当前位置:文档之家› 数据结构课程设计二叉树的遍历

数据结构课程设计二叉树的遍历

数据结构课程设计二叉树的遍历
数据结构课程设计二叉树的遍历

摘要

针对现实世界中许多关系复杂的数据,如人类社会的家谱,各种社会组织机

构 , 博弈交通等复杂事物或过程以及客观世界中广泛存在的具有分支关系或层次

特性的对象.如操作系统的文件构成、人工智能和算法分析的模型表示以及数据库

系统的信息组织形式等,用线性结构难以把其中的逻辑关系表达出来,必须借助于

数和图这样的非线性结构,因此在以模拟客观世界问题,解决客观世界问题为主要

任务的计算机领域中树型结构是信息的一种重要组织形式,树有着广泛应用。在树

型结构的应用中又以二叉树最为常用。

二叉树是一种非常重要的非线性结构,所描述的数据有明显的层次关系,其中的每个元素只有一个前驱,二叉树是最为常用的数据结构,它的实际应用非常广泛,二叉树的遍历方式有三种,前序遍历,中序遍历,后序遍历,先序遍历的

顺序为: NLR先根结点,然后左子树,右子树;中序遍历顺序为; LNR先左子树,

然后根结点,右子树;后序遍历顺序为: LRN先左子树,然后右子树,根结点。由前序和中序遍历,有中序和后序遍历序列可以唯一确定一棵二叉树。对于给几个数据

的排序或在已知的几个数据中进行查找,二叉树均能提供一种十分有效的方法,比如在查找问题上,任何借助于比较法查找长度为Ⅳ的一个序表的算法,

都可以表示成一株二叉树。反之,任何二叉树都对应一个查找有序表的有效方法根

据树的数学理论,对于算法分析的某些最有启发性的应用,是与给出用于计算各

种类型中不同树的数目的公式有关的。

本文对二叉树以及二叉树的各种功能做介绍以及写出一些基本的程序,让我们

对二叉树的理解有更好的效果。

关键词:二叉树的遍历;左子树;右子树;递归

目录

1. 问题概述 (3)

1.1 问题描述 (3)

1.2 需求分析 (3)

1.3 设计内容和要求 (4)

1.4 流程图及结构图 (4)

2. 概要设计 (5)

2.1 数据结构设计: (5)

2.2 源程序代码 (7)

3. 调试分析 (13)

3.1 调试中的问题 (13)

4. 测试结果 (14)

总结 (17)

参考文献 (18)

1. 问题概述

1.1 问题描述

创建二叉树并遍历基本要求:

该程序集成了如下功能:

(1)二叉树的建立

(2)递归和非递归先序,中序和后序遍历二叉树

(3)按层次遍历二叉树

(4)交换二叉树的左右子树

(5)输出叶子结点

(6)递归和非递归计算叶子结点的数目

1.2 需求分析

分先序遍历,中序遍历和后序遍历三种情况考虑。

1.先序遍历,当二叉树非空时按以下顺序遍历,否则结束操作:

①访问根结点;

②按先序遍历规则遍历左子树;

③按先序遍历规则遍历右子树;

2.中序遍历,当二叉树非空时按以下顺序遍历,否则结束操作:

①按中序遍历规则遍历左子树;

②访问根结点;

③按中序遍历规 3 遍历右子树。

3.后序遍历,当二叉树非空时按以下顺序遍历,否则结束操作:

①按后序遍历规则遍历左子树;

②按后序遍历规则遍历右子树;

③访问根结点。

1.3 设计内容和要求

对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种周游,输出三种周游的结果。

1.4 流程图及结构图

开始

i=0

NO

YES i

btreetypenewNode NO

是否为空YES

root=newNode Multiplex

i++

returnroot

结束

图1.1 流程图

a

b c

d e f

图1.2 二叉链表存储结构模拟图

2.概要设计

2.1 数据结构设计:

1.二叉树结点数据类型定义为:

template struct BiNode

{

BiNode*rchild,*lchild;//指向左孩子的指针

T data;//结点数据信息};

2.二叉树数据类型定义为:

template class BiTree{

template

friend ostream & operator<<(ostream &os ,BiTree &bt);pub lic:

