当前位置:文档之家› 模拟信号到数字信号转换器

模拟信号到数字信号转换器

模拟信号到数字信号转换器
模拟信号到数字信号转换器

K部分模拟信号到数字信号转换器

K.1 摘要

本章介绍了模拟信号到数字信号转换器电路板并包括介绍一个元件分布的丝网印层面。

其电路图可在总电路图集中找到;而元件表可在第七章中找到。模拟信号到数字信号的转换称为“A/D”或A到D转换。A/D转换器位于中心控制组合中。

———————————————————————————————————————K.2 电路工作基本原理

从模拟输入板来的模拟音频信号进入A/D转换板,在这里信号被转换为12位数字音频信号,此功能由A/D转换集成块完成。其转换的速率为1.2到2.5微秒,主要取决于发射机载波频率。A/D转换过程是与发射载波RF信号同步的,因此PA模块的开关过程是在发射载波RF驱动器过零处进行的。来自A/D转换器的数字音频信号存贮在锁存器中。

锁存器的输出信号送至调制编码板,在编码板上信号被用来打开PA模块。锁存器输出也送入音频信号重现电路和在A/D板上的大台阶同步电路。重现的音频信号送入在控制器板(A38)上的包络误差电路。大台阶同步信号送“Dither”振荡器,其位于模拟信号输入电路板。

下面的说明请参阅模拟信号到数字信号转换电路板的电路图集(图839-7855-177)。

参阅第五章使用维护手册,作为调整和印制板维护操作过程参考。

参阅第四章全系统原理说明,来了解发射机音频和数字音频部分的总体说明和有关框图。

———————————————————————————————————————K.3 电路说明

K.3.1 转换PA采样为A/D编码脉冲(T1,U29,Q9)

有两路RF采样信号输入到A/D转换器板。一路是RF分配器(A15)来的在J3-1和J3-2上的分配器采样频率输入信号。另一路是从输出合成器来的输出采样频率信号在J8-1和J8-2。作为这个采样的输入网络是一个R-C-L网络,它在525kHz处提供一个固定90°相移。跳转插头P11A-P11B允许不连接这个采样。

PA模块必须在RF驱动信号过零点时进行开关控制过程。在调制信号期间这个时间定位需要稍有移动尤其是对发射机载波频率的低频端,因此射频RF驱动信号和被90°相移的RF 输出其叠加在一起。两个信号矢量在R62迭加。其结果在有调制时输出有约+/-15°的相移值(在等宽的低端)。

射频RF输入送入宽带环形RF变压器T1的初级绕组。电阻R18和L-C网络及有关器件由针式双列直插开关S1部分选择提供可调整的,频率指定的相移(参阅在第五章中调谐和频率改变操作过程,及有关设置S1的使用维护信息)。

斯密特触发器U12C转换射频RF信号为TTL电平脉冲。二极管CR14和CR15使斯密特触发器的输入信号限制在+0.7和+4.3V之间。

K.3.2 频率分配器(U29,Q9)

在TP6的频率输出是RF输入频率(从J3的1脚),如果跳转插头插入在JP10的5脚和6脚之间。在TP6输出的是RF输入频率的一半如果跳转插头插在1脚和2脚之间。跳转插头插入3脚和4脚之间在TP6输出的是RF输入频率的三分之一。

跳转插头的位置取决于发射机工作频率。请参阅有关A/D转换器的电路图注释或频率

测定元件器图表。

K.3.3 编码信号脉冲宽度(Q9)

定时电路时序图已标志在A/D转换器板信号中,指示了在这块板上信号相互关联。在TP6上的信号通过C106。Q9的基极钳位在0.7V左右。从TP6来的脉冲下降沿引起Q9关闭。这使Q9的集电极电压上升。 R78和R79充电使Q9的基极电压提高, Q9再次开使其集电极电压降为0.3V。其最终结果是在TP3产生一个脉冲。这个脉冲的宽度取决于R78和R79电阻的阻值。这个脉冲的宽度应在20至50纳秒之间。这是一个编码启动信号,其进入A/D 转换器从而开始转换过程。

K.3.4.A/D转换电路

K.3.4.1 模拟信号输入电路(U28)

模拟输入信号(J4-10)进入A/D转换器是一个音频+直流信号,其来自模拟信号输入板(实际为负的音频+直流信号)。直流分量取决于在不调制情况发射机的功率输出(载波电平)由打开一定数量的PA模块决定。音频分量的幅度调整打开和关闭PA模块的数目改变输出使瞬时RF输出电压变化。

在板的输入端模拟信号电平是很高的因此任何在连接电缆上感应到的噪声将不会降低信噪比。反相放大器U28具有0.5倍的增益,供给A/D芯片适当的信号电平输入并且也提供在板的输入端与A/D芯片之间的隔离。

从大台阶同步电路来的一个很弱的信号通过R70被加在U28(2脚)的反相输入端。当一个大台阶产生在输出端,在A/D转换过程中最末位的不确定性将引起瞬间超前滞后台阶。这在大的阶梯产生时在阶梯间作为不必要的开关动作将产生假电子信号或尖峰脉冲。来自大台阶同步电路的小电压信号将迫使输入信号电平更高,这将确保A/D转换不会开关回到前一个台阶状态。

高速肖特基二极管(CR16,CR18)形成A/D转换器输入端的过压保护。肖特基二极管同时具有低的开启电压0.5V或更低。CR16阻止输入电平为负值。CR19阻止电平电压越过+5V 因为CR10是一个4.7V的齐纳二极管。

K.3.4.2 模拟信号到数字信号转换器(U1,DL1)

一个12位模数转换芯片AD1671被电路采用。AD1671的转换时间小于800纳秒。模拟电压的输入范围是0到+5V。0V输入电压的数字输出是“0000 0000 0000";+5V输入电压的输出数字是“1111 1111 1111"。

需要转换成数字量的模拟信号送入A/D芯片的23脚。编码启始脉冲从A/D芯片的17脚输入指令A/D块进行一次转换。

12位A/D数据线是2脚到13脚。2脚是二进制码的最末有效位(LSB)而13脚是二进制码的最高有效位(MSB)。16脚是数字可用位DAV脚。DAV信号是一个负脉冲其指示一次转换完成12位输出数据线上的信号是可用的。

DAV脉冲送入到一个450纳秒的延时芯片DL1。这个延时作用使得现有的A/D转换板(843-1500-094 RevA)可与以前的A/D转换板(843-4038-049 RevP)兼容。老版本的A /D转换电路板使用较慢速度的A/D芯片,此芯片现已不生产了。

K.3.4.3 数字信号锁存器(U3,U4,DL3)

