当前位置:文档之家› 实验4 译码显示电路

实验4 译码显示电路

实验4 译码显示电路
实验4 译码显示电路

【实验题目】译码显示电路

姓名:学号:专业:

【实验目的】

1、掌握中规模集成译码器的逻辑功能和使用方法

2、熟悉数码管的使用

【实验仪器及器件】

仪器及器件名称型号数量数字电路实验箱DS99-1A1数字万用表DY21061

双踪示波器CS-41351

器件74LS1941 74LS731 74LS002 74LS511

【实验内容】

1、按表1测试74LS1940

将74LS194的Cr′、S1、S0分别接入逻辑模拟

开关D0、D1、D2,D0~D3接入另一组逻辑模拟开关

,Q0~Q3接入“0-1”显示器,即可按照表(二)进

行测试。本人在实验中是通过接入显示灯和示波器

分析各种状态来判断测试是否正常。

表1 74LS1940功能表2、按图1实现四节拍顺序脉冲发生器

图1

将Q0、Q1,Q1、Q2和Q2、Q3分别接入双踪示波器。打开电源后应首先用模拟开关对节拍发生器进行清零操作,再用双踪示波器观察各组之间波形的相位对应关系。下面图2为Q0、Q1输出波形关系。

图2

3、按图2实现四位扫描译码显示电路。采用内容(2)顺序脉冲作为D s信号。8421BCD码用逻辑模拟开关输入。自行设计伪码灭灯电路,使正常输入BCD码时输出为“1",伪码输入时灭灯。

图2

①将图1中的Q0~Q3对应输入图2中A0~A3,图1中D0~D3接逻辑模拟开

关,输入8421BCD码。

②伪码灭灯电路设计:

A3A2A1A0Y′

00000

00010

00100

00110

01000

01010

01100

01110

10000

10010

10101

10111

11001

11011

11101

11111

表2 伪码灭灯电路真值表

根据表3卡诺图可以得到:

______ __________

BI/RBO=A3(A2+A1)

从而构成伪码灭灯电路

表3 对应卡诺图

4、自行设计电路在4联装LED数码管同时显示出4个不同的0-7的数字

(以下内容通过软件仿真实现)

Ds1Ds2Ds3Ds4有四个循环状态:0111,1011,1101,1110。(0呈流水灯一样循环),在高频率工作条件下,显示灯看起来就像同时亮。如今令A3A2A1A0四个状态:0101,0110,0111,0100,分别对应十进制的5,6,7,4。通过仿真的:

图3 仿真结果

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

数字钟设计报告——数字电路实验报告

数字钟设计实验报告 专业:通信工程 姓名:王婧 班级:111041B 学号:111041226

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生 3

实验五 计数、译码、显示电路

. 实验五计数、译码、显示电路 一、实验目的 掌握中规模集成计数器74LS161及七段译码器CD4511的逻辑功能,掌握共阴极七段显示器的使用方法,熟悉用示波器测试计数器输出波形的方法。 二、实验原理 计数、译码、显示电路是由计数器、译码器和显示器三部分电路组成的逻辑电路。下面分别加以介绍。 1.计数器:计数器是一种中规模集成电路,其种类有很多。如果按照触发器翻转的次序分类,可分为同步计数器和异步计数器两种;如果按照计数数字的增减可分为加法计数器、减法计数器和可逆计数器三种;如果按照计数器进位规律又可分为二进制计数器、十进制计数器、可编程N进制计数器等多种。 常用计数器均有典型产品,不须自 己设计,只要合理选用即可。 本实验选用四位二进制同步计数 器74LS161做计数器,该计数器外加适 当的反馈电路可以构成十六进制以内 的任意进制计数器。图5-1是它的逻辑 图。这个电路除了具有二进制加法计数 功能外,还具有预置数、清零、保持的 功能。图中LD是预置数控制端,D、C、 R是清零 B、A是预置数据输入端, D 端,EP、ET是计数器使能控制端,RCO 是进位信号输出端,它的主要功能有: ①异步清零功能 R=0(输出低电平),则输出QD 若 D

