当前位置:文档之家› 杂波环境中认知雷达相位编码波形设计

杂波环境中认知雷达相位编码波形设计

要:针对相位编码这一非线性优化求解问题,提出了一种改进牛顿法的迭代求解算法。首先对杂波环境中的

相位编码波形进行建模,然后求解出目标函数的海赛尔矩阵(Hessian 矩阵),再利用变化梯度法去逼近它的最优点,最后调用牛顿法求解出最优相位编码。实验仿真表明,该算法收敛速度较快,并验证了该算法的有效性和可行性。

关键词:认知雷达,波形设计,相位编码,牛顿法中图分类号:TP802.4,TP802.7

文献标识码:A

杂波环境中认知雷达相位编码波形设计

鹏,崔

琛,张

(解放军电子工程学院,合肥230037)

Phase Code Waveform Design for Cognitive Radar in Presence of

Signal-Dependent Interference

WANG Peng ,CUI Chen ,ZHANG Xin (Electronic Engineering Institute ,Hefei 230037,China )

Abstract :To solve the phase encoding nonlinear optimization problem ,an improved Newton

method for iterative solution algorithm is propoesd.First phase encoding waveform clutter environment is

modeled ,and then the objective function Hessian matrix is solved ,reusing change in the gradient method to approximate the most advantages ,and finally calling the Newton method for solving the optimal phase encoding.Simulation results indicate that the algorithm converges faster ,and verify the effectiveness and feasibility of the algorithm.

Key words :

cognitive radar ,waveform design ,phase code ,newton method 文章编号:1002-0640(2013)

12-0180-03Vol.38,No.12Dec ,2013

火力与指挥控制

Fire Control &Command Control 第38卷第12期2013年12月

引言

近几年随着认知雷达的提出[1],推进了传统被动式的、功能单一的雷达向智能雷达方向的转变,尤其是在雷达智能信号处理方面。由于雷达是通过对目标回波分析来进行检测、跟踪和识别的,因此,根据背景和目标的具体情况选择相应的发射波形就成了雷达智能信号处理中的一个重要组成部分,而波形优化设计技术将在雷达发展中起着更加重要的作用。其中相位编码波形具有抗干扰、抗侦查、

低峰值功率[2]和较好的模糊函数特性[3]等优势,

是认知雷达智能信号处理的一个重要研究方向。

相位编码波形优化问题通常是一个非线性的优化问题。文献[3]利用半正定规划的方法(SDP )使非

线性优化问题进行凸松弛进而去求解这个非凸问

题,最后指出了相位编码波形的模糊函数特性。文献[4]利用半正定松弛(SDR )和随机选择来处理相位编码波形的非凸和NP-hard 问题,并用仿真结果证明了相位编码波形的低峰值功率特性,有利提升雷达系统的识别性能。文献[5]利用相位编码波形使脉内调制信号能充分发挥发射端的发射功率。文献[4-5]主要是利用凸松弛的方法对非凸问题进行近似求解,在增加约束条件的同时也增加了相位编码数据的错误概率。文献[6]提出利用变化梯度法去求解相位编码波形,但这种方法的收敛速度并不快。

为了取得相位编码波形较为精确的近似解,本文提出利用牛顿法来求解相位编码波形,并与变化梯度法进行了对比。推导出相位编码波形闭式解,

收稿日期:2012-09-28

修回日期:2012-11-26

作者简介:王鹏(1987-),男,辽宁鞍山人,硕士研究生。研究方向:认知雷达、自适应信号处理。

180··

雷达波形模糊图专业训练课设报告

专业综合 课程设计报告 课设题目:雷达波形模糊图 学院:信息与电气工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师: 哈尔滨工业大学(威海) 2013年11月28日 一、设计任务 模糊函数是对雷达信号进行分析研究和波形设计的有效工具, 是雷达信号理论中极为重要的一个概念。模糊函数最初是在研究雷达分辨力问题时提出的, 并从衡量两个不同距离和不同径向速度目标的分辨度出发提出了模糊函数的定义。但模糊函数不仅可以说明分辨力, 还可以说明测量精度、测量模糊度以及抗

干扰状况等问题。雷达信号的模糊函数与雷达信息的提取紧密相关, 它不仅涉及了雷达的精度, 还涉及了雷达的抗干扰、自适应以及雷达信号的处理方式。本次课程设计目标是:画出某线性调频和相位编码信号的模糊图;根据模糊图分析多普勒频移对匹配滤波的影响;产生雷达回波数据并匹配滤波,根据仿真结果分析各参数对匹配滤波结果的影响。 二、 方案设计 设计某线性调频和相位编码信号 线性调频波形的定义为 ()?? ? ??=2cos t t x τβπ τ≤≤t 0 (1) 使用复数表达式,有 ()()t j t j e e t x θτ πβ==/2 τ≤≤t 0 (2) 该波形的瞬时频率是相位函数的微分 ()()t dt t d t F i τ βθπ==21 (3) 假设0>β,在s τ的脉宽内()t F i 线性地扫过了整个Hz β带宽。当βτ=50时,()t F 就是一个线性调频波。 画出其模糊图并分析模糊图的特征 模糊函数是波形设计与分析的工具,它可以方便地刻画波形与对应匹配滤波器的特征。模糊函数在分析分辨率、副瓣性能,以及多普勒和距离模糊方面非常有用,另外也可以用于对距离-多普勒耦合的分析。 考虑当输入为多普勒频移响应想()()t F j t x D π2ex p 时波形()t x 的匹配滤波器输出。同时,假设滤波器具有单位增益(1=α),并且设计为在0=M T 时达到峰值。这仅仅意味着滤波器输出端的时间轴与目标距离期望的峰值输出时间相关。滤波器的输出为 ()()),(?)()2ex p(;*D D D F t A ds t s x s F j s x F t y ≡-=?∞ ∞ -π (4) 将其定义为复模糊函数,即),(?D F t A 的幅度函数,即 ),(?),(D D F t A F t A ≡ (5) 它是二变量函数:一个是相对于期望匹配滤波峰值输出的时延,另一个是为滤波 器设计的多普勒频移与实际接收的回波的多普勒频移之间的失配。 雷达信号的时间频率二维模糊函数定义为: dt e T t x t x F T y t F i d d d d d π2*)()(),(?∞ ∞ -+= (6) 上式不是模糊函数的唯一形式,为了分析方便,模糊函数还可以写成卷积形式,