来自DL1的负脉冲也经过一个60纳秒的延时器DL3。DL3的输入信号是锁存器存贮脉冲。这个脉冲的上升沿锁存从A/D转换器来的数字音频信号到U3和U4。

来自锁存器U3/U4的数字音频信号又送入到两个D/A数模转换器中。D/A转换器U22是大台阶同步电路的一部分而D/A转换器U8是重建音频电路的一部分。

来自DL1的负脉冲送入到U7的输入端1脚同时也是在J6-26处的数据存贮L信号。在J6连接器的信号送入调制编码板。数据存贮L信号的上升沿被用来传输锁存器U3和U4数

据到调制编码板的锁存器中。

K.3.5 故障检测电路

在A/D转换器板上有电路检测是否收到时钟信号和A/D转换器是否工作正常。故障检测电路使用三个可重触发单稳态多谐振荡器,称为单触发电路。如果故障被检测到转换故障L逻辑信号将变为低电平并且清零在A/D板上和在调制编码板上的两组存贮数据用的锁存器。

K.3.6 单触发工作过程(U13,U14)

单触发电路在每次输出信号的上升或下降沿被探测到后输出一个脉冲。每个单触发电路有三个输入信号;A,B和清零。电路有两个输出:Q和Q非(反相Q)。有一个RC网络联结到每个单触发电路其决定了脉冲的宽度。

下表的逻辑低电平为“0”而逻辑高电平为“1”。UP是一个脉冲的上升沿而down是脉冲的下降沿。X表示可存在0或1两者之一的情况。

可重触发表示在一个输出脉冲期间如果输入触发条件再次发生,R-C阻容网络将被复位而输出脉冲将延长一个RC时间常数。

K.3.6.1 升功率复位(C41,R16,U12-F)

当+5V电源首次打开,升功率复位-L信号(TP2)将为低电平约5微秒。这个逻辑低电平把故障检测器单触发电路(U13,U14)清零。清零-L信号(TP17)为低电平时将清零A/D 锁存器(U3,U4)。数据清零-L信号(J6-28)也是低电平时将清除调制编码板锁存器数据。置所有的锁存器为零5微秒将使功率电源有时间在PA模块打开前加到满电压同时也除去任何在加电期间瞬时进入锁存器的数据。

+5V电源的初始加电引发通过R16对C41充电并且使反相斯密特触发器U12-F的电压从零开始上升。当电压经过C41超过反相器的阀值时,其输出将变高电平。

如果+5V供电电源跌落,C41将通过二极管CR13放电。升功率复位-L信号将再次变低电平。

K.3.6.2 时钟故障检测电路(U14-A)

时钟在TP6的频率可以从410kHz到820kHz变化因此其周期是1.2μs到2.5μs。这是单触发电路U14-A电路2脚的输入信号。单触发电路的输出标记为时钟故障-L信号。单触发输出信号脉冲是3.6微秒宽度。只要时钟信号存在单触发电路就不断被重触发而输出则保持为“1”。如果脉冲停止或频率过低单触发电路输出将变低电平。

K.3.6.3 A/D转换器监测电路(U13-A)

从A/D转换器来的在TP5点的数据有效信号DAV在每次转换完成后产生。这个信号的周期是1.2到2.5微秒。这个信号输入到单触发U13-A的2脚。其单触发的输出标记为A /D故障-L信号。单触发电路的输出脉冲宽度为3.6微秒宽。只要数据有效信号存在,则单触发电路将不断被重触发而输出信号保持为“1”。如果脉冲停止或频率太低,则单触发的输出信号将变为低电平。

K.3.6.4 转换器故障指示器(U14-B,U11,DS1)

时钟故障-L信号和A/D转换器故障-L信号送入与门U15-A。这个门的输出是在TP8的转换故障-L信号。如果转换故障-L信号变为低电平,则触发单触发电路U14-B。这个单触发电路的输出为一个在12脚的10微秒的负脉冲。这个低电平通过U15-B和U15-C 传输引起清零-L信号变为低电平。这就确保只要有故障就会引起驱动PA模块的相应位被清零至少10微秒的时间。

运算放大器U11B的反相输入端通过分压器R28-R29接入+1.4V电压,其功能是一个比较器。如果有故障,则U15的6脚将变为低电平然后在U15的5脚而U11的7脚将为-15V 电压。这将引起双色发光管LED D81显示红色。如果没有故障,则U15 6脚的电压将高于其5脚,U11的7脚将有+15V。从而使双色发光管DS1显示绿色。如果一个故障已经产生转换故障H信号将进入到发光二极管LED板A32并且为高电平。

K.3.7 大台阶同步电路

大台阶同步电路在发射机输出每次有一个大台阶发生时产生。对DX10和DX25中当来自A/D芯片的高六位有效信号的任一位变化时就产生一个大台阶同步信号。在DX50机器中当来自A/D芯片的高七位信号的任何一位发生变化时就产生一个大台阶同步信号。

大台阶同步脉冲同步在模拟信号输入板中的“Dither”振荡器。同时大台阶同步信号加入一个微弱的信号到进入A/D芯片的模拟输入信号中。这个微弱信号的大小是为了使在大台阶间非必要的开关全拉动作最少。

K.3.7.1 大台阶同步电路D/A转换器(U22)

数模转换器在电路中用来转换数字音频信号码变回为模拟信号。开关S2决定了将送入D/A的码的位数。开关S2的A部分器件脚号为1脚和4脚。S2的B部分的脚号是2脚和3脚。A和B打开为DX25工作方式,因此有6个高位有效位送入D/A。开关S2的A部分合上为DX50工作方式,有7个高位有效位送入D/A。

D/A转换器的输出在U22的4脚是一个电流信号,它送入R35产生0V~1V电压信号。K.3.7.2 增益放大电路(U24,U25,U26)

D/A转换器的输出由U24和U25进行放大。放大电路的增益稍高于5倍。U24是一个运算放大器而U25是一个电流放大器,其用来增加驱动下一级的放大器的电流输出能力,同时不降低阶梯波形的指标。

R53-C93的低通滤波器来用滤除高频信号分量。U26是一级缓冲电路。U26的输出通过R70加入到模拟输入信号中。U26输出同时驱动一个差分电路。

K.3.7.3 微分和缓冲电路(U27)

R55和C92形成一个微分电路其在每次瞬态过程发生时产生一个脉冲。此脉冲可以在U27的6角或R63上观察到。来自U27的输出信号是大台阶同步脉冲信号,其送入模拟信号输入板A35的“Dither”振荡器电路。

K.3.8 重构音频模拟信号电路

在A/D转换器板上送入U8的D/A转换器的比特信号被重新生成为音频模拟信号。另一路音频信号来自于发射机输出的包络检测器。在发光二极管LED板A32上这两路信号由包络误差电路进行比较。(请参阅Q部分发光二极管LED板说明有关包络误差电路的分析讨论。) K.3.8.1 音频模拟信号重构电路D/A转换器(U8)