QCQBQA=0000,除EP、ET信号外,与其它输入信号无关,也不需要CP脉冲的配合,所以称为“异步清零”。 ②同步并行置数功能 R=1,且LD=0的条件下,当CP上升沿到来后,触发器QDQCQBQA同时接收D、在 D C、B、A输入端的并行数据。由于数据进入计数器需要CP脉冲的作用,所以称为“同步置数”,由于4个触发器同时置入,又称为“并行”。 ③保持功能 R=1,LD=1的条件下,EP、ET两个使能端只要有一个低电平,计数器将处于数在 D 据保持状态,与CP及D、C、B、A输入无关。 ④计数功能 R=1、LD=1、EP=1、ET=1的条件下,计数器对CP端输入脉冲进行计数,计数方在 D 式为二进制加法,状态变化在QDQCQBQA=0000~1111间循环。74LS161的功能表详见表5-l所示。 表5-1 74LS161的功能表 本实验所需计数器是十进制计数器,必须对74LS161外加适当的反馈电路构成十进制计数器,状态变化在QDQCQBQA=0000~1001间循环。 用反馈的方法构成十进制计数器一般有两种形式,即和反馈置数法。反馈置零法是利用R构成,即:当Q D Q C Q B Q A=1010(十进制数10)时,通过反馈线强制计数器清零,清除端 D 如图5-2(a)所示。由于该电路会出现瞬间1010状态,会引起译码电路的误动作,因此很少被采用。反馈置数法是利用预置数端LD构成,把计数器输入端D1D2D2D3全部接地,当计数

电子秒表电路实验报告1

电子技术课程设计 报告 设计题目:电子秒表 院(部):物理与电子信息学院 专业班级:电子信息工程 学生姓名: 学号: 指导教师: 摘要

秒表应用于我们生活、工作、运动等需要精确计时的方面。它由刚开始的机械式秒表发展到今天所常用的数字式秒表。秒表的计时精度越来越高,功能越来越多,构造也日益复杂。 本次数字电路课程设计的数字式秒表的要求为:显示分辨率为1s/100,外接系统时钟频率为100KHz;计时最长时间为60min,五位显示器,显示时间最长为59m59.99s;系统设置启/停键和复位键。复位键用来消零,做好计时准备、启/停键是控制秒表起停的功能键。 针对上述设计要求,先前往校图书馆借阅了大量的数字电路设计方面的书籍,以及一本电子元件方面的工具书,以待查阅各种设计中所需要的元件。其次安装并学习了数字电路设计中所常用的Multisim仿真软件,在课程设计过程的电路图设计与电路的仿真方面帮助我们发现了设计电路方面的不足与错误之处。 关键字:555定时器十进制计数器六进制计数器多谐振荡器

目录 1.选题与需求分析 (1) 1.1设计任务 (1) 1.2 设计任务 (1) 1.3设计构思 (1) 1.4设计软件 (2) 2.电子秒表电路分析 (3) 2.1总体分析 (3) 2.2电路工作总体框图 (3) 3.各部分电路设计 (4) 3.1启动与停止电路 (4) 3.2时钟脉冲发生和控制信号 (4) 3.3 设计十进制加法计数器 (6) 3.4 设计六进制加法计数器 (7) 3.5 清零电路设计 (8) 3.7 总体电路图: (10) 4 结束语与心得体会 (12)

数电实验四——译码显示电路

一、实验题目 实验四译码显示电路 二、实验目的 掌握中规模集成译码器的逻辑功能和使用方法 熟悉数码管的使用 三、实验分析 1.按表(二)测试74LS194. 分析: 各工作状态下,Q0、Q1、Q2、Q3的输出: 置零Q0 = Q1 = Q2 = Q3 = 0 保持Q0n+1 = Q0n Q1n+1 = Q1n Q2n+1 = Q2n Q3n+2 = Q3n

右移Q0n+1 = D SR Q1n+1 = Q0n Q2n+1 = Q1n Q3n+1 = Q2n 左移Q0n+1 = Q1n Q1n+1 = Q2n Q2n+1 =Q3n Q3n+1 = D SL 并行送数Q0 = D0Q1= D1Q2 = D2Q3 = D3 通过对74LS194的测试,知道该芯片是上升沿触发的。 2.按图(五)实现四节拍顺序脉冲发生器 分析: Q0Q1Q2Q3S0S1K 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 ……… … … … … … … … … … … … Q0,Q1,Q2,Q3 一直进行: 0111->1011->1101->1110->0111->……

的循环。 3.按图(4)实现四位扫描译码显示器,采用内容(2)顺序脉冲作为Ds信号,8421BCD码用逻辑模拟开关输入。自行设计伪码灭灯电路,使得正常输入BCD码时输入为“1”伪码输入时灭灯。 分析: 伪码灭灯电路真值表 A3A2A1A0BI/RBO 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1