BiTree();//无参构造函数

BiTree(int m){};//有参空构造函数

BiTree(T ary[],int num,T none);//有参构造函数

BiTree();//析构函数

void preorder();//递归前序遍历

void inorder();//递归中序遍历

void postorder();//递归后续遍历

void levelorder();//层序遍历

int count();// 计算二叉树的结点数

void display(ostream&os);// 打印二叉树,有层次

void LevelNum();//计算每一层结点数

void PreOrder();//非递归前序遍历

void PostOrder();//非递归后序遍历

void creat();//创建二叉树

protected:// 以下函数供上面函数调用 // 对应相同功能

Voidcreat(BiNode*&root);//创建

void release(BiNode*&root);//删除

BiNode*Build(T ary[],int num,T none,int idx);//用数组创建二叉树

void PreOrder(BiNode*root);//前序遍历

void PostOrder(BiNode*root);//后续遍历

void LevelNum(BiNode*root);//层序遍历

void preorder(BiNode*root);//递归前序遍历

void inorder(BiNode*root);//递归中序遍历

void postorder(BiNode*root);//递归后续遍历

void levelorder(BiNode*root);//层序遍历

int count(BiNode*root);// 计算结点数

void display(ostream&os,BiNode* root,int dep);//打印

static bool leastCommanAncestor(BiNode*root,T va, T vb, BiNode

private:BiNode*rootptr;

};

2.2 源程序代码

#include

using namespace std;

//********************************************************************

*****************

//二叉树结点类的定义

template

struct BTNode

{

T data;

BTNode * Lchild,*Rchild;

BTNode(T nodeValue = T(),BTNode* leftNode = NULL,BTNode* rightNode = NULL )

:data(nodeValue),Lchild(leftNode),Rchild(rightNode){}//可选择参数的默认构造函数

};

//********************************************************************

******************

//二叉树的建立

template

void createBinTree(BTNode * &root )

{

BTNode* p = root;

BTNode* k;

T nodeValue ;

cin>>nodeValue;

if(nodeValue==-1)

{

root=NULL;

}

else

{

root=new BTNode();

root->data = nodeValue;

createBinTree(root->Lchild);

createBinTree(root->Rchild);

}

}

//******************************************************************** ****************

//二叉树的先序遍历

template

void preOrder( BTNode * & p)

{

if(p)

{

cout<data<<" ";

preOrder(p->Lchild);

preOrder(p->Rchild);

}

}

//******************************************************************** ******************

//二叉树的中序遍历

template

void inOrder(BTNode * & p)

{

if(p)

{

inOrder(p->Lchild);

cout<data<<" ";

inOrder(p->Rchild);

}

}

//******************************************************************** ******************

//二叉树的后序遍历

template

void levelOrder(BTNode *& p)

{

if(p)

{

levelOrder(p->Lchild);

levelOrder(p->Rchild);

cout<data<<" ";

}

}

//******************************************************************** *****************

//统计二叉树中结点的个数

template

int countNode(BTNode * & p)

{

if(p == NULL) return 0;

return 1+countNode(p->Lchild)+countNode(p->Rchild); }

//******************************************************************** ***************

//求二叉树的深度

template

int depth(BTNode *& p)

{

if(p == NULL)

return -1;

int h1 = depth(p->Lchild);

int h2 = depth(p->Rchild);

if(h1>h2)return (h1+1);

return h2+1;

}

//********************************************************************

***************

//二叉树的消毁操作

template

BTNode* destroy(BTNode* p)//消毁函数,用来消毁二叉树中的各个结点

{

if(p)

{

return destroy(p->Lchild);

return destroy(p->Rchild);

delete p;

}

}

//********************************************************************

************

//主函数的设计

int main ()

{

BTNode * rootNode = NULL;

int choiced = 0;

while(true)

{

system("cls");

cout<<"\n\n\n---主界面 ---\n\n\n";

cout<<"1、创建二叉树2、先序遍历二叉树 \n";

cout<<"3、中序遍历二叉树4、后序遍历二叉树 \n";

cout<<"5、统计结点总数6、查看树深度\n";

cout<<"7、消毁二叉树0、退出 \n\n";

cout<<"请选择操作: ";

cin>>choiced;

if(choiced == 0)

return 0;

else if(choiced == 1)

{

system("cls");

cout<<"请输入每个结点,回车确认,并以 -1 结束: \n";

createBinTree(rootNode );

}

else if(choiced == 2)

{

system("cls");

cout<<"先序遍历二叉树结果:\n";

preOrder(rootNode);

cout<

system("pause");

}

else if(choiced == 3)

{

system("cls");

cout<<"中序遍历二叉树结果:\n";

inOrder(rootNode);

cout<

system("pause");

}

else if(choiced == 4)