12位数字音频信号由U8的D/A转换芯片,运算放大器U9和电流放大器U10反变换回模拟信号。未经滤波的D/A转换器电路的输出是在U10的8脚并且可在检测点TP9处观察到。分压器R31-R30提供D/A转换器输出与检测设备负载间的隔离。在TP9点的非滤波输出当用高阻抗探头检测时在0伏到5伏之间变化。

K.3.8.2 重构滤波器(L1,L2,L3,C47,C48,C49)

D/A转换器是有阶梯的。重构滤波器是一个低通滤波器,其通过音频信号分量同时阻止在有阶梯信号中的更高频率分量。这个滤波器平滑输出信号(一个D/A重构滤波器也同时称为平滑滤波器)。这个滤波器的响应近似等同于输出网络的响应,这允许从两个滤波器来的音频信号在发光二极管LED板A32的包络误差电路中进行比较。运算放大器U11使滤波器的输出隔离于负载电路的变化。

K.3.8.3 地信号A,AA,B和底板

在这个电路板(A34)中有四种地信号被使用。地信号A用在数字信号部分。地信号B用在模拟信号部分。地信号AA用在重构音频信号电路。底板地用在两个射频RF采样部分。地信号A和地信号B通过JP1连接在一起其为AD1671数据片的需要指令。地信号A和地信号AA在JP2处连拉在一起。底板地通过使用JP3穿过安装孔2连接到发射板的底板上。

注意当使用检测设备时应避免地信号环流或其它地信号穿过检测设备。

K.3.8.4 稳压器模块

由在板上的稳压集成电路提供出四路稳压电源。U2是一片7815把22V变到15V稳压电压。U18是7915提供从-22V到-15V稳压电压。U21是7905,转换-15V到-5V稳压电压,被A/D芯片U1所使用。

U16是一片LT1123而Q1是MJE1123晶体管。这两部分结合形成+5V低跃落稳压电源。这个电源的输入电压可以低达+5.5V而仍具有+5V的输出电压。它同时也能供给出4A的电流。

U19是78L05其转换+22V或+8V到+5V。两种电源驱动这路稳压电源以防有其中的一路有失效发生。这个+5V供一个LM339是四路电压比较芯片:U20,其用来监测稳压电源的电压。如果+15V电源故障则+15V故障-L信号从+22V变为0V。如果-15V电源失效则-15V故障L信号从-7V变为-20V。如果+5V电源故障则+5故障L信号从+5V变为0V。

———————————————————————————————————————K.4 维护

K.4.1 印制电路板的维护

请参阅在这本技术手册的第5章有关总的印制电路板维护过程。

K.4.2 调试

K.4.2.1 同步采样信号调相(S1)

同步采样信号调相的调整方法在这个技术手册第5章:维护说明中有关调谐和频率改变操作过程部分阐述。

K.4.2.2 时钟脉冲信号脉宽调整(R78)

此控制电路的调整在本技术手册第五章维护说明的有关调谐和改变频率操作过程部分。K.4.2.3 数字信号到模拟信号D/A转换的比特选择(S2)

开关S2决定了送入D/A的数字比特位数。开关S2的A部分是1脚和4脚。开关S2的B部分是2脚和3脚。对DX25工作方式A和B都打开,因此有6个高位有效位进入D/A。在DX50工作方式中开关S2的A部分闭合,因此有7个高位有效位送入D/A。

———————————————————————————————————————K.5 寻找故障信息

请参阅在电路图集的电路图839-7855-177。检查点和波形在板上在不同的信号点给出。

备注:

给出的模拟信号幅度(包括重构模拟信号幅度)是在100%调幅射50kw发射机的输出信

号。当只有较低的功率电平及调制幅度时,这些模拟信号的幅度将会较低。

K.5.1 特征:彩色状态板转换故障显示器是红色,而发射机工作正常。

如果发射机工作正常但有转换故障显示在LED板上,则问题出在显示电路。检查在模拟信号到数字信号转换器板上的DS1。如果彩色状态板转换故障显示器是红色但A34的DS1是绿色,则测量U12-4的输出信号。

1.如果你测出的是逻辑低电平,则问题出在LED板的显示电路。请参阅Q部分LED板的寻找故障部分。

2.如果你测出的是高电平,则替换U12。

备注:

如果没有射频RF驱动信号在模拟信号到数字信号转换器中的转换故障显示器DS1将显示红色,例如:发射机关闭。这时彩色状态板上的转换故障发光管将仍是绿色,因为当发射机关闭时LED逻辑电路禁止转换故障电平显示。

K.5.2 特征:彩色状态板转换故障显示器是红色,发射机可以开机但无射频功率输出。K.5.2.1 检查在TP8的逻辑电平

a.如果TP8是高电平,测量U15-5。如果是低电平,则U14已失效。

b.如果TP8是低电平,问题在Eoc-L上。即时钟故障L信号或功率复位L信号。为了隔离在模拟信号到数字信号转换器电路上的原因,检查在U15-1和U5-2上的逻辑电平,然后参考适当的章节。如果1脚是低电平,则“Eoc-L"故障存在;如果2脚是低电平,则“CEL"时钟故障存在。如果两管脚都是低电平,则功率复位-L故障存在。

K.5.2.2 时钟故障L信号:在TP6无信号。

如果在TP6无TTL脉冲,确定采样频率输入在J3-1是有的。因为最大的可能引起无采样频率信号的原因是连接器接触不良而无射频RF驱动将在彩色状态板上引出欠驱动故障。

如果采样频率信号在J3-1有信号,则检查施密特触发器输入U12-5和输出U12-6。如果没有信号,则检查CR13和CR14是否短路或施密特触发器是否失效。如果U12-6的输出信号存在但在TP6没信号则U29或U12的其它部分失效。

K.5.2.3 时钟故障L信号:在TP6有信号存在。

检查频率关键元器件图示使P10在适当位置,同时计算在TP6逻辑信号的频率使之对应你的工作频率。在TP6点的逻辑信号频率应在410kHz与820kHz之间,取决于发射机载波频率。检查发射机的出厂检验数据表,或频率关键远器件图示对应P10的适当位置(因此确定分配器的比例为1或2)。如果在TP6的频率是错误的则P10的位置错误或U29是失效的。K.5.2.3.1 寻找频率分配器故障

同步二进制计数器U29,对在14脚的输入信号四分频,在这个电路中,输出信号又反馈回输入,得到二分频功能。

为了检查U29的工作状态,先关闭功率放大级。可由在控制器板上的PA关闭开关S5置于OFF(UP)位置可实现这个目的。

除去在P10上的跳转插头,用双踪示波器从U29观察输入和输出信号。输出信号在U29-14应是在四分之一输入频率的TTL逻辑电平脉冲。

K.5.2.4 EOC-L故障

利用双踪示波器比较在TP3和TP5上的信号时序。如果在TP5处U2的EOC状态输出信号仍为高电平而当在TP3的下一个启始转换脉冲产生时在U13-4处EOC-L信号仍为低电平,这就表明A/D转换芯片IC U2有故障。