激光雷达探测气溶胶实验报告

南京信息工程大学激光雷达探测气溶胶实验报告 姓名:周标 学号:20121359069 学院:物理与光电工程学院 专业:光信息科学与技术 二〇一四年十二月十二日

摘要:大气气溶胶影响着天气和气候的变化,通过用激光雷达对水平大气中的气溶胶进行连续观测,得到大气气溶胶浓度的高度分布数据,用Klett法反演和斜率法得到了气溶胶消光系数数值并利用MATLAB程序用计算机对所得实验数据快速方便地直接得出出测量结果和图示。 关键词:气溶胶;激光雷达;探测;Klett反演算法;斜率法;消光系数;MATLAB 前言 大气气溶胶是指悬浮在大气中直径为0.001—100μm的液体或固体微粒体系。对流层气溶胶的形成与地球表面的生态环境和人类活动直接相关。地面扬尘、沙尘暴、林火烟灰、花粉与种子、海水溅沫等是对流层气溶胶的自然源,人工源则是由工业、交通、农业、建筑等直接向对流层中排放的气溶胶粒子。同时,对流层大气中许多气态污染物的最终归宿是形成气溶胶粒子,如二氧化硫、氮氧化物、碳氢化合物等通过气粒转化生成气溶胶粒子。这些气溶胶粒子通过吸收和散射太阳辐射以及地球的长波辐射而影响着地球大气系统的辐射收支,它作为凝结核参与云的形成,从而对局地、区域乃至全球的气候有着重要的影响。对流层气溶胶粒子对激光的吸收和散射作用使它成为激光大气传输的重要消光因子。 激光雷达为大气气溶胶探测研究提供了有力的工具。数十年来,激光技术的不断发展为激光雷达大气气溶胶探测提供了所需要的光源。另一方面,信号探测和数据采集及其控制技术的发展使激光雷达在大气气溶胶的探测高度、空间分辨率、时间上的连续监测和测量精度等方面具有全面的优势,是其它探测手段不能比拟的。 本文介绍该激光雷达的总体结构、技术参数及其工作原理,同时给出了大气气溶胶的垂直消光系数廓线以及典型测量结果的分析和讨论。 1,研究的目的 大气中,尘埃、烟雾、云团等气溶胶粒子对大气的化学过程、辐射平衡、气候变化乃至人们的日常生活都有着非常重要的影响。因此,对大气气溶胶粒子的光学特性的探测研究一直是大气科学、气象探测和环境保护的一项重要任务。 近年来,中国经济的飞速发展已受到全世界的关注。然而,这种快速的经济增长也伴随着社会体系的变革,高度的工业化和城市化造成许多气溶胶粒子和温室气体被排放到大气,带来了一系列的环境问题,对可持续发展有着严重的负面影响,同时对人们的日常生活和身体健康存在着严重的威胁。如何获取环境变化的第一手资料,准确地提供大气物性及其变化

雷达技术实验报告

雷达技术实验报告 雷达技术实验报告 专业班级: 姓名: 学号:

一、实验内容及步骤 1.产生仿真发射信号:雷达发射调频脉冲信号,IQ两路; 2.观察信号的波形,及在时域和频域的包络、相位; 3.产生回波数据:设目标距离为R=0、5000m; 4.建立匹配滤波器,对回波进行匹配滤波; 5.分析滤波之后的结果。 二、实验环境 matlab 三、实验参数 脉冲宽度 T=10e-6; 信号带宽 B=30e6; 调频率γ=B/T; 采样频率 Fs=2*B; 采样周期 Ts=1/Fs; 采样点数 N=T/Ts; 匹配滤波器h(t)=S t*(-t) 时域卷积conv ,频域相乘fft, t=linspace(T1,T2,N); 四、实验原理 1、匹配滤波器原理: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为) x: (t t x+ = t s n )( )( )(t 其中:)(t s为确知信号,)(t n为均值为零的平稳白噪声,其功率谱密度为 No。 2/