{

system("cls");

cout<<"后序遍历二叉树结果:\n";

levelOrder(rootNode);

cout<

system("pause");

}

else if(choiced == 5)

{

system("cls");

int count = countNode(rootNode);

cout<<"二叉树中结点总数为 "<

system("pause");

}

else if(choiced == 6)

{

system("cls");

int dep = depth(rootNode);

cout<<"此二叉树的深度为 "<

system("pause");

}

else if(choiced == 7)

{

system("cls");

cout<<"二叉树已被消毁! \n";

destroy(rootNode);

cout<

system("pause");

}

else

{

system("cls");

cout<<"\n\n\n\n\n\t 错误选择! \n";

}

}

}

3.调试分析

3.1 调试中的问题

创建二叉树:依次输入二叉树前序遍历序列,构建相应的二叉树。

二叉树遍历:递归算法、非递归算法测试,调用相应函数进行测试,结果正确。求二叉树深度和结点数:创建一个二叉树,调用相关函数,测试结果正确。计算每层结点数:调用levelNum() 函数,测试结果正确。

调试时遇到诸多问题,其中最主要的问题是死循环问题,在非递归遍历时,

容易进入死循环,经过查找资料、分步调试最终找到循环结束条件,顺利解决各

个难题。

4. 测试结果

( 1)初始界面 : 主界面所包含的内容

图 4.1 初始界面图

(2)运行结果:进行操作1,输入每个结点,显示结果如下

图 4.2 创建二叉树

进行操作 2,执行结果如下:

图 4.3 二叉树先序遍历进行操作 3,执行结果如下:

图 4.4 二叉树中序遍历进行操作 4,执行结果如下:

图 4.5 二叉树后序遍历:进行操作 5,执行结果如下:

图 4.6 统计二叉树节点

进行操作 6,执行结果如下:

总结

要能很好的掌握编程 , 仅仅通过几个简单的程序的编写时无法达成的 , 更需要大量积累和深入才可能通过本次课程设计。有关一个课题的所有知识不仅仅是在课本上,多查阅一些资料能够更好的完成课题,这就需要一种能力,即自学能力。本次课程设计还让我认识到自己的缺点。本次选的课题是二叉树的遍历,因为本学期所学的就是二叉树等数据结构,所以认为比较适合。刚开始认为会很简单,但到后来就出现一些难以解决的问题,就像老师请教,并查阅相关资料。经过慢慢的调试,最终测试成功。

这次课程设计让我所学到的数据结构知识发挥的淋漓尽致,而且还拓展了我的知识面,使我更加熟练的掌握各种方法。

总之,这次课程设计增强了我的自学能力,拓展了我的知识面,让我对数据结构更加了解。

参考文献

[1] 严蔚敏吴伟民《数据结构 (C 语言版 ) 》清华大学出版社,2009 年9月

[2] 谭浩强《 C程序设计 ( 第三版 ) 》清华大学出版社2009 年 1 月

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

数据结构树和二叉树实验报告

《数据结构》课程实验报告 实验名称树和二叉树实验序号 5 实验日期 姓名院系班级学号 专业指导教师成绩 教师评语 一、实验目的和要求 (1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树 的深度、森林等定义。 (2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。 (3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。 (4)掌握二叉树的性质。 (5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。 (6)重点掌握二叉树的基本运算和各种遍历算法的实现。 (7)掌握线索二叉树的概念和相关算法的实现。 (8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。 (9)掌握并查集的相关概念和算法。 (10)灵活掌握运用二叉树这种数据结构解决一些综合应用问题。 二、实验项目摘要 1.编写一程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能: (1)输出二叉树b; (2)输出H结点的左、右孩子结点值; (3)输出二叉树b的深度; (4)输出二叉树b的宽度; (5)输出二叉树b的结点个数; (6)输出二叉树b的叶子结点个数。 2.编写一程序,实现二叉树的先序遍历、中序遍历和后序遍历的各种递归和非递归算法,以及层次遍历的算法。 三、实验预习内容 二叉树存储结构,二叉树基本运算(创建二叉树、寻找结点、找孩子结点、求高度、输出二叉树)