K.5.2.5 升功率复位故障

测量在U12-13的电压。当低压电源打开时应当有+5V直流信号存在。如果没有+5V 直流电压而测量TP15的+5V直流电源是正确的,则可能是电容C41失效。如果在U12-13

有+5V直流电压信号,但TP1是逻辑低电平则替换U12。

———————————————————————————————————————K.6 技术辅助措施

请参阅在目录页后的技术辅助方法。

———————————————————————————————————————K.7 可替换部分的维修

请参阅包括在目录页后的可替换部分维修。

表K-1 模拟信号到数字信号转换板A34,控制和显示

表K-2 模拟信号到数字信号转换板A34检测点

图K-1 模拟信号到数字信号转换器板(A34)

1、模拟信号到数字信号的转换

模拟信号到数字信号的转换(A/D转换) (胥永刚) 现在大部分传感器输出的信号都是模拟信号,主要包括电压信号和电流信号两种,当然也有直接输出数字信号的传感器。对于传感器输出的模拟信号,除了一些简单的仪表直接进行显示之外,大部分都需要转换成数字信号,以便在网络上进行传输,并保存在硬盘、CF卡等存储介质上,用于后续的分析和处理,如此,就需要用专门的器件将模拟信号转换成数字信号。对于部分技术人员来说,了解模数转换的原理,对深入了解测试仪器,开发测试系统,修正仪器的技术参数等有着很大的帮助。 对于一个完整的带反馈控制的监控系统来说,大体可以用图1这个框图来描述,从图中可以看出来,一般而言,模数转换(A/D)大多在数模转换(D/A)之前,但在很多教材上,往往是先讲数模转换(D/A),再讲模数转换(A/D),因为模数转换电路里要用到数模转换。当然这是从理论上来讲的,对于现在工程中实际应用的数模转换究竟基于什么原理,我也不是很清楚,但并不妨碍我们对模数转换的理解。. 因此,我们尝试着讲解数模转换原理,因为从对应关系上来说,这两者是一样的,只是转换电路不同而已。 图1 典型的监控系统(带反馈控制) 1、数模转换原理 图2是很多教材上给出的数模转换电路,要想讲清楚这个,需要用到电工电子方面的知识,这里我们就不详细展开了。(原谅我一次一次提到教材二字,因为在高校里工作,养成习惯了,^_^) 图2 数模转换电路

图1是一个4位的数模转换电路,意思是将一个4位的二进制数转换成对应的电压。4位的二进制数可以表示成3210d d d d ,翻译成十进制数,就是 32103210 2*+2*+2*+2*d d d d (1) 式(1)中的四位二进制数,每个位上要么是0,要么是1,不可能是其它数字。 因此,四位二进制数最大可表示十进制的15,最小可表示十进制的0。 若我们任意给一个四位的二进制数,可以按照如下公式进行数字和电压之间的换算。 321043210=(2+2+2+2)32F R o R U U d d d d R (2) 比如,我们假设这个四位的数模转换器参考电压=10R U V ,=3F R R ,若输入的四位二进制数是0000(对应的十进制数是0),则输出的电压为: 3210 410=(2*0+2*0+2*0+2*0)=032 F o R U V R 若输入的四位二进制数是1101(对应的十进制数是13),则输出的电压为: 321041010130=(2*1+2*1+2*0+2*1)=(8+4+0+1)=321616 F o R U V R 也就是说,要是输入的十进制数是0,则输出电压0V,若输入的十进制数是13,则输出的电压为13016 V ,如此类推,我们就可以得知,输入任意一个四位二进制数(对应的十进制数在0~15之间),就可以按照式(2)得到一个对应的电压值。如此,就实现了数字信号到模拟信号的转换。 当然,现在市场上很少能买到4位的数模转换器,大部分都是12位,16位,24位的,转换规律是一样的,参考下式: -1-20-1-20= (2+2++2)32F R n n n o n n R U U d d d R (3) 2 关于数模转换的直观理解 不理解上面那几个公式也没关系,只要明白下面这个对应关系也可以。 不管是数模转换(D/A)还是模数转换(A/D),就是根据某一个公式实现电压信号和对应的数字信号之间的转换。 比如,一个数模转换器允许输入的数字范围是0~4095,对应输出的电压为-5V~+5V。之所以这样假设,是因为大多数数模转换输入的是十进制数字,12位的二进制信号对应的十进制数字就是000000000000对应着十进制的0,111111111对应着十进制的4095,常见的数模转换和模数转换电压范围为-5V~+5V。 在这个假设下,如图4所示,若是数模转换,意味着输入数字为0时,输出电压是-5V,输入数字为4095时,输出电压为+5V,输入数字为2048时,输出电压为0V。

模拟信号和数字信号的特点分别是什么

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 1 1=== - 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 7 6 105.210221-?=??= 4、答: Hz s bit //21010241020483 3 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现

象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为? =93S i ,试 将其编成相应的码字,并求其编码误差与解码误 差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编成相应的码字,并求 其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,10 =-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥

(完整版)外文翻译--模拟与数字转换器-精品

模拟与数字转换器 前面我们已经提到,人们在模拟转换器、信号调节器和A/D转换器等的使用上已经积累了大量的经验。因此,目前大部分的系统自然都采用这些技术。然而,还有很大一部分测量方法实质是数字的,在个别的测量仪中使用这些方法时,需要用到一些积分电路,如频率计数和计时电路等来提供指示输出。另外,如果把这种转换器和电脑相连的话,就可以省去一些器材;因为很多有积分电路执行的工作可以由计算机程序代为执行。 柯林斯把在控制和测量系统中处理的信号分为以下几类: (1)模拟式。尽管系统的被测数最初通过传感器得到的是模拟信号,然后通过设计或采用原有的方法将模拟形式的信号转换成电模拟信号。 (2)数字码式。产生的信号是并行的数字信号,每一位的基数权重由预先编定的号码系统决定。在本书中这些仪器称作直接数字转换器。 (3)数字式。其中的函数是指测量参数时用到的量度标准,如对重复信号取平均值。这些仪器在后来称为频域转换器。 特别地,一些模拟转换器适合用一些特别的技术来把模拟量转换成数字输出。其中最通用的方法是同步法和相似仪器的方法,即产生载波频率的调制输出的方法。在用作普通的模拟量输出仪器时,输出量必须经过解调。解调后输出的是直流信号,支流信号的大小和方向描述了转换器运动元件的偏移。虽然使用传统的A/D转换技术可以用来产生数字信号,在提供高精度时采用这些新技术将同步输出直接变为数字输出,比用A/D转换方法更快。 直接数字转换器实际上用得很少,因为在自然现象中很少有那种由温度变化、压力变化等因素作用而产生的可测量的离散的变化量。在普通的仪器系统中使用直接数字转换器有如下优点(即使在完成安装时不使用计算机):(1)容易产生、处理和存储信号,如打控带、磁带等; (2)高精度和高分辨率的需要; (3)高介数字信号对外部噪声的抗干扰性; (4)在简化数据描述时的人机工程学优势(例如:数字读出器能避免读刻度或图表时的判度错误)。 在直接数字转换器中最能起作用的发展是轴编码器。轴编码器在机床和飞行系统中被广泛应用。利用这些设备能达到很高的精度和分辨率,而且这些设备能进行激动连接,给出任何可测量物理偏移的直接数字输出。这类系统通常的缺点是仪器的惯性及编码器限制了相应的速度,因而也限制了操作频率。 频域转换器在线系统(测量量较少时)有着特殊的地位。因为计算机能担当