设线性滤波器系统的冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应: )()()(t n t s t y o o += 输入信号能量: ∞<=?∞ ∞-dt t s s E )()(2 输入、输出信号频谱函数: dt e t s S t j ?∞ ∞--=ωω)()( )()()(ωωωS H S o = ωωωπωω d e S H t s t j o ?∞ -= )()(21)( 输出噪声的平均功率: ωωωπωωπd P H d P t n E n n o o ??∞∞ -∞∞-== )()(21)(21)]([22 ) ()()(21 )()(21 2 2 ωωωπ ωωπ ω ωd P H d e S H S N R n t j o o ? ? ∞ ∞ -∞ ∞-= 利用Schwarz 不等式得: ωωωπd P S S N R n o ? ∞ ∞ -≤) () (21 2 上式取等号时,滤波器输出功率信噪比o SNR 最大取等号条件: o t j n e P S H ωωωαω-=) ()()(* 当滤波器输入功率谱密度是2/)(o n N P =ω的白噪声时,MF 的系统函数为: ,)()(*o t j e kS H ωωω-=o N k α2= k 为常数1,)(*ωS 为输入函数频谱的复共轭,)()(*ωω-=S S ,也是滤波器的传输函数 )(ωH 。

雷达波形设计

1RYHO WHFKQLTXH IRU UHGXFLQJ HIIHFWV RI QRQ OLQHDU IUHTXHQF\ VZHHSV LQ /)0 UDQJLQJ UDGDUV +DQ\ $ $KPHG $PU 1 +DIH] DQG $ + .KDOLO (OHFWURQLFV DQG (OHFWULFDO &RPPXQLFDWLRQ 'HSDUWPHQW &DLUR 8QLYHUVLW\ &DLUR (J\SW KDQ\ DEROPDJG#LHHH RUJ $EVWUDFW2$ QHZ WHFKQLTXH IRU RYHUFRPLQJ 9&2 9ROWDJH &RQWUROOHG 2VFLOODWRU QRQ OLQHDULW\ LQ )0&: )UHTXHQF\ 0RGXODWHG &RQWLQXRXV :DYH UDGDU WUDQVFHLYHUV LV SUHVHQWHG 7KH SURSRVHG WHFKQLTXH UHOLHV RQ FRUUHODWLQJ WKH RXWSXW EHDW VLJQDO LQ WKH VWUHWFK SURFHVVLQJ WHFKQLTXH ZLWK D SUH IRUPHG UHIHUHQFH FRUUHODWLRQ VLJQDO WKDW DFFRXQWV IRU WKH 9&2 QRQ OLQHDULW\ $Q RYHUYLHZ RI WKH )0&: UDGDU LV SUHVHQWHG IROORZHG E\ D GLVFXVVLRQ RI WKH 9&2 QRQ OLQHDULW\ SUREOHP ZLWK H[LVWLQJ VROXWLRQV 7KH SURSRVHG VROXWLRQ LV GHPRQVWUDWHG ZLWK VXSSRUWLQJ VLPXODWLRQ UHVXOWV 7KH EHQHILWV RI WKH SURSRVHG VROXWLRQ DUH VWDWHG ZLWK D VXJJHVWLRQ RI D SRVVLEOH VLPSOH UHDOL]DWLRQ .H\ZRUGV FRPSRQHQW )0&: /)0 VWUHWFK SURFHVVLQJ UDGDU FKLUS QRQ OLQHDULW\ , ,1752'8&7,21 )0&: UDGDUV ILQG D YDULHW\ RI DSSOLFDWLRQV GXH WR WKHLU ILQH UDQJH UHVROXWLRQV KLJK 615 DQG KHQFH ORQJ UDQJH PHDVXUHPHQW FDSDELOLW\ DQG SUDFWLFDO + : LPSOHPHQWDWLRQV > @ > @ 6XFK DSSOLFDWLRQV LQFOXGH DOWLPHWHUV > @ > @ DXWRPRWLYH DSSOLFDWLRQV > @ > @ UDLOZD\ KD]DUG GHWHFWLRQ V\VWHPV > @ > @ DQG PLOLWDU\ DSSOLFDWLRQV 7KH EDVH RI WKH )0&: UDGDU WUDQVPLWWHU LV WR PRGXODWH WKH IUHTXHQF\ RI WKH WUDQVPLWWHG VLQXVRLG ZLWK D VZHHS VLJQDO VDZ WRRWK WULDQJXODU RU VLQXVRLG 7KLV IUHTXHQF\ PRGXODWLRQ LV DFKLHYHG SULQFLSDOO\ E\ DSSO\LQJ WKH VZHHS VLJQDO WR WKH LQSXW RI D 9&2 7KH UHVXOWLQJ WUDQVPLWWHG VLJQDO FDQ XWLOL]H YHU\ ODUJH EDQGZLGWK ZKLOH KDYLQJ UHODWLYHO\ ORQJ VZHHS SHULRG ZKLFK LQ WXUQV UHVXOWV LQ D ILQH UDQJH UHVROXWLRQ ZKLOH PDLQWDLQLQJ KLJK 615 DQG ORQJ UDQJH GHWHFWLRQ FDSDELOLW\ 7KH /)0 /LQHDU )UHTXHQF\ 0RGXODWLRQ LV PRVW ZLGHO\ XVHG ZLWK HLWKHU D VDZWRRWK RU D WULDQJXODU PRGXODWLQJ VZHHS VLJQDO GXH WR LWV HDVH RI LPSOHPHQWDWLRQ DQG KLJK SHUIRUPDQFH VR ZH ZLOO FRQFHQWUDWH PDLQO\ RQ /)0 UDGDUV /)0 UDGDU VLJQDO SURFHVVLQJ LQ WKH UHFHLYHU LV XVXDOO\ DFFRPSOLVKHG LQ RQH RI WZR ZD\V PDWFKHG ILOWHU RU VWUHWFK SURFHVVLQJ DFWLYH FRUUHODWLRQ )LJXUH 7KH EDVLF LGHD RI WKH /)0 UDGDU XVLQJ VWUHWFK SURFHVVLQJ WHFKQLTXH $ 0DWFKHG )LOWHU 7KH PDWFKHG ILOWHU PHWKRG LV WKH IXQGDPHQWDO ZD\ RI SURFHVVLQJ DQ\ UDGDU ZDYHIRUP ,W LV SHUIRUPHG E\ SDVVLQJ WKH UHFHLYHG VLJQDO WKURXJK DQ DQDORJ ILOWHU XVXDOO\ 6XUIDFH $FRXVWLF :DYH 6$: ILOWHU PDWFKHG WR WKH WUDQVPLWWHG ZDYHIRUP RU E\ DSSO\LQJ '63 'LJLWDO 6LJQDO 3URFHVVLQJ WHFKQLTXHV WR WKH UHFHLYHG VLJQDO WR SHUIRUP WKH PDWFKLQJ ILOWHU SURFHVVLQJ 7KH PDWFKHG ILOWHU UHFHLYHU LV PXFK PRUH FRPSOH[ WKDQ DFWLYH FRUUHODWLRQ PHWKRG DQG UHTXLUHV SURFHVVLQJ WKH UHFHLYHG VLJQDO GLUHFWO\ ZLWK LWV YHU\ ZLGH EDQGZLGWK % 6WUHWFK 3URFHVVLQJ $FWLYH &RUUHODWLRQ ,W LV WKH PRVW ZLGHO\ XVHG PHWKRG LQ /)0 UDGDUV GXH WR LWV HDVH RI LPSOHPHQWDWLRQ FRPSDUHG WR PDWFKHG ILOWHU 5HFHLYHU DQG LWV FRPSDUDEOH SHUIRUPDQFH UDQJH UHVROXWLRQ DQG 615 978-1-4244-5750-2/10/$26.00 ?2009 IEEE