数电实验报告实验六计数译码显示综合实验整理版.docx

数电实验报告 实验六 计数、译码、显示综合实验 姓名: 学号: 班级: 院系: 指导老师: 2016年

目录 实验目的: (22) 实验器件与仪器: (22) 实验原理: (33) 用同步清零端或置数端置零或置数构成N进制计数器 (33) 用同步清零端或置数端置零或置数构成N进制计数器 (33) 实验内容: (44) 实验过程: (55) 实验总结: (66) 实验: 实验目的: 1.熟悉中规模集成电路计数器的功能及应用。 2.熟悉中规模集成电路译码器的功能及应用。 3.熟悉LED数码管及显示电路的工作原理。 4.学会综合测试的方法。 实验器件与仪器: 1.实验箱、万用表、示波器。

2.74LS160、74LS48、74LS20 实验原理: 对于计数规模小的计数器,我们使用集成触发器来设计计数器,但是如果计数器的模数达到十六以上(如六十进制)时,如果还是用集成触发器来设计的话,电路就比较复杂了。在这种情况下,我们可以用集成计数器来构成任意进制计数器。利用集成计数器的清零端和置数端实现归零,从而构成按自然态序进行计数的N进制计数器的方法。 用同步清零端或置数端置零或置数构成N进制计数器用这种方法的实现步骤如下: 1)写出状态S N-1的二进制代码。 2)求归零逻辑,即求同步清零端或置数控制端信号的逻辑表达式 3)画连线图 用同步清零端或置数端置零或置数构成N进制计数器用这种方法的实现步骤如下: 1)写出状态S N得二进制代码 2)求归零逻辑,即求异步清零端或置数控制端信号的逻辑表达式

3)画连线图 在集成计数器中,清零、置数均采用同步方法的有74LS163;均采用异步方法的有74LS193、74LS197、74LS192;清零采用异步方法、置数采用同步方法的有74LS161、74LS160;有的只具备异步清零功能,如CC4520、74LS190、74LS191;74LS90则具有异步清零和异步置9功能。 实验内容: 1.用集成计数器74LS160分别组成8421码十进制和六进制计数器, 然后连接成一个60进制计数器(6进制为高位,10进制位低位)。 使用实验箱上的LED译码显示电路显示(注意高低位顺序及最高位的处理)。用函数发生器的低频连续脉冲(调节频率为1-2Hz)作为计数器的计数脉冲。通过数码管观察计数、译码、显示电路的功能是否正确。 2.设计一个时间计数器,具有分钟和秒计时功能的计数器。

实验三 译码显示电路

专业计算机类实验人 实验题目:译码显示电路2015年 5 月 9日 一、实验目的: 1、掌握中规模集成译码器的逻辑功能和使用方法 2、熟悉数码管的使用 二、实验仪器及器件: 1、数字电路实验箱、数字万用表、示波器。 2、器件:74LS48X1, 74LS194X1, 74LS73X1, 74LS00X2 三、实验预习: 1、复习有关译码显示原理。 2、根据实验任务,画出所需的实验线路及记录表格。 四、实验原理: 1、数码显示译码器: (1)七段发光二极管(LED)数码管 LED数码管是目前最常用的数字显示器,图(一)(a)、(b)为共阴管和共阳管的电路,(C)为两种不同出线形式的引出脚功能图。 一个LED数码管可用来显示一位0--9十进制数和一个小数点。小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。