模拟信号和数字信号的对比

模拟信号是将源信号的一些特征未经编码直接通过载波的方式发出,是连续的数字信号则是通过数学方法对原有信号进行处理,编码成二进制信号后,再通过载波的方式发送编码后的数字流,是离散的特点:模拟信号:将26个字母对应26种不同的颜色要传递时用不同颜色的滤光片改变电筒射出的光的颜色这里就会表现出模拟信号不可靠(容错性差、易受干扰)的缺点人对颜色的识别可能会有偏差大气对不同颜色的光线吸收程度不同数字信号:将26个字母编码成二进制数字(可参考莫尔斯电码)通过电筒光线的闪烁来传递信号由于光线的闪烁很容易分辨且不容易受到干扰这个通信方案的可靠性就比模拟信号更强模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,时间上离散的模拟信号是一种抽样信号,数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1.模拟通信模拟通信的优点是直观且容易实现,但存在两个主要缺点。(1)保密性差模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。(2)抗干扰能力弱电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多2.数字通信(1)数字化传输与交换的优越性①加强了通信的保密性。②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。③可构建综合数字通信网。采用时分交换后,传输和交换统一起来,可以形成一个综合数字通信网。(2)数字化通信的缺点①占用频带较宽。因为线路传输的是脉冲信号,传送一路数字化语音信息需占20?64kHz的带宽,而一个模拟话路只占用4kHz带宽,即一路PCM信号占了几个模拟话路。对某一话路而言,它的利用率降低了,或者详它对线路的要求提高了。②技术要求复杂,尤其是同步技术要求精度很高。接收方要能正确地理解发送方的意思,就必须正确地把每个码元区分开来,并且找到每个信息组的开始,这就需要收发双方严格实现同步,如果组成一个数字网的话,同步问题的解决将更加困难。③进行模/数转换时会带来量化误差。随着大规模集成电路的使用以及光纤等宽频带传输介质的普及,对信息的存储和传输,越来越多使用的是数字信号的方式,因此必须对模拟信号进行模/数转换,在转换中不可避免地会产生量化误差数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。数字信号与模拟信号的区别不在于该信号使用哪个波段(C、KU)进行转发,而在于信号采用何种标准进行传输。如:亚卫2号C波段转发器上是我国省区卫星数字电视节目,它所采用的标准是MPEG-2-DVBS。模拟信号与数字信号(1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(AnalogSignal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(DigitalSignal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断

模拟信号与数字信号

模拟信号与数字信号 (1)模拟信号与数字信号不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化 的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二 进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电 磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信 号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另 一个节点。(2)模拟信号与数字信号之间的相互转换模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用 8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域 网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。 信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形 式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据 幅度取什是否离散来确定。模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,如图 1-1(a)所示。时间上离散的模拟信号是一种抽样信号,如图1-1(b)所示,它是 对图1-1(a)的模拟信号每隔时间T抽样一次所得到的信号,虽然其波形在时间 上是不连续的,但其幅度取值是连续的,所以仍是模拟信号,称之为脉冲幅度 调制(PAM,简称脉幅调制)信号。数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到了广泛的应用。1.模拟通信模拟通信

模拟数字转换器的基本原理

模拟数字转换器的基本原理 我们处在一个数字时代,而我们的视觉、听觉、感觉、嗅觉等所感知的却是一个模拟世界。如何将数字世界与模拟世界联系在一起,正是模拟数字转换器(ADC)和数字模拟转换器(DAC)大显身手之处。任何一个信号链系统,都需要传感器来探测来自模拟世界的电压、电流、温度、压力等信号。这些传感器探测到的信号量被送到放大器中进行放大,然后通过ADC把模拟信号转化为数字信号,经过处理器、DSP或FPGA信号处理后,再经由DAC还原为模拟信号。所以ADC和DAC在信号链的框架中起着桥梁的作用,即模拟世界与数字世界的一个接口。 信号链系统概要 一个信号链系统主要由模数转换器ADC、采样与保持电路和数模转换器DAC组成,见图1。DAC,简单来讲就是数字信号输入,模拟信号输出,即它是一种把数字信号转变为模拟信号的器件。以理想的4 bit DAC为例,其输入有bit0 到bit3,其组合方式有16种。使用R-2R梯形电阻的4bit DAC在假定Vbit0到Vbit3都等于1V时,R-2R间的四个抽头电压有四种,分别为V1到V4。 采样保持电路也叫取样保持电路,它的定义是指将一个电压信号从模拟转换成数字信号时需要保持稳定性直到完成转换工作。它有两个阶段,一个是zero phase,一个是compare phase。采样保持电路的比较器通常要求其offset比较小,这样才能使ADC的精度更好。通常在比较器的后面需要放置一个锁存器,其目的是为了保持稳定性。 在采样电压快速变化时,需要用到具有FET开关的采样与保持电路。当FET开关导通时,输入电压保存在某个位置如C1中,当开关关断时,电压仍保持在该位置中进行锁存,直到下一个采样脉冲的到来。 ADC与DAC在功用上正好相反,它是模拟信号输入,数字信号输出,是一个混合信号器件。 模数转换器ADC ADC按结构分有很多种,按其采样速度和精度可分为: 多比较器快速(Flash)ADC; 数字跃升式(Digital Ramp)ADC; 逐次逼近ADC; 管道ADC;

模拟信号和数字信号的优缺点

模拟信号和数字信号的优缺点 模拟信号好还是数字信号好,很多人都会说数字信号,但为 什么数字信号好呢?那就有相当一部分人答不出来了,究竟模拟信 号和数字信号的优缺点在哪呢? 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部 的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量 下降。线路越长,噪声的积累也就越多 3)不适宜远距离传输 数字化传输优点 1)加强了通信的保密性。 2)提高了抗干扰能力。 3)可构建综合数字通信网。采用时分交换后,传输和交换 统一起来,可以形成一个综合数字通信网 4)适宜远距离传输