三、实验结果与分析 7-1 #include #include #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; struct node *lchild; struct node *rchild; } BTNode; void CreateBTNode(BTNode *&b,char *str) { BTNode *St[MaxSize],*p=NULL; int top=-1,k,j=0; char ch; b=NULL; ch=str[j]; while (ch!='\0') { switch(ch) { case '(':top++;St[top]=p;k=1; break; case ')':top--;break; case ',':k=2; break; default:p=(BTNode *)malloc(sizeof(BTNode)); p->data=ch;p->lchild=p->rchild=NULL; if (b==NULL) b=p; else { switch(k) { case 1:St[top]->lchild=p;break; case 2:St[top]->rchild=p;break; } } } j++; ch=str[j]; }

树和二叉树习题数据结构

习题六树和二叉树一、单项选择题 1.以下说法错误的是 ( ) A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继 C.树形结构可以表达(组织)更复杂的数据 D.树(及一切树形结构)是一种"分支层次"结构 E.任何只含一个结点的集合是一棵树 2.下列说法中正确的是 ( ) A.任何一棵二叉树中至少有一个结点的度为2 B.任何一棵二叉树中每个结点的度都为2 C.任何一棵二叉树中的度肯定等于2 D.任何一棵二叉树中的度可以小于2 3.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储

C.将树、森林转换成二叉树 D.体现一种技巧,没有什么实际意义 4.树最适合用来表示 ( ) A.有序数据元素 B.无序数据元素 C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定 6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是()。 A.M1 B.M1+M2 C.M3 D.M2+M3 7.一棵完全二叉树上有1001个结点,其中叶子结点的个数是() A. 250 B. 500 C.254 D.505 E.以上答案都不对 8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( ) A.不确定 B.2n C.2n+1 D.2n-1 9.二叉树的第I层上最多含有结点数为() A.2I B. 2I-1-1 C. 2I-1 D.2I -1

第六章树和二叉树习题数据结构

习题六树和二叉树 一、单项选择题 1.以下说法错误的是 ( ) A.树形结构的特点是一个结点可以有多个直接前趋 B.线性结构中的一个结点至多只有一个直接后继 C.树形结构可以表达(组织)更复杂的数据 D.树(及一切树形结构)是一种"分支层次"结构 E.任何只含一个结点的集合是一棵树 2.下列说法中正确的是 ( ) A.任何一棵二叉树中至少有一个结点的度为2 B.任何一棵二叉树中每个结点的度都为2 C.任何一棵二叉树中的度肯定等于2 D.任何一棵二叉树中的度可以小于2 3.讨论树、森林和二叉树的关系,目的是为了() A.借助二叉树上的运算方法去实现对树的一些运算 B.将树、森林按二叉树的存储方式进行存储 C.将树、森林转换成二叉树 D.体现一种技巧,没有什么实际意义 4.树最适合用来表示 ( ) A.有序数据元素 B.无序数据元素 C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据 5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定 6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是()。 A.M1 B.M1+M2 C.M3 D.M2+M3 7.一棵完全二叉树上有1001个结点,其中叶子结点的个数是() A. 250 B. 500 C.254 D.505 E.以上答案都不对 8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( ) A.不确定 B.2n C.2n+1 D.2n-1 9.二叉树的第I层上最多含有结点数为() A.2I B. 2I-1-1 C. 2I-1 D.2I -1 10.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+1 11. 利用二叉链表存储树,则根结点的右指针是()。 A.指向最左孩子 B.指向最右孩子 C.空 D.非空 14.在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序()A.都不相同 B.完全相同 C.先序和中序相同,而与后序不同 D.中序和后序相同,而与先序不同 15.在完全二叉树中,若一个结点是叶结点,则它没()。 A.左子结点 B.右子结点 C.左子结点和右子结点 D.左子结点,右子结点和兄弟结点 16.在下列情况中,可称为二叉树的是()