专业计算机类实验人 实验题目:译码显示电路2015年 5 月 9日 (2)BCD码七段译码驱动器 此类译码器型号有74LS47(共阳),74LS48(共阴),CC4511(共阴)等,本实验系采用'74LS48 BCD码锁存/七段译码/驱动器。驱动共阴极LED数码管。 图(二)为74LS48引脚排列。其中A、B、C、D - BCD码输入端,a、b、c、 d、e、f、g——译码输出端,输出“1"有效,用来驱动共阴极LED数码管。 错误!未找到引用源。- 灯测试输入端,错误!未找到引用源。=“0”时,译码输出全为“1” 错误!未找到引用源。- 灭零输入端,错误!未找到引用源。=“0”时,不显示多余的零。 错误!未找到引用源。/错误!未找到引用源。-作为输入使用时,灭灯输入控制端; 作为输出端使用时,灭零输出端。 2、扫描式显示 对多位数字显示采用扫描式显示可以节电,这一点在某些场合很重要。对于某些系统输出的的数据,应用扫描式译码显示,可使电路大为简化。有些系统,比如计算机,某些A/D转换器,是以这样的形式输出数据的:由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD码,如图(三)所示。图中的Ds 称为选通信号,并假定系统按先高位后低位的顺序送出数据,当Ds1高电平送出千位数,Ds2高电平送出百位数,……一般Ds的高电平相邻之间有一定的间隔,选通信号可用节拍发生器产生。 如图(四)所示,为这种系统的译码扫描显示的原理图。图中各片LED(共阴)的发光段并连接至译码器的相应端,把数据输入的相应权端与系统输出端相连,把各位选通端反相后接相应LED的公共端。f(A)使数据输入是伪码(8421BCD中的1010-1111)时使f(A)=0,伪码灭灯。接译码器的灭灯I B端,使不显示伪码。

电子电路数字钟实验报告

电子电路课程设计总结报告 (数字钟) 项目名称:数字钟 学院:机械工程学院 专业: 班级: 姓名:穆明国 指导老师:

一、课程设计题目 (3) 二、课程设计的设计任务和基本要求 (3) 三、课程设计题目分析 (3) 四、课程设计的电路设计部分 (5) 五、课程设计的总电路图 (9) 六、元器件的使用说明 (11) 七、课程设计的心得体会 (15) 八、参考文献 (15)

一、课程设计题目: 数字钟 二、课程设计任务和基本要求: 1)设计数字钟电路(每人一组,独立完成) 基本功能:准确计时,以数字形式显示时、分、秒的时间;小时的计时要求为24进位,分和秒的计时要求为60进位;能快速校正时、分的时间。 扩展功能:定点闹时功能,比如在7时59分发出闹时信号,持续时间为1分钟;整点报时功能,比如计时到整点时发出声音,且几点响几声。 2)提交设计报告(书面形式) 画出所设计电路的结构方框图;分析各部分的工作原理;所含集成电路的管脚和功能说明;通过Multisim 等软件对所设计电路进行仿真,提交仿真电路的原理图(电子版)。 3)制作数字钟(两人一组共同完成) 实现基本功能,给定统一的元器件,按照自己的设计方案在面包板上搭建实际电路,并达到设计要求。 三、课程设计题目分析: ☆设计要点 ●设计一个精确的秒脉冲信号产生电路 ●设计60进制、24进制计数器 ●设计译码显示电路 ●设计操作方面的校时电路 ●设计整点报时电路 ☆工作原理 数字电子钟由信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用555构成的振荡器加分频器来实现。将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计数器,可以实现一天24h的累计。译码显示电路将“时、分、秒”计数器的输出状态经七段显示译码器译码,通过六位LED显示器显示出来。整点报时电路是根据计时系统的输出状态产生一个脉冲信号,然后去触发音频发生器实现报时。校时电路是来对“时、分、秒”显示数字进行校对调整。其数字电子钟系统框图如下:

实验四译码显示电路

中山大学 学院:数据科学与计算机学院 实验题目:译码显示电路 一、实验目的 1. 掌握中规模集成译码器的逻辑功能和使用方法 2. 熟悉数码管的使用 二、实验仪器及器件 74LS48, 74LS194 , 74LS73,74LS00,74LS197, 74LS138, 以及各种门电路 三、实验原理 1. 数码显示译码器 BCD码七段译码驱动器-----74LS48,用来驱动共阴极 LED数码管。 2. 扫描式显示 利用数码管的余辉效应和人眼的视觉暂留效应,虽然在某一时刻只有一个数码管在显示,但人眼看到的是多个数码管“同时”被点亮的效果。由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD码 3. 四节拍发生器 扫描显示要求数码管按先后顺序显示。这就要求如图所示的选通信号。通常该类型的信号称为节拍信号。

