晶态固体的本质 区别:①非晶态固体中原子的取 向和位置不具有长程有序而是 短程有序②非晶态固体属于热 力学亚稳态。 非晶态结构特征:有序的缺乏和 亚稳定性。 5,什么是加工硬化,简述加工 硬化的原理 通过使金属发生塑形变形的方 式,可以使其屈服强度增加,这 就是加工硬化。 加工樱花是由位增殖引起的。材

材料物理性能.doc

材料物理性能 第一章 考点1. 电子理论的发展经历了三个阶段,即古典电子理论、量子自由电子理论和能带理论。古典电子理论假设金属中的价电子完全自由,并且服从经典力学规律; 量子自由电子理论也认为金属中的价电子是自由的,但认为它们服从量子力学规律;能带理论则考虑到点阵周期场的作用。 考点2. 费米电子 在T = 0K时,大块金属中的自由电子从低能级排起,直到全部价电子均占据了相应的能级为止。具有能量为EF(0)以下的所有能级都被占满,而在EF(0)之上的能级都空着,EF(0)称为费米能,是由费米提出的,相应的能级称为费米能级。 考点3. 四个量子数 1、主量子数n 2、角量子数l 3、磁量子数m 4、自旋量子数ms 考点4. 思考题 1、过渡族金属物理性能的特殊性与电子能带结构有何联系? 过渡族金属的 d 带不满,且能级低而密,可容纳较多的电子,夺取较高的 s 带中的电子,降低费米能级。 第二章 考点5. 载流子 载流子可以是电子、空穴,也可以是离子、离子空位。材料所具有的载流子种类不同,其导电性能也有较大的差异,金属与合金的载流子为电子,半导体的载流子为电子和空穴,离子类导电的载流子为离子、离子空位。而超导体的导电性能则来自于库柏电子对的贡献。 考点6. 杂质可以分为两类 一种是作为电子供体提供导带电子的发射杂质,称为“施主”;另一种是作为电子受体提供价带空穴的收集杂质,称为“受主”。 掺入施主杂质后在热激发下半导体中电子浓度增加(n>p),电子为多数载流子,简称“多子”,空穴为少数载流子,简称“少子”。这时以电子导电为主,故称为n型半导体。施主杂质有时也就称为n型杂质。 在掺入受主的半导体中由于受主电离(p>n),空穴为多子,电子为少子,因而以空穴导电为主,故称为p型半导体。受主杂质也称为p型杂质。 考点7. 我们把只有本征激发过程的半导体称为本征半导体。 考点8. 在同一种半导体材料中往往同时存在两种类型的杂质,这时半导体的导电类型主要取决于掺 杂浓度高的杂质。 随着温度的升高本征载流子的浓度将迅速增加,而杂质提供的载流子浓度却不随温度而改变。因此,在高温时即使是杂质半导体也是本征激发占主导地位,呈现出本征半导体的特征(n≈p)。一般半导体在常温下靠本征激发提供的载流子甚少

材料力学计算题库

第一章绪论 【例1-1】钻床如图1-6a所示,在载荷P作用下,试确定截面m-m上的内力。 【解】(1)沿m-m 截面假想地将钻床分成两部分。取m-m 截面以上部分进行研究(图1-6b),并以截面的形心O为原点。选取坐标系如图所示。 (2)为保持上部的平衡,m-m 截面上必然有通过点O的内力N和绕点O的力偶矩M。 (3)由平衡条件 ∴ 【例1-2】图1-9a所示为一矩形截面薄板受均布力p作用,已知边长=400mm,受力后沿x方向均匀伸长Δ=0.05mm。试求板中a点沿x方向的正应变。 【解】由于矩形截面薄板沿x方向均匀受力,可认为板内各点沿x方向具有正应力与正