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

数据结构树和二叉树习题

树与二叉树 一.选择题 1.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结 点数为()个。 A.15B.16C.17D.47 2.按照二叉树的定义,具有3个结点的不同形状的二叉树有()种。 A. 3 B. 4 C. 5 D. 6 3.按照二叉树的定义,具有3个不同数据结点的不同的二叉树有()种。 A. 5 B. 6 C. 30 D. 32 4.深度为5的二叉树至多有()个结点。1 A. 16 B. 32 C. 31 D. 10 5.设高度为h的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的 结点数至少为()。 A. 2h B. 2h-1 C. 2h+1 D. h+1 6.对一个满二叉树2,m个树叶,n个结点,深度为h,则()。 A. n=h+m3 B. h+m=2n C. m=h-1 D. n=2 h-1 1深度为n的二叉树结点至多有2n-1 2满二叉树是除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树7.任何一棵二叉树的叶结点在先序.中序和后序遍历序列中的相对次序()。 A.不发生改变 B.发生改变 C.不能确定 D.以上都不对 8.如果某二叉树的前根次序遍历结果为stuwv,中序遍历为uwtvs,那么该二叉 树的后序为()。 A. uwvts B. vwuts C. wuvts D. wutsv 9.某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是 dgbaechf,则其后序遍历的结点访问顺序是()。 A. bdgcefha B. gdbecfha C. bdgaechf D. gdbehfca 10.在一非空二叉树的中序遍历序列中,根结点的右边()。 A. 只有右子树上的所有结点 B. 只有右子树上的部分结点 C. 只有左子树上的部分结点 D. 只有左子树上的所有结点 11.树的基本遍历策略可分为先根遍历和后根遍历;二叉树的基本遍历策略可分为 先序遍历.中序遍历和后序遍历。这里,我们把由树转化得到的二叉树4叫做这棵数对应的二叉树。结论()是正确的。 A.树的先根遍历序列与其对应的二叉树的先序遍历序列相同 B.树的后根遍历序列与其对应的二叉树的后序遍历序列相同 3对于深度为h的满二叉树,n=20+21+…+2h-1=2h-1,m=2h-1。故而n=h+m。 4树转化为二叉树的基本方法是把所有兄弟结点都用线连起来,然后去掉双亲到子女的连线,只留下双亲到第一个子女的连线。因此原来的兄弟关系就变为双亲与右孩子的关系。 1/ 9

目前最完整的数据结构1800题包括完整答案树和二叉树答案

第6章树和二叉树 部分答案解释如下。 12. 由二叉树结点的公式:n=n0+n1+n2=n0+n1+(n0-1)=2n0+n1-1,因为n=1001,所以1002=2n0+n1,在完全二叉树树中,n1只能取0或1,在本题中只能取0,故n=501,因此选E。 42.前序序列是“根左右”,后序序列是“左右根”,若要这两个序列相反,只有单支树,所以本题的A和B均对,单支树的特点是只有一个叶子结点,故C是最合适的,选C。A或B 都不全。由本题可解答44题。 47. 左子树为空的二叉树的根结点的左线索为空(无前驱),先序序列的最后结点的右线索为空(无后继),共2个空链域。 52.线索二叉树是利用二叉树的空链域加上线索,n个结点的二叉树有n+1个空链域。 部分答案解释如下。 6.只有在确定何序(前序、中序、后序或层次)遍历后,遍历结果才唯一。 19.任何结点至多只有左子树的二叉树的遍历就不需要栈。 24. 只对完全二叉树适用,编号为i的结点的左儿子的编号为2i(2i<=n),右儿子是2i+1(2i+1<=n) 37. 其中序前驱是其左子树上按中序遍历的最右边的结点(叶子或无右子女),该结点无右孩子。 38 . 新插入的结点都是叶子结点。 42. 在二叉树上,对有左右子女的结点,其中序前驱是其左子树上按中序遍历的最右边的结点(该结点的后继指针指向祖先),中序后继是其右子树上按中序遍历的最左边的结点(该结点的前驱指针指向祖先)。 44.非空二叉树中序遍历第一个结点无前驱,最后一个结点无后继,这两个结点的前驱线索和后继线索为空指针。 三.填空题