由于数字信号在传输过程中可以不断地通过整形和判决再生,因此它可以实现无噪声积累和无非线性失真的高质量长途传输。光 纤所具有的极宽传输带宽和极小传输损耗,使数字通信的广泛应用 成为可能。数字视频光传输与传统的模拟光传输相比,具有如下显 著特性: 1)可级联,随距离的增加,SNR信噪比不会下降。 2)由于是数字传输方式,采用数字编码纠错方式,具有高 稳定性和高可靠性。 3)多路信号同传时,采用数字时分复用技术(TMD),不会 产生模拟传输时的交调失真。 4)稳定性好,环境适应性高,比模拟传输系统易于维护与 调节。 5)易于实现大容量传输,且性价比高。 6)采用无压缩编码,图像信号质量高,达广播级。 在传输中,如视频监控,数据传输等,基本上都是由光端机 来进行的,而视频监控中采用最多的则是视频光端机这类传输设备。

数字-模拟音频转换器

用户手册 数字-模拟音频转换器 2路光纤+2路同轴音频切换器 使用手册 产品型号:ADSW0006M1 聆听自然的声音! 备注 本公司保留不需要通知本手册读者而对产品实物的包装及其相关文档进行修改的权利。 ? 2012 本公司版权所有

引言 尊敬的客户: 您好! 非常感谢您购买本公司的产品。为了实现产品的最佳效果和保证安全,请您在对产品进行连接、操作、调试前仔细阅读本手册。此手册请予以保留,以备将来查阅。 本公司所生产的HDMI转换器、切换器、网线延长器、矩阵、分配器等系列产品,其设计之目的是为了让您的影音设备使用起来更便捷,更舒适,更高效,更节能。 这款音频转换器可以把四路SPDIF信号(2路光纤+2路同轴)信号自由切换到一路光纤信号输出,同时将LPCM格式的数字音频转换成立体声模拟音频输出。可广泛用于DVD播放机、蓝光机、网络播放器、高清播放器、PS2、PS3、Xbox360、PC等数字音频转换输出。 本公司所生产设备为以下应用提供解决方案:如对噪声、传输距离及安全有限制的场所、数据中心控制、信息分配、会议室演示以及教学环境和公司培训场所。 真诚服务是我们的理念,顾客满意是我们的宗旨。本公司将以最优惠的价格提供给客户最好的产品,并竭诚为客户提供优质服务。 产品简介 产品特点: ●4路SPDIF(2路光纤+2路同轴)数字音频输入,自由切换到一路光纤输出,同时转换成 1路L/R模拟音频输出和1路耳机输出 ●采用192KHz/24bit DAC音频转换芯片 ●光纤输出支持杜比AC3、DTS、THX、 HDCD、LPCM等数字音频格式 ●支持LPCM数字音频格式转换成模拟音频输出 ●自动检测识别输入数字音频信号格式,非LPCM音频输入时模拟输出自动静音 ●音频输入状态指示。当无音频输入或者输入错误数据时,对应通道指示灯开始闪烁 ●一键切换输入源及电源待机,操作方便快捷 ●耳机放大输出,能直接驱动3.5mm插头通用耳机 ●高品质音质,低噪音 ●断电记忆功能,重新开机后自动切换到上次使用信号通道 ●使用DC5V/1A外置电源适配器供电

数字信号与模拟信号的特点

信号数据可以用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据幅度取什是否离散来确定。模拟信号指幅度的取值是连续的(幅值可由无限个数值表示)。时间上连续的模拟信号连续变化的图像(电视、传真)信号等,如图1-1(a)所示。时间上离散的模拟信号是一种抽样信号,如图1-1(b)所示,它是对图1-1(a)的模拟信号每隔时间T抽样一次所得到的信号,虽然其波形在时间上是不连续的,但其幅度取值是连续的,所以仍是模拟信号,称之为脉冲幅度调制(PAM,简称脉幅调制)信号。 数字信号指幅度的取值是离散的,幅值表示被限制在有限个数值之内。二进制码就是一种数字信号。二进制码受噪声的影响小,易于有数字电路进行处理,所以得到广泛的应用。1.模拟通信 模拟通信的优点是直观且容易实现,但存在两个主要缺点。 (1)保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。 (2)抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。 2.数字通信 (1)数字化传输与交换的优越性 ①加强了通信的保密性。语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。 数字加密处理可简单描述如下,Y1表示语音变成的数字信号Y1=1011101100001,采用8位密码C=10001101。在送到传输线路之前,将密码“加”到语音码中去,X=Y1+C(密码C连续重复),则传输的数字信号为 X=Y1+C=1011101100001 Y1 +1000110110001 C ————————————— 0011011010000 X 显然X≠Y1,即便有人窃听到X码,也不能马上得到Y1码。在接收端,只要再将相同密码C与数码X相加,就能丰碑成原来的语音数码Y1,即 Y1=X+C=0011011010000 X +1000110110001 C ————————————— 1011101100001 Y1 可见,语音数字化为加密处理提供了十分有利的条件,且密码的位数越多,破译密码就越困难。 ②提高了抗干扰能力。数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压到达时,由于它低于阈值而被过

数字模拟转换器(DAC)原理研究

电路分析课题研究之 数字—模拟转换器(DAC)原理研究一.数字模拟转换器的简介 简称“模数转换器”。把模拟量转换为数字量的装置。在计算机控制系统中,须经各种检测装置,以连续变化的电压或电流作为 模拟量,随时提供被控制对象的有关参数(如速度、压力、温度等)而进行控制。计算机的输入必须是数字量,故需用模数转换器达 到控制目的。 二.数字模拟转换器的原理简单描述 (1).数字模拟转换器的原理 DAC基本工作模式就是数模转换,数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器或DAC。数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成DAC转换器的基本指导思想。(2).数字模拟转换器的一般组成 n位二进制DAC组成一般包括:数字寄存器、模拟开关、基准电压源、电阻网络和放大器几个组成部分

(3).数字模拟转换器的技术指标 a.分辨率 分辨率说明D/A 转换器分辨最小输出电压的能力,通常用最小输出电压与最大输出电压之比表示。所谓最小输出电压ULSB 指当输入的数字量仅最低位为1时的输出电压,而最大输出电压UOMAX 是指当输入数字量各有效位全为1时的输出电压。 对于一个n 位的D/A 转换器,分辨率可表示为 b.转换误差 转换误差是指D/A 转换器输入端加最大数字量时,实际输出的模拟电压与理论输出模拟电压的最大误差。 通常要求D/A 转换器的误差小于 c.转换速度 转换速度是指D/A 转换器从数码输入开始,到输出的模拟电压达到稳定值所需的时间,也称为转换时间。 1 21 n OMAX LSB U U = = 分辨率2LSB U