应变,且处处相同,所以平均应变即a 点沿x 方向的正应变。 x 方向 【例1-3】 图1-9b 所示为一嵌于四连杆机构内的薄方板,b=250mm 。若在p 力作用下CD 杆下移Δb=0.025,试求薄板中a 点的剪应变。 【解】由于薄方板变形受四连杆机构的制约,可认为板中各点均产生剪应变,且处处相同。 第二章 拉伸、压缩与剪切 【例题2.1】 一等直杆所受外力如图2. 1 (a)所示,试求各段截面上的轴力,并作杆的轴力图。 解:在AB 段范围内任一横截面处将杆截开,取左段为脱离体(如图2. 1 (b)所示),假定轴力N1F 为拉力(以后轴力都按拉力假设),由平衡方程 0x F =∑,N1300F -= 得 N130kN F = 结果为正值,故N1F 为拉力。 同理,可求得BC 段内任一横截面上的轴力(如图2. 1 (c)所示)为 N2304070(kN)F =+= 在求CD 段内的轴力时,将杆截开后取右段为脱离体(如图2. 1 (d)所示),因为右段杆上包含的外力较少。由平衡方程 0x F =∑,N330200F --+=

材料物理

1. 一圆杆的直径为 2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm , 且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 2. 一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为 3.5×109 N/m 2 , 解: 3. 一材料在室温时的杨氏模量为3.5×108 N/m 2 ,泊松比为0.35,计算其剪切模量和体积模 量。 解:根据 可知: 4. 一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算 其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 拉伸前后圆杆相关参数表 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变10524.46A T ?-)(0114.0105.3101014010009 40000cm E A l F l E l l =?????=??= ?= ?=?-σ ε)21(3)1(2μμ-=+=B G E ) (130)(103.1) 35.01(2105.3)1(288 MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量

材料物理专业

材料物理专业 材料物理专业培养较系统地掌握材料科学的基本理论与技术,具备材料物理相关的基本知识和基本技能,能在材料科学与工程及与其相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才。小编今天推荐给大家的是材料物理专业,仅供参考,希望对大家有用。关注网获得更多内容。 材料物理是从物理学原理出发提供材料结构、特性与性能的一门新兴交叉学科,主要面向新能源与新信息等新功能材料探索。 材料物理专业提供物理学、材料科学、材料化学和材料物理的基本理论、基本知识和基本技能的系统学习,材料探索、制备与合成的思维与技能等方面的基本训练,以及材料加工、材料结构与性能测定及材料应用等方面的专业训练。 旨在帮助学生掌握材料物理及其相关的基础知识、基本原理和实验技能,具备运用物理学和材料物理的基础理论、基本知识和实验技能进行材料探索和技术开发的基本能力,能发展成为在材料科学与工程及其相关交叉学科(材料、物理、化学、生物、医学等)继续深造或在相应领域从事材料物理研究、教学、应用开发等方面的创新性人才。

由于当今以服务于高科技,现代工业和国防为主的现代材料或新材料的需求量越来越大,新材料的研制与开发速度也越来越快,因而涌出的新概念、新理论、新技术、新方法、新工艺、新产品和新问题越来越需要材料学家和物理学家等共同努力来归纳、整理、总结及创新。 由此产生的材料物理专业无疑是多学科知识交叉、渗透的结果。它给现代材料的研究、开发和应用以及相关科学的发展带来了新的空间。为新材料的可持续发展提供完善而系统的理论指导和技术保障。因此,材料物理专业的就业前景十分广阔。 该专业学生主要学习材料科学方面的基本理论、基本知识和基本技能,受到科学思维与科学实验方面的基本训练,具有运用物理学和材料物理的基础理论、基本知识和实验技能进行材料研究和技术开发的基本能力。 1.掌握数学、物理、化学等方面的基本理论和基本知识; 2.掌握材料制备(或合成)、材料加工、材料结构与性能测定及材料应用等方面的基础知识、基本原理和基本实验技能; 3.了解相近专业的一般原理和知识; 4.熟悉国家关于材料科学与工程研究、科技开发及相关