1.(1)根结点(2)左子树(3)右子树 2.(1)双亲链表表示法(2)孩子链表表示法(3)孩 子兄弟表示法 3.p->lchild==null && p->rchlid==null 4.(1) ++a*b3*4-cd (2)18 5.平衡 因子 6. 9 7. 12 8.(1)2k-1 (2)2k-1 9.(1)2H-1 (2)2H-1 (3)H=?log2N?+1 10. 用顺序存储二叉树时,要按完全二叉树的形式存储,非完全二叉树存储时,要加“虚结 点”。设编号为i和j的结点在顺序存储中的下标为s 和t ,则结点i和j在同一层上的条 件是?log2s?=?log2t?。 11. ?log2i?=?log2j?12.(1)0 (2)(n-1)/2 (3)(n+1)/2 (4) ?log2n?+1 13.n 14. N2+1 15.(1) 2K+1-1 (2) k+1 16. ?N/2? 17. 2k-2 18. 64 19. 99 20. 11 21.(1) n1-1 (2)n2+n3 22.(1)2k-2+1(第k层1个结点,总结点个数是2H-1,其双亲是2H-1/2=2k-2)(2) ?log2i?+1 23.69 24. 4 25.3h-1 26. ?n/2? 27. ?log2k?+1 28.(1)完全二叉树 (2)单枝树,树中任一结点(除最后一个结点是叶子外),只有左子女或 只有右子女。 29.N+1 30.(1) 128(第七层满,加第八层1个) (2) 7 31. 0至多个。任意二叉树,度为1的结点个数没限制。只有完全二叉树,度为1的结点个 数才至多为1。 32.21 33.(1)2 (2) n-1 (3) 1 (4) n (5) 1 (6) n-1 34.(1) FEGHDCB (2)BEF(该二叉树转换成森林,含三棵树,其第一棵树的先根次序是 BEF) 35.(1)先序(2)中序 36. (1)EACBDGF (2)2 37.任何结点至多只有右子女 的二叉树。 38.(1)a (2) dbe (3) hfcg 39.(1) . (2) ...GD.B...HE..FCA 40.DGEBFCA 41.(1)5 (2)略 42.二叉排序树 43.二叉树 44. 前序 45.(1)先根次序(2)中根次序46.双亲的右子树中最左下的叶子结点47.2 48.(n+1)/2 49.31(x的后继是经x的双亲y的右子树中最左下的叶结点) 50.(1)前驱 (2)后 继 51.(1)1 (2)y^.lchild (3)0 (4)x (5)1 (6) y (7)x(编者注:本题按 中序线索化) 52.带权路径长度最小的二叉树,又称最优二叉树 53.69 54.(1)6 (2)261 55.(1)80 (2)001(不唯一)56.2n0-1 57.本题①是表达式求值,②是在二叉排序树中删除值为x的结点。首先查找x,若没有x, 则结束。否则分成四种情况讨论:x结点有左右子树;只有左子树;只有右子树和本身是叶 子。 (1)Postoder_eval(t^.Lchild) (2) Postorder_eval(t^.Rchild) (3)ERROR(无此运 算符)(4)A (5)tempA^.Lchild (6)tempA=NULL(7)q^.Rchild (8)q (9)tempA^.Rchild (10)tempA^.Item

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

树与二叉树习题解析(答)

习题五树与二叉树 一、选择题 1、一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足。 A、所有的结点均无左孩子 B、所有的结点均无右孩子 C、只有一个叶子结点 D、是任意一棵二叉树 2、一棵完全二叉树上有1001个结点,其中叶子结点的个数是。 A、250 B、500 C、254 D、505 E、以上答案都不对 3、以下说法正确的是。 A、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树后序遍历序列中的最后一个结点 B、若一个树叶是某二叉树前序遍历序列中的最后一个结点,则它必是该子树中序遍历序列中的最后一个结点 C、在二叉树中,具有两个子女的父结点,在中序遍历序列中,它的后继结点最多只能有一个子女结点 D、在二叉树中,具有一个子女的父结点,在中序遍历序列中,它没有后继子女结点 4、以下说法错误的是。 A、哈夫曼树是带权路径长度最短得数,路径上权值较大的结点离根较近 B、若一个二叉树的树叶是某子树中序遍历序列中的第一个结点,则它必是该子树后序 遍历序列中的第一个结点 C、已知二叉树的前序遍历和后序遍历并不能唯一地确定这棵树,因为不知道树的根结 点是哪一个 D、在前序遍历二叉树的序列中,任何结点其子树的所有结点都是直接跟在该结点之后 的 5、一棵有124个叶结点的完全二叉树,最多有个结点。

A、247 B、248 C、249 D、250 E、251 6、任何一棵二叉树的叶结点在前(先)序、中序和后序遍历序列中的相对次序。 A、不发生变化 B、发生变化 C、不能确定 7、设a、b为一棵二叉树上的两个结点。在中序遍历时,a在b前面的条件是。 A、a在b的右方 B、a在b的左方 C、a是b的祖先 D、a是b的子孙 8、设深度为k的二叉树上只有度为0和度为2的结点,则这类二叉树上所含的结点总数为。 A、不确定 B、2k C、2k-1 D、2k+1 9、设有13个值,用它们组成一棵哈夫曼树,则该哈夫曼树共有个结点。 A、13 B、12 C、26 D、25 10、下面几个符号串编码集合中,不是前缀编码的是。 A、{0,10,110,1111} B、{11,10,001,101,0001} C、{00,010,0110,1000} D、{b,c,aa,ac,aba,abb,abc} 11、欲实现任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳的方案是二叉树采用存储结构。 A、三叉链表 B、广义表 C、二叉链表 D、顺序表 12、以下说法错误的是。 A、存在这样的二叉树,对它采用任何次序遍历其结点访问序列均相同 B、二叉树是树的特殊情形 C、由树转换成二叉树,其根结点的右子树总是空的 D、在二叉树只有一棵子树的情况下也要明确指出该子树是左子树还是右子树 13、树的基本遍历策略可分为先根遍历和后根遍历,二叉树的基本遍历策略可分为先序、中序和后序三种遍历。我们把由树转化得到的二叉树称该树对应的二叉树,则下面是正确的。 A、树的先根遍历序列与其对应的二叉树先序遍历序列相同