模拟信号与数字信号之间的转换

模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。

模拟信号和数字信号的特点分别是什么

第一章 复 习 题 1、模拟信号和数字信号的特点分别是什么? 2、设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 3、接上题,若传输过程中2秒误1个比特,求误码率。 4、假设频带宽度为1024kHz ,可传输2048s kbit /的比特率,试问其频带利用率为多少? 第一章 复习题答案 1、答:模拟信号的特点是幅度取值是连续的。 数字信号的特点是幅度取值是离散的。 2、答:符号速率为 Bd t N B B 661010 11===- 信息传输速率为 s Mbit s bit M N R B b /2/1024log 10log 6262=?=?== 3、答:误码率=发生误码个数/传输总码元数 76105.210 221-?=??= 4、答:Hz s bit //210 102410204833 =??==频带宽度信息传输速率η 第二章 复 习 题 1、某模拟信号频谱如题图2.1所示,求满足抽样定理时的抽样频率s f 。若kHz f s 10=,试 画出抽样信号的频谱,并说明此频谱出现什么现象? 2、画出9=l 的均匀量化信噪比曲线(忽略过载区内的量化噪声功率)。 3、画出6.87,7==A l 的A 律压缩特性的非均匀量化信噪比曲线。 4、为什么A 律压缩特性一般A 取87.6。 5、A 律13折线编码器,8=l ,一个样值为?=93S i ,试将其编成相应的码字,并求其编码误差与解码误差。 6、A 律13折线编码器,8=l ,过载电压mV U 4096=,一个样值为mV u S 796-=,试将其编

成相应的码字,并求其编码电平与解码电平。 第二章 复 习 题 答 案 1、kHz f f B kHz f kHz f M M 415,5,100=-=-=== B f <0 ∴此信号为低通型信号 满足抽样定理时,应有 kHz f f M s 10522=?=≥ 若kHz f s 10=,抽样信号的频谱为: 此频谱的一次下边带与原始频带重叠,即没有防卫带。 2、 e e e x x x N N S N l lg 2059lg 205123lg 20lg 203lg 20)/(512 ,9q +=+?=+?===均匀 3、 x x x N N S A N l q lg 2047lg 201283lg 20lg 203lg 20)/(6 .87,128,7+=+?=+?====均匀 246.87ln 16.87lg 20ln 1lg 20=+=+=A A Q )39lg 20(dB x -≤

八位模拟信号转换成数字信号

八位模拟信号转换成数字信号的实验设计报告 一、实验目的 1、了解A/D转换的基本知识及ADC0804的工作原理。 2、掌握基本的编程方法。 3、熟练掌握protel画电路原理图及PCB板的方法。 4、掌握运用keil软件编写单片机C语言。 二、基本原理 1、所谓A/D转换此就是模拟/数字转换器(ADC),是将输入的模拟信号转换 成数字信号。信号输入端可以使传感器或转换器的输出,而ADC输出的数字信号可以提供给微处理器,以便更广泛地应用。 2、AT89S52的基本介绍: AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可 编程Flash 存储器,与工业80C51 产品指令和引脚完全兼容,此实验中 采用AT89S52芯片。 3、ADC0804的主要技术指标: (1) 高阻抗状态输出(2) 分辨率:8 位(0~255) (3) 存取/转换时间:135 ms/100 ms (4) 模拟输入电压范围:0V~5V (5) 参考电压:2.5V (6) 工作电压:5V 3、ADC0804电压输入与数字输出关系

三、电路原理图

四、原理图接线分析 1、ADC0804芯片主要端口接线原理: (1) (CS ):片选端。与RD、WR 接脚的输入电压高低一起判断读取或写入 与否,此实验直接接地让其处于选通状态。 (2) ( RD ):当CS 、RD 皆为低位准(low) 时,ADC0804 会将转换后的数字 讯号经由DB7 ~ DB0 输出至其它处理单元。 (3) (WR ):启动转换的控制讯号。当CS 、WR 皆为低位准(low) 时,ADC0804 做清除的动作,系统重置。当WR 由0→1且CS =0 时,ADC0804会开始转换信号,此时INTR 设定为高位准(high)。 (4) (CLK IN、CLKR):频率输入/输出。频率输入可连接处理单元的讯号频率 范围为100 kHz 至800 kHz。而频率输出频率最大值无法大于640KHz,一般可选用外部或内部来提供频率。在CLK R 及CLK IN 加上电阻及电容,构成RC振荡电路,则可产生ADC 工作所需的时序,其频率约为:f=1/1.1RC ≈640KHz, (5) ( INTR ):中断请求。转换期间为高位准(high),等到转换完毕时INTR 会 变为低位准(low)告知其它的处理单元已转换完成,可读取数字数据,此实验不用中断控制,接去MCU其中某个引脚。 (6) (VIN(+)、VIN(-)):差动模拟讯号的输入端。输入电压VIN=VIN(+) -VIN(-), 此图使用单端输入,而将VIN(-)接地,VIN(+)由电位器R1控制其电压从0~5V 变化,产生了模拟量。 (7) (A GND):模拟电压的接地端。 (8) (VREF/2):滑动变阻器R2和R3利用分压原理提供ADC芯片的基准电压。 2、AT89S52芯片主要端口接线原理: (1) XTAL2、XTAL1:晶振电路中电容C2、C3选取30pF。 (2) REST:复位电路中电容C4隔直作用,Urest=R6/(R5+R6),因为高电平有 效,故R5取小阻值1K, R6取小阻值10K. (3) P0:内部无上拉电阻,故接上1K的上拉排阻。 (3)P1:流水灯采用共阳极接法。 五、控制原理及实验内容 控制原理 根据ADC0804芯片主要端口接线原理部分的介绍,工作控制过程可简单描述如下:调节电位器R4产生连续变化的电压值,ADC0804启动转换,产生与之对应的信号送到单片机中,其高低电平从而控制D1~D8发光二级管的亮灭,这就实现了模拟信号(连续的电压值)到数字信号(高低电平1、0)的转换。

数字转换器

数字—模拟转换器(DAC )原理研究 一.内容描述: D/A 转换器通常是把加权值与二进制码的各比特相对应的电压或者电流,按二进制码进行相加,从而得到模拟信号的方法。产生加权电压和电流的方法有使用负载电阻的方法和使用梯形电阻网络的方法。 二,原理描述 本次实验主要以三位转换器为主要的研究对象。先对其原理进行分析,如下 图所示为建立的电路图: 建立的仿真电路图: 假设输入的数字为D 2D 1D 0=001,即D 0=1时,此时只有一个开关接至电压源,其他的均接地,T 型电阻网络的等效电路: 2 2122 V 0 k Ω1k Ω 1k Ω 2k Ω 2k Ω2k Ω 2k Ω 2V s V s V s

根据戴维南等效电路,每等效一次电压源的值都缩小为原来的一半。下图为其等效电路图的演化过程: =》 =》 由于输出端开路则V0= 32 3 2s V ,同理当输入数字分别为010,100时即D 1, D 2分别单独