材料力学第二章习题【含答案】

浙江科技学院2015-2016学年第一学期考试试卷 A 卷 考试科目材料力学考试方式闭完成时限 2 小时拟题人陈梦涛审核人批准人2015 年9 月17 日建工学院2014年级土木工程专业 一、单项选择题(每小题3分,计30分) 1. 对于塑性材料来说,胡克定律(Hooke's law)使用的范围是。 A.p σσ <; B. p σσ >; C. s σσ <; D. s σσ > 2.实心圆截面杆直径为D,受拉伸时的绝对变形为mm l1 = ?。仅当直径变为2D时,绝对变形l?为。 、 A.1mm B.1/2 mm C.1/4 mm D.2mm 3. 下列有关受压柱截面核心的说法中,正确的是。 A.当压力P作用在截面核心内时,柱中只有拉应力。 B.当压力P作用在截面核心内时,柱中只有压应力。 C.当压力P作用在截面核心外时,柱中只有压应力。 D.当压力P作用在截面核心外时,柱中只有拉应力。 4. 构件的强度、刚度和稳定性。 A.只与材料的力学性质有关; B.只与构件的形状尺寸关; C.与二者都有关; D.与二者都无关。 5. 如右图所示,设虚线表示为单元体变形后的形状,则该单元体的剪 应变为。 A. α; B.π/2-α; C.π/2-2α; α 6. 图示一杆件的拉压刚度为EA,在图示外力作用下其 应变能U的下列表达式是。 7.应力-应变曲线的纵、横坐标分别为σ=FN /A,ε=△L / L,其中。 和L 均为初始值;和L 均为瞬时值; 为初始值,L 为瞬时值;为瞬时值,L 均为初始值。 8. 设一阶梯形杆的轴力沿杆轴是变化的,则发生破坏的截面上。 A.外力一定最大,且面积一定最小; B.轴力一定最大,且面积一定最小; # C.轴力不一定最大,但面积一定最小; D.轴力与面积之比一定最大。 9. 图示拉杆的外表面上画有一斜线,当拉杆受力变形时,斜线将 发生。 。 题5图 题6图 题9图

材料物理性能部分课后习题

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀

第二章 1.300K1×10-6Ω·m4000K时电阻率增加5% 由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍 300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

材料物理

1.热容:在不发生相变和化学反应是时,材料温度升高1K时所需要的能量(Q)。 2.热导率:当温度垂直梯度为1℃/m时,单位时间内通过单位水平截面积所传递的 热量。 3.应力松弛:在持续外力作用下,发生形变着的物体,在总的形变值保持不变的情 况下,由于徐变形变渐增,弹性形变相应减小,由此使物体的内部应力随时间延续而逐渐减小的过程。 4.应变松弛:固体材料在恒定载荷下,形变随时间延续而缓慢增加的不平衡过程, 或材料受力后内部原子有不平衡的过程,也叫蠕变。或徐变。 5.黏弹性:自然界中实际存在的材料,其形变一般介于理想弹性固体和理想弹性液 体之间,既具有固体的弹性又具有液体的黏性。 6.光频支振动:相邻原子振动相反,形成一个范围很小,频率很高的振动。 7.声频支振动:如果振动着的质点中包含频率甚低的格波,质点彼此间的位相差不 大,则格波类似于弹性体中的应变波。 8.载流子迁移率:载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载 流子在电场作用下运动速度的快慢的量度。 9.晶格热振动:晶体点阵中的质点(原子或离子)总是围绕着平衡位置做微小振动。 10.光的色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质。 11.磁化强度:单位体积的磁矩表征物质被磁化的强度。 12.极化强度:单位体积电介质中所有点偶极矩的矢量和。 13.介电强度:试样被击穿时, 单位厚度承受的最大电压, 表示为伏特每单位厚度。 14.光电效应:某些物质受到光照时,引起物质电性发生变化,这种光致电变的现象 叫光电效应。 15.压减效应:在含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃 电导率降低。 16.双碱效应:当碱金属离子总浓度较大时(占玻璃组成25%~30%),在碱金属离子 总浓度相同情况下,含两种碱比含一种碱的电导率要小,比例恰当时,可降到很低。