习题6树和二叉树.docx

习题6树和二叉树 说明: 本文档中,凡红色字标出的题请提交纸质作业,只写题号和答案即可。 6.1单项选择题 1. 由于二叉树屮每个结点的度最大为2,所以二叉树是一种特殊的树,这种说法_B_。 A. 正确 B.错误 2. 假定在一棵二叉树屮,双分支结点数为15,单分支结点数为30个,则叶子结点数为 B_个。 A. 15 B. 16 C. 17 D. 47 3. 按照二叉树的定义,具有3个结点的不同形状的二叉树有_C_种。 A. 3 B.4 C. 5 D. 6 4. 按照二叉树的定义,具有3个不同数据结点的不同的二叉树有_C_种。 A.5 B.6 C. 30 D. 32 5. 深度为5的二叉树至多有_C_个结点。 A. 16 B. 32 C. 31 D. 10 6. 设高度为h 的二叉树上只有度为0和度为2的结点,则此类二叉树中所包含的结点 数至少为 B 。 A. 2h B. 2h-l C. 2h+l D. h+l 7. 对一个满二叉树,m 个树叶,n 个结点,深度为h,则_A_。 A. n=h+m B. h+m=2n C. m=h-1 D. n=2 h -l 8. 任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序_A_。 A.不发生改变 B.发生改变 C.不能确定 D.以上都不对 9. 如杲某二叉树的前根次序遍历结果为stuwv,中序遍历为uwtvs,那么该二叉树的后 序为_C_。 A. uwvts B. vwuts C. wuvts D. wutsv 10. 二叉树的前序遍历序列中,任意一个结点均处在其子女结点的前面,这种说法_A_。 A.正确 B.错误 11. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是 dgbaechf,则其后序遍历的结点访问顺序是_D_。 A. bdgcefha B. gdbecfha 12. 在一非空二叉树的中序遍历序列中, A.只有右子树上的所有结点 13. 如图6.1所示二叉树的中序遍历序列是_B_。 14. 一棵二叉树如图6.2所示,其中序遍历的序列为 B 。 A. abdgcefh B. dgbaechf C. gdbehfca D. abcdefgh C. bdgaechf D. gdbehfca 根结点的右边_A_。 B.只有右子树上的部分结点 C.只有左子树上的部分结点 D.只有左子树上的所有结点 A. abcdgef B. dfebagc C. dbaefcg D. defbagc 图6」

树和二叉树练习题答案

第5章树和二叉树练习题答案 一、下面是有关二叉树的叙述,请判断正误 (√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。(×)2.二叉树中每个结点的两棵子树的高度差等于1。 (√)3.二叉树中每个结点的两棵子树是有序的。 (×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。 (×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。(应当是二叉排序树的特点) (×)6.满二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2k-1) (×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 (×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。 (正确。用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。)即有后继链接的指针仅n-1个。 (√)10.具有12个结点的完全二叉树有5个度为2的结点。 二、填空 1.由3个结点所构成的二叉树有5种形态。 2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。 注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。 3.一棵具有257个结点的完全二叉树,它的深度为9。 (注:用? log2(n) ?+1= ? 8.xx ?+1=9 4.设一棵完全二叉树有700个结点,则共有350个叶子结点。 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有500个叶子结点,有499个度为2的结点,有1个结点只有非空左子树,有0个结点只有非空右子树。 答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0. 6.一棵含有n个结点的k叉树,可能达到的最大深度为n,最小深度为2。 答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。 7. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。因而二叉树的遍历次序有六种。最常用的是三种:前序法(即按N L R次序),后序法(即按L R N次序)和中序法(也称对称序法,即按L N R次序)。这三种方法相互之间有关联。若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B。 解:法1:先由已知条件画图,再后序遍历得到结果; 法2:不画图也能快速得出后序序列,只要找到根的位置特征。由前 序先确定root,由中序先确定左子树。例如,前序遍历BEFCGDH中, 根结点在最前面,是B;则后序遍历中B一定在最后面。 法3:递归计算。如B在前序序列中第一,中序中在中间(可知左 右子树上有哪些元素),则在后序中必为最后。如法对B的左右子树同 样处理,则问题得解。