LFM脉冲压缩雷达标准实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称LFM脉冲压缩雷达的设计与验证 电子科技大学研究生院制表

电子科技大学 实验报告 学生姓名:学号: 指导教师: 实验地点:科B516室实验时间: 一、实验室名称:电子信息工程专业学位研究生实践基地 二、实验项目名称:LFM脉冲压缩雷达的设计与验证 三、实验学时:20 四、实验原理: 1、LFM脉冲信号和脉冲压缩处理 脉冲雷达是通过测量目标回波延迟时间来测量距离的,距离分辨力直接由脉冲带宽确定。窄脉冲具有大带宽和窄时宽,可以得到高距离分辨力,但是,采用窄脉冲实现远作用距离需要有高峰值功率,在高频时,由于波导尺寸小,会对峰值功率有限制,以避免传输线被高电压击穿,该功率限制决定了窄脉冲雷达有限的作用距离。现代雷达采用兼具大时宽和大带宽的信号来保证作用距离和距离分辨力,大时宽脉冲增加了雷达发射能量,实现远作用距离,另一方面,宽脉冲信号通过脉冲压缩滤波器后变换成窄脉冲来获得高距离分辨力。 进行脉冲压缩时的LFM脉冲信号为基带信号,其时域形式可表示为

2()exp 2i t t s t Arect j T μ???? = ? ????? 其中的矩形包络为 1 12102 t T t rect T t T ? ≤????=? ???? >?? 式中的μ为调频斜率,与调频带宽和时宽的关系如下式 2/B T μπ= 时带积1D BT =>>时,LFM 脉冲信号的频域形式可近似表示为 22[2/]()4220i B B j f f S f ππμ?? ?-+- ≤≤???=? ???? 其他 脉冲压缩滤波器实质上就是匹配滤波器,匹配滤波器是以输出最大信噪比为准则设计出来的最佳线性滤波器。假设系统输入为()()() i i x t s t n t =+,噪声 () i n t 为 均匀白噪声,功率谱密度为 0()2 n p N ω=, () i s t 是仅在[0,]T 区间取值的输入脉 冲信号。根据线性系统的特点,经过频率响应为()H ω匹配滤波器的输出信号为 ()()() o o y t s t n t =+,其中输入信号分量的输出为 ()()()exp()o i s t S H j t d ωωωω ∞ -∞ =? 与此同时,输出的噪声平均功率为 2 ()2 N N H d ωω ∞ -∞ =? 则0t 时刻输出信号信噪比可以表示为 2 2 02 0()()e () ()2 j t i o S H d s t N N H d ωωωωωω ∞ -∞ ∞ -∞ =? ? 要令上式取最大值,根据Schwarz 不等式,则需要匹配滤波器频响为 0()()exp() i H KS j t ωωω*=-

dsp实验报告

DSP 实验课大作业实验报告 题目:在DSP 上实现线性调频信号的脉冲压缩,动目标显示和动目标检测 (一)实验目的: (1)了解线性调频信号的脉冲压缩、动目标显示和动目标检测的原理,及其DSP 实现的整个流程; (2)掌握C 语言与汇编语言混合编程的基本方法。 (3)使用MATLAB 进行性能仿真,并将DSP 的处理结果与MATLAB 的仿真结果进行比较。 (二)实验内容: 1. MATLAB 仿真 设定信号带宽为B= 62*10,脉宽-6=42.0*10τ,采样频率为62*10Fs =,脉冲重复周期为-4T=2.4*10,用MATLAB 产生16个脉冲的线性调频信号,每个脉冲包含三个目标,速度和距离如下表: 对回波信号进行脉冲压缩,MTI ,MTD 。并且将回波数据和频域脉压系数保存供DSP 使用。 2.DSP 实现 在Visual Dsp 中,经MATLAB 保存的回波数据和脉压系数进行脉压,MTI 和MTD 。 (三)实验原理 1.脉冲压缩原理 在雷达系统中,人们一直希望提高雷达的距离分辨力,而距离分辨力定义为:22c c R B τ?==。其中,τ表示脉冲时宽,B 表示脉冲带宽。从上式中我们可以看