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

材料物理性能标准答案

第一章:材料电学性能 1.导电能力 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率ρ或电阻率ζ评价材料的导电能力。按材料的电阻率,人们通常将材料划分为: (1)绝缘体 ρ > 108 (Ω?m ) (2)半导体 10-2 < ρ < 108 (Ω?m ) (3)金属 10-8 < ρ < 10-2 (Ω?m ) (4)超导体 ρ < 10-27 (Ω?m ) 2.经典导电理论/欧姆定律 经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。所有离子实的库仑场构成一个平均值的等势电场,自由电子像理想气体一样在等势电场中运动。若没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。 J E σ= 电导率22e m e ==σητημ(其中2e m v E μτ==-,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。 缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。(把适用于宏观物体的牛顿定律应用到微观的电子运动中,并承认能量的连续性) 3.自由电子近似 自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 能量:自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数; 行为:电子本证能量E 随波矢量的变化曲线是一条连续的抛物线。 4.自由电子近似概念 根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。 准连续能级:电子的本征能量是量子化的,其能量值由主量子数n 决定,并且其能量值也是不连续的,能级差与材料线度L2成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。 能级简并状态:把同一能级下具有多种能态的现象称为能级的简并状态。 简并度:同一能级下的能态数目称为简并度。 能态密度:对某个电子体系,在k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度ρ。ρ=V/(2π) 3,含自旋的能态密度应为2ρ K 空间:若使用波矢量 k 的三个分量 k x , k y , k z 为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点, 对于准连续的能级,此坐标系中的每个整数点都代表一个能态。人们把此坐标系常数称为k 空间或状态空间。 等幅平面波:量子导电理论中,在自由电子近似下用于描述电子运动行为的本征波函数,其波幅保持为常数。 能级密度函数:电子的波失能态函数对其能量的分布函数,即在单位能量宽度上的能态分 布。表达式为()312222 ()(4)2V N E dZ dE V m E π==

电子信息材料物理 2-金属电子的输运过程

主要内容 ?能带理论复习 ?电子的费米分布布 ?金属电子的输运过程 ?逸出功与接触电势 1

金属电子的输运过程 电场作用下导带电子运动的一般规律 金属电导 金属电导和热导率的关系 影响金属电导的因素 P239-245 P239245 2

x q k 保持匀速增加,电子的本dt 分量x 保持匀速增,子的本 征能量E (k )的随之相应变化。 电子占据态的分布相对于k 空间 的原点不再是对称分布,电子体 系总动量不为零产生电流。 4 系总动量不为零,产生电流。

恒定电场下导带电子的运动---周期运动 电子在恒定电场中 的运动---周期布里 渊区表示 ?恒定电场作用下,电子在k 空间匀速运动。(k 的变化为定值)?当电子运动到布里渊区边界k =π/a 时,由于k =?π/a 与k =π/a 相差2π/a ,他们实际上代表同一种状态,所以电子从k =π/a 移出去其实就是同时从k =?π/a 移进来。(不考虑能带跃迁)。?也就是说,电子在k 空间作周期运动。---布洛赫振荡。 ?由v =?-1?E/?k ,电子速度 v 也随时间做振荡,表明电子在实空5 子度随间荡表明子在实间振荡。但实际很难观察到布洛赫振荡(原因在后面)。