数据结构—— 树和二叉树知识点归纳

第6章树和二叉树 6.1 知识点概述 树(Tree)形结构是一种很重要的非线性结构,它反映了数据元素之间的层次关系和分支关系。在计算机科学中具有广泛的应用。 1、树的定义 树(Tree)是n(n≥0)个数据元素的有限集合。当n=0时,称这棵树为空树。在一棵非空树T中: (1)有一个特殊的数据元素称为树的根结点,根结点没有前驱结点。 (2)若n>1,除根结点之外的其余数据元素被分成m(m>0)个互不相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是一棵树。树T1,T2,…,Tm称为这个根结点的子树。 2、树的基本存储结构 (1)双亲表示法 由于树中的每一个结点都有一个唯一确定的双亲结点,所以我们可用一组连续的 存储空间(即一维数组)存储树中的结点。每个结点有两个域:一个是data域,存放结点信息,另一个是parent域,用来存放双亲的位置(指针)。 (2)孩子表示法 将一个结点所有孩子链接成一个单链表形,而树中有若干个结点,故有若干个单 链表,每个单链表有一个表头结点,所有表头结点用一个数组来描述这种方法通常是把每个结点的孩子结点排列起来,构成一个单链表,称为孩子链表。 (3)双亲孩子表示法 双亲表示法是将双亲表示法和孩子表示法相结合的结果。其仍将各结点的孩子结点分别组成单链表,同时用一维数组顺序存储树中的各结点,数组元素除了包括结点本身的信息和该结点的孩子结点链表的头指针之外,还增设一个域,存储该结点双亲结点在数组中的序号。 (4)孩子兄弟表示法 这种表示法又称为树的二叉表示法,或者二叉链表表示法,即以二叉链表作为树的存储结构。链表中每个结点设有两个链域,分别指向该结点的第一个孩子结点和下一个兄弟(右兄弟)结点。 3、二叉树的定义 二叉树(Binary Tree)是个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个结点。 4、满二叉树 定义:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子结点都在同一层上,这样的一棵二叉树称作满二叉树。 5、完全二叉树 定义:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。完全二叉树的特点是:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。 6、二叉树的性质

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

树和二叉树习题)

第6章 树和二叉树 一、选择题 1.算术表达式a+b*(c+d/e )转为后缀表达式后为( B ) A .ab+cde/* B .abcde/+*+ C .abcde/*++ D .2. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( C ) A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 3. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1( D ) A .5 B .6 C .7 D .8 4. 在下述结论中,正确的是( D ) ①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换; ④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。 A .①②③ B .②③④ C .②④ D .①④ 5. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( A ) A .m-n B .m-n-1 C .n+1 D .条件不足,无法确定 6.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( B ) A .9 B .11 C .15 D .不确定 7.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F 对应的二叉树根结点的右子树上的结点个数是( D )。 A .M1 B .M1+M2 C .M3 D .M2+M3 8.一棵完全二叉树上有1001个结点,其中叶子结点的个数是( E ) A . 250 B . 500 C .254 D .505 E .以上答案都不对(501) 9. 有关二叉树下列说法正确的是( B ) A .二叉树的度为2 B .一棵二叉树的度可以小于2 C .二叉树中至少有一个结点的度为2 D .二叉树中任何一个结点的度都为2 10.二叉树的第I 层上最多含有结点数为( c ) A .2I B . 2I-1-1 C . 2I-1 D .2I -1 11. 一个具有1025个结点的二叉树的高h 为( C ) A .11 B .10 C .11至1025之间 D .10至1024之间 12.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点 A .2h B .2h-1 C .2h+1 D .h+1 13. 一棵树高为K 的完全二叉树至少有( C )个结点 A .2k –1 B. 2k-1 –1 C. 2k-1 D. 2k 14.对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( C )次序的遍历实现编号。 A .先序 B. 中序 C. 后序 D. 从根开始按层次遍历 15.一棵二叉树的前序遍历序列为ABCDEFG ,它的中序遍历序列可能是( B ) A .CABDEFG B .ABCDEFG C .DACEFBG D .ADCFEG

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

相关主题
文本预览
相关文档 最新文档