图中 74LS194 为移位寄存器。它具有左移、右移, Cr 反 S1 S0 工作状态 0 X X 置零 1 0 0 保持 1 0 1 右移 1 1 0 左移 1 1 1 并行送数 并行送数、保持及清除等五项功能。其引脚图如图(六) 所示。其中Cr 为清除端,CP 为时钟输入端,S 0、S 1为状 态控制端,D SR 为右移数据串行输入端,D SL 为左移数据 输入端,D 0、D 1、D 2、D 3位并行数据输入端,QA 、QB 、 QC 、QD 为数据输出端。 节拍发生器工作开始时,必须首先进行清零。当 Cr 负脉冲过后 QA 、QB 、 QC 、QD 全为零。JK 触发器Q =1,因而 S 1=S 0=1,实现并行送数。 当第一个脉冲的上升沿到达后,置入 0111,CP 下降沿到达后Q =0,即 S 1=0, S 0=1,实现右移功能。在 CP 作用下输出依次为 1011,1101,1110,第四个 CP 下降沿到达后又使 Q=1,实现第二个循环。 四、实验内容 1.使用 74LS194,74LS73,74LS48,基础逻辑门和两个四联装的共阴极数码管, 实现本人学号的显示。(本人学号为 15352316) 解题思路: 通过 74LS194作为四节拍顺序脉冲发生器,输出分别连入两块 4位数码 管的位选端,做到控制数码管从第 1位到第 4位扫描的同时在第 5位到第 8 位扫描。确定了显示位置后,要产生与节拍发生器具有相同变换速度的两个 显示内容,分别作为前 4位学号和后 4位学号的段选段输入,则两个 74LS194 需要连接到同一个信号发生器(CLOCK),或者是只用一个 74LS194来实现。 而 74LS48的输入端 DCBA 对应到共阴极数码管的每个十进制数相对应的二

计数、译码、显示电路实验

创作编号: BG7531400019813488897SX 创作者:别如克* 实验五计数、译码、显示电路 一、实验目的 掌握中规模集成计数器74LS161及七段译码器CD4511的逻辑功能,掌握共阴极七段显示器的使用方法,熟悉用示波器测试计数器输出波形的方法。 二、实验原理 计数、译码、显示电路是由计数器、译码器和显示器三部分电路组成的逻辑电路。下面分别加以介绍。 1.计数器:计数器是一种中规模 集成电路,其种类有很多。如果按照触 发器翻转的次序分类,可分为同步计数 器和异步计数器两种;如果按照计数数 字的增减可分为加法计数器、减法计数 器和可逆计数器三种;如果按照计数器 进位规律又可分为二进制计数器、十进 制计数器、可编程N进制计数器等多 种。 常用计数器均有典型产品,不须自

己设计,只要合理选用即可。 本实验选用四位二进制同步计数器74LS161做计数器,该计数器外加适当的反馈电路可以构成十六进制以内的任意进制计数器。图5-1是它的逻辑图。这个电路除了具有二进制加法计数功能外,还具 有预置数、清零、保持的功能。图中LD是预置数控制端,D、C、B、 R是清零端,EP、ET是计数器使能控制端,A是预置数据输入端, D RCO是进位信号输出端,它的主要功能有: ①异步清零功能 R=0(输出低电平),则输出QDQCQBQA=0000,除EP、ET 若 D 信号外,与其它输入信号无关,也不需要CP脉冲的配合,所以称为“异步清零”。 ②同步并行置数功能 R=1,且LD=0的条件下,当CP上升沿到来后,触发器QD 在 D QCQBQA同时接收D、C、B、A输入端的并行数据。由于数据进入计数器需要CP脉冲的作用,所以称为“同步置数”,由于4个触发器同时置入,又称为“并行”。 ③保持功能 R=1,LD=1的条件下,EP、ET两个使能端只要有一个低在 D 电平,计数器将处于数据保持状态,与CP及D、C、B、A输入无关。 ④计数功能 R=1、LD=1、EP=1、ET=1的条件下,计数器对CP端输入在 D 脉冲进行计数,计数方式为二进制加法,状态变化在QDQCQBQ =0000~1111间循环。74LS161的功能表详见表5-l所示。 A 表5-1 74LS161的功能表

数电实验--译码显示电路

译码显示电路 二、实验仪器及器件: 1、数字电路实验箱、数字万用表、示波器。 2、器件:74LS48X1, 74LS194X1, 74LS73X1, 74LS00X2 三、实验预习: 1、复习有关译码显示原理。 2、根据实验任务,画出所需的实验线路及记录表格。 四、实验原理: 1、数码显示译码器: (1)七段发光二极管(LED)数码管 LED数码管是目前最常用的数字显示器,图(一)(a)、(b)为共阴管和共阳管的电路,(C)为两种不同出线形式的引出脚功能图。 一个LED数码管可用来显示一位0--9十进制数和一个小数点。小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。