出高的雷达分辨率要求时宽τ小,而要求带宽B大。但是时宽τ越小雷达的平均发射功率就会很小,这样就大大降低了雷达的作用距离。因此雷达作用距离和雷达分辨力这两个重要的指标变得矛盾起来。然而通过脉冲压缩技术就可以解决这个矛盾。脉冲压缩技术能够保持雷达拥有较高平均发射功率的同时获得良好的距离分辨力。 在本实验中,雷达发射波形采用线性调频脉冲信号(LFM),其中频率与时延成正比关系,因此我们就可以将信号通过一个滤波器,该滤波器满足频率与时延成反比关系。那么输入信号的低频分量就会得到一个较大的时延,而输入信号的高频分量就会得到一个较小的时延,中频分量就会按比例获得相应的时延,信号就被压缩成脉冲宽度为1/B的窄脉冲。 从以上原理我们可以看出,通过使用一个与输入信号时延频率特性规律相反的滤波器我们可以实现脉冲压缩,即该滤波器的相频特性与发射信号时共轭匹配的。所以说脉冲压缩滤波器就是一个匹配滤波器。从而我们可以在时域和频域两个方向进行脉冲压缩。 滤波器的输出() h n= y n为输入信号() x n与匹配滤波器的系统函数() *(1) y n x n s N n =--。转换到频域就是--卷积的结果:* ()()*(1) s N n =。因此我们可以将输入信号和系统函数分别转化到频域:Y k X k H k ()()( Y k,然后将结果再转化到时域, h n H k →,进行频域相乘得() ()() x t X k →,()() 就可以得到滤波器输出:()() →。我们可用FFT和IFFT来实现作用域的 Y k y n 转换。原理图如下: 图1.脉冲压缩原理框图 2.MTI原理 动目标显示(MTI)技术是用来抑制各种杂波,来实现检测或者显示运动目标的技术。利用它可以抑制固定目标的信号,显示运动目标的信号。以线性调频

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

杂波环境中认知雷达相位编码波形设计

摘 要:针对相位编码这一非线性优化求解问题,提出了一种改进牛顿法的迭代求解算法。首先对杂波环境中的 相位编码波形进行建模,然后求解出目标函数的海赛尔矩阵(Hessian 矩阵),再利用变化梯度法去逼近它的最优点,最后调用牛顿法求解出最优相位编码。实验仿真表明,该算法收敛速度较快,并验证了该算法的有效性和可行性。 关键词:认知雷达,波形设计,相位编码,牛顿法中图分类号:TP802.4,TP802.7 文献标识码:A 杂波环境中认知雷达相位编码波形设计 王 鹏,崔 琛,张 鑫 (解放军电子工程学院,合肥230037) Phase Code Waveform Design for Cognitive Radar in Presence of Signal-Dependent Interference WANG Peng ,CUI Chen ,ZHANG Xin (Electronic Engineering Institute ,Hefei 230037,China ) Abstract :To solve the phase encoding nonlinear optimization problem ,an improved Newton method for iterative solution algorithm is propoesd.First phase encoding waveform clutter environment is modeled ,and then the objective function Hessian matrix is solved ,reusing change in the gradient method to approximate the most advantages ,and finally calling the Newton method for solving the optimal phase encoding.Simulation results indicate that the algorithm converges faster ,and verify the effectiveness and feasibility of the algorithm. Key words : cognitive radar ,waveform design ,phase code ,newton method 文章编号:1002-0640(2013) 12-0180-03Vol.38,No.12Dec ,2013 火力与指挥控制 Fire Control &Command Control 第38卷第12期2013年12月 引言 近几年随着认知雷达的提出[1],推进了传统被动式的、功能单一的雷达向智能雷达方向的转变,尤其是在雷达智能信号处理方面。由于雷达是通过对目标回波分析来进行检测、跟踪和识别的,因此,根据背景和目标的具体情况选择相应的发射波形就成了雷达智能信号处理中的一个重要组成部分,而波形优化设计技术将在雷达发展中起着更加重要的作用。其中相位编码波形具有抗干扰、抗侦查、 低峰值功率[2]和较好的模糊函数特性[3]等优势, 是认知雷达智能信号处理的一个重要研究方向。 相位编码波形优化问题通常是一个非线性的优化问题。文献[3]利用半正定规划的方法(SDP )使非 线性优化问题进行凸松弛进而去求解这个非凸问 题,最后指出了相位编码波形的模糊函数特性。文献[4]利用半正定松弛(SDR )和随机选择来处理相位编码波形的非凸和NP-hard 问题,并用仿真结果证明了相位编码波形的低峰值功率特性,有利提升雷达系统的识别性能。文献[5]利用相位编码波形使脉内调制信号能充分发挥发射端的发射功率。文献[4-5]主要是利用凸松弛的方法对非凸问题进行近似求解,在增加约束条件的同时也增加了相位编码数据的错误概率。文献[6]提出利用变化梯度法去求解相位编码波形,但这种方法的收敛速度并不快。 为了取得相位编码波形较为精确的近似解,本文提出利用牛顿法来求解相位编码波形,并与变化梯度法进行了对比。推导出相位编码波形闭式解, 收稿日期:2012-09-28 修回日期:2012-11-26 作者简介:王鹏(1987-),男,辽宁鞍山人,硕士研究生。研究方向:认知雷达、自适应信号处理。 180··