接至参考电压源V s ,根据上述方法,可求得D/A 转换器的输出电压分别为 V 0= 32?22s V , V 0=32?2 Vs ,对于任意输入的数字信号D 2D 1D 0, 根据叠加定理,可求得D/A 转换器的输出电压为:V 0= D 0?32?32s V + D 1?32?2 2s V ,+ D 2?32?2 Vs = 32?32 1 ?V D D D )222(001122++s 三 进行仿真实验: 1. 下图为建立的仿真电路图。 首先手动观察V0的值的变化:Di=1:开关接Vs Di=0:开关接地 进行仿真实验得到的结果建立表格得: 二进制数 000 100 101 010 011 001 110 111 电压值(v ) 0 1.0 5.0 2.0 6.0 4.0 3.0 7.0 输出矩形波时的仿真电路图:

模拟信号与数字信号的特点

第1章概述 一、模拟信号与数字信号的特点 模拟信号——幅度取值是连续的连续信号 离散信号 数字信号——幅度取值是离散的二进码 多进码 连续信号 离散信号 ●数字信号与模拟信号的区别是根据幅度取值上是否离散而定的。 ●离散信号与连续信号的区别是根据时间取值上是否离散而定的。 二、模拟通信与数字通信 ●根据传输信道上传输信号的形式不同,通信可分为 模拟通信——以模拟信号的形式传递消息(采用频分复用实现多路通信)。 数字通信——以数字信号的形式传递消息(采用时分复用实现多路通信)。 ●数字通信传输的主要对象是模拟话音信号等,而信道上传输的一般是二进制的数字信 号。 所要解决的首要问题 模拟信号的数字化,即模/数变换(A/D变换) 三、数字通信的构成 ●话音信号的基带传输系统模型 四、数字通信的特点 1、抗干扰能力强,无噪声积累 对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号。由于无噪声积累,可实现长距离、高质量的传输。

2、便于加密处理 3、采用时分复用实现多路通信 4、设备便于集成化、小型化 5、占用频带较宽 五、数字通信系统的主要性能指标 ● 有效性指标 P7 ·信息传输速率——定义、公式l n f f s B ??=、物理意义 ·符号传输速率——定义、公式(B B t N 1= )、关系:M N R B b 2 log = ·频带利用率——是真正用来衡量数字通信系统传输效率的指标(有效性) 频带宽度符号传输速率= η Hz Bd / 频带宽度 信息传输速率= η Hz s bit // ● 可靠性指标 P8 ·误码率——定义 ·信号抖动 例1、设信号码元时间长度为s 7106-?,当(1)采用4电平传输时,求信息传输速率和符号传输速率。(2)若系统的带宽为2000kHz ,求频带利用率为多少Hz s bit //。 解:(1)符号传输速率为 Bd t N B B 6 7 1067.110 611?=?= = - 数据传信速率为 s Mbit M N R B b /34.34log 1067.1log 2 6 2 =??== (2)Hz s bit //67.110 20001034.33 6=??= = 频带宽度 信息传输速率η 例2、接上题,若传输过程中2秒误1个比特,求误码率(误比特率)。 解:误码率(误比特率)=差错比特数/传输总比特数 7 6 10 5.110 34.321-?=??=

模拟信号与数字信号的优缺点及之间的转化

模拟信号与数字信号之间的优缺点及两者之间的转换 概述:信号数据可用于表示任何信息,如符号、文字、语音、图像等,从表现形式上可归结为两类:模拟信号和数字信号。模拟信号与数字信号的区别可根据幅度取值是否离散来确定。 模拟数据(Analog Data)是由传感器采集得到的连续变化的值,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像。数字数据(Digital Data)则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音频与视频数据。目前,ASCII美国信息交换标准码(American Standard Code for Information Interchange)已为ISO国际标准化组织和CCITT国际电报电话咨询委员会所采纳,成为国际通用的信息交换标准代码,使用7位二进制数来表示一个英文字母、数字、标点或控制符号;图形、音频与视频数据则可分别采用多种编码格式。 模拟信号与数字信号: (1)模拟信号与数字信号: 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点数字信号,只要走了,则为有信号,不走则为无信号,走的时间越长则信号越强,脉冲宽度越短同样信号也越强。 总之数字信号的优点:容量大,抗干扰能力强,保密性好,同样的发射功率传输距离更远,受地形或障碍物影响较小,接口丰富,扩展能力强等等。 (2)模拟信号与数字信号之间的相互转换: 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数

数字模拟转换器

数字模拟转换器 DAC 电脑对声音这种信号不能直接处理,先把它转化成电脑能识别的数字信号,就要用到声卡中的DAC(数字/模拟转换),它把声音信号转换成数字信号,要分两步进行,采样和转换。即数/模转装换器,一种将数字信号转换成模拟信号的装置。DAC的位数越高,信号失真就越小。声音也更清晰稳定。DAC格式是英文Digital Audio Compress的简称,是北京豪杰纵横网络技术有限公司(以超级解霸的成功开发而闻名),凭借自己多年积累的音频编码技术,独创自然声学模型,开发出的专业级音频压缩格式,超高音质,并且具有很好的定位能力。传统的音频压缩技术,基于人耳听觉模型,这种理论的依据是在一定的频率附近,大声音压过小声音,从而可以删去小声音;如一声巨响会让你听不到其他声音。事实上,人听不到小的声音,但可以分辨出这个小的声音,细听还是有的。所以DAC创造了自己的自然声学模型,保证了所有声音的分辨感觉。DAC 格式具有以下特点:支持AC-3、DTS同一级别的高质量音频压缩算法;支持频率从22K-1M;支持通道数从1-32通道,包括5.1和7.1;支持16位到32位;每通道独立编码,无干扰、串扰问题;每通道位率为75、100、120、150Kbps

等等。计算效率:采用100MHZ的PDA,完全能够实时解码播放高质量的44KHZ以上音乐,CPU占用50%左右。DAC格式具有以下优势:低码率时DAC压缩的大小与MP3差不多,但声音不发沙,定位感依然存在,与原始无损压缩相比只是会发现截止频率以上的声音有些小差别;中等码率时DAC音质与AC-3差不多,截止频率越过了人耳的范围,从仪器中可以测出;高码率时DAC音质与CD的差别是人耳几乎分辨不出来,只能从仪器中的波形进行比较才能分出差别;DAC的效率绝对不会发沙,因为它不删去频率,它不认为人耳听不到;也不会发闷,因为它不针对低质量的音频进行处理。 标准确定标准的确定要让市场应用说了算DAC在数字家庭中,可以用于建立高质量的电影院级数码音响系统及其处理。由于计算效率高,占用CPU少,DAC还可以支持互联网高质量音频实时传送和编解码的需求。豪杰公司DAC格式的推出,填补国内空白,节约外汇资金,对我国音频产业推动作用不可小视。DAC格式的推广目标就是要使DAC逐步成为音频编码的市场标准之一。“世上本没有路,走的人多了也就成了路”。标准也是这样,用的人多了才能成为标准,市场应用是检验标准成功与否的关键。标准并不唯一,就音频编码来说,MP3、WMA都可以称为市场标

相关主题
文本预览
相关文档 最新文档