(2)BCD码七段译码驱动器 此类译码器型号有74LS47(共阳),74LS48(共阴), 段译码/驱动器。驱动共阴极LED数码管。 图(二)为74LS48引脚排列。其中A、B、C、D - BCD 码输入端,a、b、c、d、e、f、g——译码输出端,输出 “1"有效,用来驱动共阴极LED数码管。 - 灯测试输入端,=“0”时,译码输出全为“1” - 灭零输入端,=“0”时,不显示多余的零。 作为输出端使用时,灭零输出端。 2、扫描式显示 对多位数字显示采用扫描式显示可以节电,这一点在某些场合很重要。对于某些系统输出

的的数据,应用扫描式译码显示,可使电路大为简化。有些系统,比如计算机,某些A/D 转换器,是以这样的形式输出数据的:由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD码,如图(三)所示。图中的Ds称为选通信号,并假定系统按先高位后低位的顺序送出数据,当Ds1高电平送出千位数,Ds2高电平送出百位数,……一般Ds的高电平相邻之间有一定的间隔,选通信号可用节拍发生器产生。 如图(四)所示,为这种系统的译码扫描显示的原理图。图中各片LED(共阴)的发光段并连接至译码器的相应端,把数据输入的相应权端与系统输出端相连,把各位选通端反相后接相应LED的公共端。f(A)使数据输入是伪码(8421BCD中的1010-1111)时使f(A)=0,伪码灭灯。接译码器的灭灯I B端,使不显示伪码。 3、四节拍发生器 扫描显示要求数码管按先后顺序显示。这就要求如图(三)所示的选通信号。通常该类型的信号称为节拍信号。如果使用的数码管是共阴极型,则选通信号是图(三)的反相。如图(五)所示就是这种节拍信号发生器。

数字逻辑电路实验报告

. .. 数字逻辑电路设计 --多功能数字钟 学院:计算机科学与通信工程 专业: : 学号: 指导老师:

多功能数字钟 一、设计任务及要求 (1)拥有正常的时、分、秒计时功能。 (2)能利用实验板上的按键实现校时、校分及清零功能。 (3)能利用实验板上的扬声器做整点报时。 (4)闹钟功能 (5)在MAXPLUS II 中采用层次化设计方法进行设计。 (6)在完成全部电路设计后在实验板上下载,验证设计课题的正确性。 二、多功能数字钟的总体设计和顶层原理图 作为根据总体设计框图,可以将整个系统分为六个模块来实现,分别是计时模块、校时模块、整点报时模块、分频模块、动态显示模块及闹钟模块。

(1)计时模块 该模块使用74LS160构成的一个二十四进制和两个六十进制计数器级联,构成数字钟的基本框架。二十四进制计数器用于计时,六十进制计数器用于计分和秒。只要给秒计数器一个1HZ的时钟脉冲,则可以进行正常计时。分计数器以秒计数器的进位作为计数脉冲。 用两个74160连成24进制的计数器,原图及生成的器件如下: 生成的二十四进制计数器注: 利用使能端,时钟信号,清零以及预置数功能连成24进制。

用两个74160连成的60进制计数器,原图及生成的器件如下: 生成的六十进制计数器 (2)校时模块 校时模块设计要求实现校时,校分以及清零功能。 *按下校时键,小时计数器迅速递增以调至所需要的小时位。 *按下校分键,分计数器迅速递增以调至所需要的分位。 *按下清零键,将秒计数器清零。 注意事项:①在校分时,分计数器的计数不应对小时位产生影响,因而需要屏蔽此时分计数器的进位信号以防止小时计数器计数。 ②利用D触发器进行按键抖动的消除,因为D触发器是边沿触发,在除去时钟边沿到来前一瞬间之外的绝大部分时间都不接受输入,

实验四 译码显示电路

实验四译码显示电路 The Standardization Office was revised on the afternoon of December 13, 2020

实验四译码显示电路 一、实验目的: 1、掌握中规模集成译码器的逻辑功能和使用方法 2、熟悉数码管的使用 二、实验仪器及器件: 三、实验步骤及结果 1、按表(二)测试74LS1940 测试结果略 2、实现四节拍顺序脉冲发生器 (1)实验电路图及74LS194功能表 图(一)表(二)74LS194功能表