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

雷达系统设计

设计要求 设计一雷达系统,对1m2目标,要求探测距离为10km ,发射波形为常规脉冲,方位角分辨力为2°,俯仰角分辨力为20 °,距离分辨力为15m 。要求: 1 设计和计算雷达系统的各项参数,包括工作频率、发射功率、接收机灵敏度、天线孔径和增益,脉冲重复频率、相参积累时间等。 2 分析系统的最大不模糊速度和最大不模糊距离、计算系统的速度分辨力。 3 在学完雷达系统脉冲压缩相关内容后,设计线性调频波形,使雷达的作用距离增加到200km ,距离分辨力达到3米。并画出单一目标回波经过脉冲压缩后的波形。 参数求解: 1.1雷达工作频率f ,发射功率t P 已知距离分辨率的公式为:min 2 c R τ ?= ,式中c 为电波传播数度,τ为脉冲宽度,则7 min 8 2215100.1310 R s s s c τμ-??= ===?,不妨取雷达的工作频率为1f GHZ =,发射功率40t P kW =,则8 9 3100.3110c m m f λ?===?。 1.2天线孔径及增益 雷达的角度分辨力取决于雷达的工作波长λ 和天线口径尺寸L ,约为/2L λ ,则可得: 水平口径尺寸L 为: 0.3 4.32290 L m m λπα= =≈? 垂直口径尺寸h 为: 0.0750.43229 h m m λπ β= =≈? 天线的孔径224.30.43 1.8478D Lh m m ==?= 天线增益2 2 44 1.8478 2580.3A G ππλ?= = ≈ 1.3脉冲重复频率r f

发射波形为简单的矩形脉冲序列,设脉冲宽度为τ,脉冲重复周期为r T 则有: av t t r r P P P f T τ τ== 设r f τ称作雷达的工作比为D ,常规的矩形振幅调制脉冲雷达工作比的范围为0.0001-0.01,为了满足测距的单值性,不妨取0.001D =,则 6 0.001 100.110r D f Hz kHz τ -== =? 1.4接收机灵敏度 若以单基地脉冲雷达为例,天线采用收发共用,则雷达方程为: 1 2 4 max 2min 4t r i P A R S σπλ?? =???? 所以,接收机灵敏度() 23211min 42423max 40101 1.8478 1.210440.31010t r i P A S w w R σπλπ-???==≈???? 1.5相参积累时间 设单基地脉冲雷达的天线为360 环扫天线,天线扫描速度20/min a r Ω=,水平波速选择时运用最大值测向,当水平波速的宽度大于显示器的亮点直径时,可取: 0.5==2θα 则对一个点目标的相参积累时间t 为: 0.5 21 20360/6060a t s s θ===Ω? 脉冲积累个数31 101016660 r n tf == ??≈ 2 最大不模糊速度,最大不模糊距离,速度分辨率 不产生频闪的条件是:1 2d r f f ≤ 其中d f 表示脉冲多普勒频率,由2r d v f λ = 关系可得最大不模糊速度: 3 max 0.31010/750/44 r r f v m s m s λ??===

微波遥感实验报告

实验一:SAR图像下载与认识 一:实验目的 1掌握SAR图像的下载方法; 2了解不同地物在图像上的特性; 二、实验要求 1掌握雷达图像的成像原理与地物特性 2数据说明 3本实验采用Sentinel-1卫星拍摄于2014年12月5日的天山山脉的遥感影像三、实验步骤 打开地理空间数据云网站; 图1 找到Sentinel-1卫星下载有效数据; 图2

在ERDAS中打开影像; 图3 分析地物在影像上的特性; 1雷达图像的成像机理 雷达图像的获取系统不同于光学影像获取系统,它是采用有源主动式工作方法,其本质是一个距离测量系统雷达图像.上的信息是地物目标对雷达波束的反应,而且主要是目标后向散射形成的图像信息,以及朝向雷达天线那部分被散射的电磁波所形成的图像信息由于地物目标所处的位置地物结构表面形态和介电性能等不同,对雷达波束的反应是不一样的同时不同雷达波段极化方式入射角也会使地物产生不同的反应,使其图像具有近距离压缩透视收缩叠掩阴影和地面起伏引起的影像移位等现象,因此,在图像.上形成不同的色调纹理和图案,与中心投影的光学影像有很大的差别。 2雷达图像的信息特点 地物目标对雷达波束的反应是散射(或反射)穿透和吸收r种情况并存,波长不同,对地物的穿透性是不一样的;地物目标的类型本身的结构表面的粗糙度和介电性能不同,则会对电磁波的穿透反射(或散射)和吸收带来不同程度的效应同时,入射雷达波束和地物的相对方向也有关系,在一定方向的条件下,地物目标可以产生强回波,在另一方向,回波则可能很弱或无回波例如平行于飞行方向的铁丝网(电力线),会产生强回波,垂直于飞行方向回波则很弱或消失因此,在雷达图像解译时,尽可能采用多侧视方向的图像 3目视解译 就本实验的雷达图像而言,主要有以下几种地物; 雷达波束的穿透性对冰雪覆盖区地物的判读有着独特的优势例如雪上被覆盖区域,在光学影像上很难辨清究竟是雪,还是湖泊,在雷达图像上则表现极为清晰对于雪山区域冰斗湖碛尾湖的判断,应采用多侧视方向,避免将阴影误判为湖泊。