外场下导带电子的运动---电子散射(碰撞)?电子在电场作用下加速---漂移。如无其它机制,电子将在k 空间&/qE k =以的速度无休止漂移,形成布洛赫振荡。无电阻。h /qE k =?电阻来源于晶体内一些非周期因素: 声射它是度 ?晶格振动引起的声子对电子的散射,它是温度的函数。?晶格内缺陷和杂质对电子的无规律散射。 ?其它 ?导电电子在外场作用下的运动图像:一方面电场作用下电子加速,定向漂移运动;一方面电子受到无规散射,失去外场下的定向运动。 ?定义两次散射之间的平均时间间隔叫作电子平均自由运动时间,用τ来表示。τ的典型值为10-13~-14s 。布洛赫振荡的周期为6 10-4s ,故实际很难观察到布洛赫振荡。

材料物理

3、如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少kT ? 11()ln[1]()exp[]1()1/4ln 3,()3/4ln 3F F F F f E E E kT E E f E kT f E E E kT f E E E kT =?-=--+=-=?=-=-?解:由将代入得将代入得 4、自由电子近似和近自由电子近似有哪些区别?P15 答:自由电子近似下的E-K 关系有 ()2 22222h E K K m m λ== 为抛物线。在近自由电子近似下,对应于许多K 值,这种关系仍然成立;但对于另一些K 值,能量E 与这种平方关系相差许多。特别是在某些K 值,能量E 发生突变,即在K=±n π/a 处能量E=En ±|Un|不再是准连续的,电子占满En-|Un|的能级后只能占据En+|Un|的能级,两个能级之间的能带是禁止的。 5、何谓状态密度?三维晶体中自由电子的状态密度与电子能量是何种关系? 答:自由电子的能级密度亦称为状态密度,即单位能量范围内所容纳的自由电子数。 关系:三维晶体能级为E 及其以下的能级状态总数为Z(E)=CE1/2,式中C=4πV(2m)3/2/h3 为常数,即能级密度与E 的平方根成正比。 第二章 材料的晶态结构 1、三种典型晶胞,符号,原子数,配位数,致密度。 面心立方:fcc ,4,12,74%。体心立方:bcc ,2,8,68%。密排六方:hcp ,6,12,74%。 2、如何从X 射线衍射谱中区分非晶体和晶体?P30 答:晶体的X 射线衍射强度在特定角度出现数个尖锐的衍射峰,即在满足布拉格条件2dsin =λ的角度有强衍射峰。非晶体不会在特定角度产生满足布拉格条件的衍射峰,产生的衍射峰较宽,且其衍射强度比晶体的最强衍射峰弱得多。从X 射线衍射区别可见晶体是长程有序结构,而非晶体是长程无序、短程有序结构。 3、简述薄膜形核的过程和长大的过程。 答:形核一般是气相原子在基底的表面聚集而成,包括吸附、凝结、临界核形成、稳定核形成等过程。入射到基体表面的气相原子被悬挂键吸引住。吸附的原子不能在基底表面稳定存在,自发形成固态的薄膜。吸附后的原子在基体表面上进行扩散,单个原子间通过相互碰撞,凝结成原子对和更大的原子团。在满足一定热力学条件下,先生成临界核,在此基础上加一个原子就可变为稳定核。长大指形成稳定核后薄膜的形成过程,一般经历岛状、连并、沟道、连续膜四个阶段。分散在基底表面的大量晶核长大,直至相互接触并逐渐布满整个基底表面形成连续薄膜。 第三章 晶体缺陷 1、 高温结构材料Al2O3可以用ZrO2来实现增韧,也可以用MgO 促进烧结。如加入0.3mol%ZrO2,试写出缺陷反应式和固溶分子式。 答:缺陷反应式:23223Al O Al i O ZrO Zr O O ? ''?? ?→++ 根据缺陷反应式可知,ZrO2:Zr ·Al :O ”i=2:2:1,,加入0.2mol% ZrO2时得到0.2mol%间隙氧,所以固溶分子式为:Al1.998Zr0.002O3.001。 2、试述晶体结构中点缺陷的类型。举例写出CaCl2中Ca2+置换KCl 中K+或进入到KCl 间隙中去的两种点缺陷反应表示式。 解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。当CaCl2中Ca2+

相关主题
文本预览
相关文档 最新文档