(2)实验结果 (3)实验波形(Q3 Q2 Q1 Q0分别代表Q D Q C Q B Q A) Q3 Q3与Q2 Q3与Q1 Q3与Q0

3、按图(四)实现四位扫描译码显示电路。采用内容(2)顺序脉冲作为D s 信号。8421BCD 码用逻辑模拟开关输入。自行设计伪码灭灯电路,使正常输入BCD 码时输出为“1",伪码输入时灭灯。 (1) 设计伪码灭灯电路及其电路图 f(A)=(A3(A2’A1’)’)’ (2) 四位扫描译码显示电路原理图 A1A0 A3A2 00 01 11 10 00 1 1 1 1 01 1 1 1 1 11 0 0 0 0 10 1 1

(3)实验预期结果(LED显示)(由于实验箱损坏,实验时无法得到正确的LED数码管的显示数字,这里仅用预期结果表示) 4、自行设计电路在4联装LED数码管同时显示出4个不同的0-7的数字。 使用74LS48上的L1S(Gi)’(i=1,2,3,4)端口。要使第i个显示器显示i,接逻辑电路Yi,使得Yi只有在Ai表示i时为0,其他时候均为1,将之接为L1S(Gj)’=0(j=i,0表示有效),L1S(Gj)’=1(j≠i) 电路图如下:

2016译码显示电路实验报告

实验四译码显示电路 一、实验目的 1. 掌握中规模集成译码器的逻辑功能和使用方法 2. 熟悉数码管的使用 二、实验仪器及器件 1.器件:74LS48, 74LS194 , 74LS73,74LS00 ,74LS197, 74LS153, 74LS138,CLOCK,MPX4-CC-BULE, MPX8-CC-BULE, 及相关逻辑门 三、实验预习 1. 复习有关译码显示原理。 2. 根据实验任务,画出所需的实验线路及记录表格。 四、实验原理 1. 数码显示译码器 (1)七段发光二极管(LED)数码管 LED数码管是目前最常用的数字显示器,图(一)(a)、(b)为共阴管和共阳管的电路,(c)为两种不同出线形式的引出脚功能图。(注:实验室实验箱上数码管为共阴四位数码管) 一个LED数码管可用来显示一位0~9十进制数和一个小数点。小型数码管(寸和寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~,每个发光二极管的点亮电流在5~10mA。LED数码管要显示BCD码所表示的十进制数字就需要有一个专门的译码器,该译码器不但要完成译码功能,还要有相当的驱动能力。

(a) 共阴连接(“1”电平驱动)(b) 共阳连接(“0”电平驱动) (c) 符号及引脚功能 图(一)LED数码管 (2)BCD码七段译码驱动器 此类译码器型号有74LS47(共阳),74LS48(共阴),CC4511(共阴)等,本实验系采用74LS48 BCD码锁存/七段译码/驱动器。驱动共阴极LED数码管。

图(二)为74LS48引脚排列。其中 A 0、A 1、A2、A 3— BCD 码输入端 a 、 b 、 c 、 d 、 e 、 f 、 g — 译码输出端,输出“1”有效,用来驱动共阴极LED 数码管。 LT — 灯 测试输入端,LT =“0”时,译码输出全为“1” BI R — 灭 零 输入端,BI R =“0”时,不显示多余的零。 RBO /BI — 作为输入使用时,灭灯输入控制端;作为输出端使用时,灭零输出端。 注:在实验箱上使用了两个4位数码管,对应已经连接好74LS48,如图(四),实验时无需再连线,74LS48只保留引出了A 0、A1、A 2、A 3四个引脚 。在实验箱左上角的P10、P11、P12、P13(P20、P21、P22、P23)代表第一(二)块数码管的BCD 码(即A 0、A 1、A 2、A 3端)输入,DIG1~DIG8分别代表8位数码管的位选端。 2. 扫描式显示 对多位数字显示采用扫描式显示可以节电,这一点在某些场合很重要。对于某些系统输出的的数据,应用扫描式译码显示,可使电路大为简化。利用数码管的余辉效应和人眼的视觉暂留效应,虽然在某一时刻只有一个数码管在显示,但人眼看到的是多个数码管“同时”被点亮的效果。有些系统,比如计算机,某些A/D 转换器,是以这样的形式输出数据的:由选通信号控制多路开关,先后送出(由高位到低位或由低位到高位)一位十进制的BCD 码,如图(三)所示。图中的Ds 称为选通信号,并假定系统按先高位后低位的顺序送出数据,当Ds1低电平送出千位数,Ds2低电平送出百位数,……一般Ds 的低电平相邻之间有一定的间隔,选通信号可用节拍发生器产生。 如图(四)所示,为这种系统的译码扫描显示的原理图。图中各片LED (共阴)的发光段并连接至译码器的相应端,把数据输入的相应端与系统输出端相连,把各位选通端反向后接相应LED 的公共端。