哈工大雷达系统仿真实验报告

雷达系统仿真 实验报告 姓名:黄晓明 学号: 班级:1305203 指导教师:谢俊好 院系:电信学院

实验一杂波和色噪声的产生—高斯谱相关对数正态随机序列的产生 1、实验目的 给定功率谱(相关函数)和概率分布,通过计算机产生该随机过程,并估计该过程的实际功率谱和概率分布以验证产生方法的有效性。 2、实验原理 1)高斯白噪声的产生 2 2 2 (x) f(x) μ σ - - = 、 2 2 2 (z) x F(x)dz μ σ - - =? 均值:μ为位置参数、方差:2 σ、均方差:σ为比例参数。 若给定01 X~N(,) ',则2 X X~N(,) μσμσ ' =+。 MATLAB中对应函数normrnd(mu,sigma,m,n),调用基本函数01 randn(m,n)~N(,)产生标准正态分布。 标准正态分布的产生方法有舍选抽样法、推广的舍选抽样法、变换法、极法、查表法等,其中变换法的优点是精度高,极法运算速度较变换法快10~30%,查表法速度快。 (1)反变换法、反函数有理逼近法 令0.5, t r x =-= () 2 012 23 123 0,1 1 a a x a x X signt x N b x b x b x ++ ?? =- ? +++ ?? 式中 2.515517 a=, 1 0.802833 a=, 2 0.010328 a=, 1 1.432788 b=, 2 0.189269 b=,3 0.001308 b=。用这一方法进行抽样,误差小于10-4。 (2)叠加法 根据中心极限定理有:先产生I组相互独立的01 [,]上均匀分布随机数,令 1 I i i Y r = =∑,则当N较大时212 Y~N(I,I)。一般可取12 I=,则601 Y~N(,) - (3)变换对法(Box-Muller method)

雷达原理实验报告(哈工程)

实验报告 实验课程名称:雷达原理姓名:班级:电子信息工程4班学号: 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2017年5 月

雷达信号波形分析实验报告 2017年4月5日班级电子信息工程4班姓名评分 一、实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3.了解雷达常用信号的频谱特点和模糊函数。 二、实验原理 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速。 三、实验参数设置 载频范围:0.5MHz 脉冲重复周期:250us 脉冲宽度:10us 幅度:1V 线性调频信号 载频范围:90MHz 脉冲重复周期:250us 脉冲宽度:10us 信号带宽:14 MHz 幅度:1V 四、实验仿真波形

0.5 1 1.5 2 x 10 -3 时间/s 幅度/v 脉冲 1.03561.03571.03581.0359 x 10 -3时间/s 幅度/v 连续波 0.5 1 1.5 2 x 10 -3 时间/s 幅度/v 脉冲调制 -4-2 024 x 10 7 01 24 频率/MHz 幅度/d B 脉冲频谱图 -4 -2 024 x 10 7 05 104 频率/MHz 幅度/d B 连续波频谱图 -4 -2 024 x 10 7 01 24 频率/MHz 幅度/d B 脉冲调制频谱图 0.5 1 1.5 2 x 10 -3 -101时间/s 幅度/v 脉冲 8.262 8.26258.263x 10 -4 -1 01时间/s 幅度/v 连续波 0.5 1 1.5 2 x 10 -3 -101时间/s 幅度/v 脉冲调制 -4-2 024x 10 7 02 44 频率/MHz 幅度/d B 脉冲频谱图 -4 -2 024x 10 7 05 104 频率/MHz 幅度/d B 连续波频谱图 -4 -2 024x 10 7 01 24 频率/MHz 幅度/d B 脉冲调制频谱图 02004006008001000 0500100015002000

雷达波形设计与LFM信号处理(雷达脉冲压缩)

雷达波形设计与LFM信号处理(雷达脉冲压缩) 本文关键词:雷达脉冲压缩,波形设计,二相编码信号,旁瓣抑制,检测与参数估计,反辐射导弹,抑制滤波器,分数阶,线性调频,回波,变换,多普勒频移,脉压,信噪 比损失,时域信号,匹配滤波,模糊函数,联合分辨,距离旁瓣,峰值旁瓣电平 雷达波形设计与线性调频(LFM)信号的处理在雷达系统中占有重要的位置。本文主要研究了雷达脉冲压缩波形的设计、脉压旁瓣抑制体制的性能分析与改进、旁瓣抑制滤波器的设计、LFM信号的分析与处理特别是反辐射导弹的检测与参数估计。现代雷达技术中广泛使用LFM信号,对LFM信号的处理至关重要。雷达信号中线性调频项的产生有两种原因,一是人为因素有意产生的,如脉冲压缩技术中使用的LFM信号;二是目标本身客观存在的,如导弹的主动飞行段、飞机的机动飞行等产生的加速度,以及目标与雷达平台相对运动所产生的雷达回波信号中的线性调频项,如合成孔径雷达(SAR)回波、反辐射导弹回波等。常规的雷达脉冲压缩波形有LFM信号和相位编码信号。LFM信号的模糊函数为斜刀刃形,优点是对多普勒频移不敏感,但时频联合分辨率差,脉压输出的峰值旁瓣电平高达 -13.2dB;二相编码信号如13位Barkei。码具有图钉状的模糊函数,因而时频联合分辨率好,且脉压输出的峰值旁瓣电平相对较低,为-22.2dB,但对多普勒频移敏感。本文提出了一类新的脉压信号——二次伸缩二相编码信号,将具有特定Fourier级数展开系数的波形在时域进行二次伸缩,采样,并符号化为二值序列,即得到这类二次伸缩二相编码信号。信号本身兼有线性调频和调相,因而其模糊函数为刀刃型和图钉型的复合形状,对多普勒频移不敏感及有较好的距离一速度联合分辨率,且其峰值旁瓣可低于-30dB。脉压波形经匹配滤波后,除了主瓣,尚存在不希望的距离旁瓣,影响了雷达对多目标的探测。对于LFM这类复信号,传统的旁瓣抑制方法是在匹配滤波后引入加权网络,在频域进行加权处理,使旁瓣降低。而对二相编码脉压信号等实信号,则用最小二乘法(LS)、线性规划法(LP)和加权失配滤波器法(WMMF)设计数字失配滤波器,在时域直接进行旁瓣抑制。处理的结果虽降低了距离旁瓣,但却导致了信噪比损失,而LFM信号的频域加权网络还使主瓣展宽。本文提出一种新的脉压旁瓣抑制体制,即匹配滤波后再取包络,然后经过旁瓣抑制滤波器抑制距离旁瓣。这样就既适用于LFM等复信号,又适用于二相编码等实信号。针对这种体制,得到了修正的旁瓣抑制滤波器设计方法。结果这种旁瓣抑制体制及相应的滤波器设计方法,在保持与常规旁瓣抑制体制相同峰值旁瓣的情况下,信噪比损失改善了0.2~4dB,且对于LFM信号,旁瓣抑制后的主瓣宽度更窄。雷达目标回波中很大一部分为LFM信号。如SAR 回波,反辐射导弹(ARM)发射初期的回波等。由于LFM为非平稳信号,经典Fourier 分析不再适用,而Radon-Wigner变换非常适于分析LFM信号,但计算量很大。分数阶Fourjer变换是近几年兴起的一种新的时频分析工具,可看成Fourjer 变换的推广并可用FFT实现,且信号FRFT的模平方即为其Radon-Wigner变换。本文提出了分数阶Fouijer变换的一种新的解释,即其为广义时域信号的Fourjer变换,这个广义时域信号是由于时频平面中坐标轴的旋转,而使原时域信号呈现新的时域表示或称广义时域形式。另外,本文利用FRFT的角度相加性,

24GHz汽车毫米波雷达实验报告

24GHz汽车毫米波雷达实验报告 是德科技射频应用工程师王创业1. 前言 汽车毫米波雷达越来越多的被应用在汽车上面,主要作为近距离和远距离探测,起到防撞、辅助变道、盲点检测等作用。随着器件工艺和微波技术的发展,毫米波雷达产品越来越小。俗话说:“麻雀虽小,五脏俱全”,同样汽车毫米波雷达作为典型的雷达产品,也包含收发天线、发射部分、接收部分、DSP部分。典型原理框图如图1所示。汽车毫米波雷达的性能指标主要体现在测速精度、定位精度、距离分辨率、多目标识别等方面,要实现这些性能和功能,首先要做好整体系统的设计和仿真,其次对于各功能部分的性能指标要严格把控测试,最后要在实际现场环境完成测试考核。 汽车毫米波雷达体制上面主要有线性调频连续波FMCW体制雷达、频移键控FSK体制雷达、步进调频连续SFCW体制雷达。不同体制雷达在产品实现复杂程度和应用上都是有区别的。FMCW体制雷达可以同时探测到运动目标和静止目标,但是不可以同时探测多个运动目标。电路需要比较大的带宽。

FSK体制雷达,可以同时探测并且正确区分开来多个运动目标,但是不可以正确测量静止目标。电路带宽比窄,系统响应捕获比较慢,成本比FMCW体制要低很多。SFCW体制雷达,可以同时探测多个静止和运动的目标,并且将各个目标正确区分开来。SFCW体制雷达具有更为复杂的调制波形,信号处理也更为复杂,产品实现成本高。 2.实验目的 在汽车毫米波雷达系统研制过程中,经常会碰到各式各样的问题,譬如系统波形的选择和设计、系统链路的设计、信号处理算法的选择、微波电路的设计调试、天线的设计。主要的问题主要体现在系统方案、处理算法模拟、微波电路指标调试及对系统性能的影响上。典型的例子,在FMCW雷达系统,雷达探测距离分辨率不仅与信号的调制带宽有关,还与FMCW调制的线性度有关。 利用是德科技平台化解决方案,即软件+硬件+工程师,可以很容易的实现雷达系统设计仿真、处理算法验证、微波电路设计测试、天线设计测试。基于以上的问题,该实验主要实现以下三个目的: 1)软件硬件结合,SystemVue+仪表实现各类信号的产生; 2)系统设计仿真、算法验证 3)VCO线性调制度分析 4)场景信号录制回放和信号分析 3.实验要求 该实验采用FMCW雷达体制,结合SystemVue软件和仪表实现以下功能: 1)汽车雷达信号产生 a.24GHz标准雷达信号产生:Triangle调制信号、Sawtooth调 制信号

相关主题
文本预览
相关文档 最新文档