数字电路与系统设计实验报告

数字电路与系统设计实验报告 学院: 班级: 姓名:

实验一基本逻辑门电路实验 一、实验目的 1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。 2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。 二、实验设备 1、二输入四与非门74LS00 1片 2、二输入四或非门74LS02 1片 3、二输入四异或门74LS86 1片 三、实验内容 1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。 2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。 3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。 四、实验方法 1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。 2、用实验台的电平开关输出作为被测器件的输入。拨动开关,则改变器件的输入电平。 3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。 五、实验过程 1、测试74LS00逻辑关系 (1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯) (2)真值表 2、测试74LS02逻辑关系

(1)接线图 (2)真值表 3、测试74LS86逻辑关系接线图 (1)接线图 (2)真值表 六、实验结论与体会 实验是要求实践能力的。在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。实在检查不出来,可以请老师和同学帮忙。

实验二逻辑门控制电路实验 一、实验目的 1、掌握基本逻辑门的功能及验证方法。 2、掌握逻辑门多余输入端的处理方法。 3、学习分析基本的逻辑门电路的工作原理。 二、实验设备 1、基于CPLD的数字电路实验系统。 2、计算机。 三、实验内容 1、用与非门和异或门安装给定的电路。 2、检验它的真值表,说明其功能。 四、实验方法 按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。 五、实验过程 1、用3个三输入端与非门IC芯片74LS10安装如图所示的电路。 从实验台上的时钟脉冲输出端口选择两个不同频率(约7khz和14khz)的脉冲信号分别加到X0和X1端。对应B和S端数字信号的所有可能组合,观察并画出输出端的波形,并由此得出S和B(及/B)的功能。 2、实验得真值表

计数器实验报告

实验4 计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法 二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。 图5-9-1 CC40192引脚排列及逻辑符号 图中LD—置数端 CP U—加计数端 CP D—减计数端 CO—非同步进位输出端BO—非同步借位输出端 D0、D1、D2、D3—计数器输入端 Q0、Q1、Q2、Q3—数据输出端 CR—清除端

CC40192的功能如表5-9-1,说明如下: 表5-9-1 输 入 输 出 CR LD CP U CP D D 3 D 2 D 1 D 0 Q 3 Q 2 Q 1 Q 0 1 × × × × × × × 0 0 0 0 0 0 × × d c b a d c b a 0 1 ↑ 1 × × × × 加 计 数 0 1 1 ↑ × × × × 减 计 数 当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。 当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。 当CR 为低电平,LD 为高电平时,执行计数功能。执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。 表5-9-2 加法计数 输入脉冲数 0 1 2 3 4 5 6 7 8 9 输出 Q 3 0 0 0 0 0 0 0 0 1 1 Q 2 1 1 1 1 Q 1 0 0 1 1 0 0 1 1 0 0 Q 0 1 0 1 1 1 1 减计数 2、计数器的级联使用 一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。 同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。 图5-9-2是由CC40192利用进位输出CO 控制高一位的CP U 端构成的加数级联图。

FPGA 显示译码电路实验报告

上海电力学院 实验报告 实验课程名称: FPGA应用开发实验实验项目名称:显示译码电路 班级: 姓名:学号: 成绩:________________

一、实验目的 1.实现常见英语字母显示。 2.实现十六进制计数显示。 3.加深PLD设计的过程,并比较原理图输入和文本输入的优劣。 二、实验原理 (1)显示简单字符 七段数码管显示电路如下图所示: 参考原理图: 图中包含一个七段解码器模块,c2~c0是解码器的3个输入,当输入值不同时,输出不同的字符。如表中所示,当输入值为100~111时,输出空格,即数码管全暗。七段数码管的不同段位用数字0~6表示,注意七段数码管是共阳极的,即各管段输入低电平时,数码管亮;否则数码管暗。 (2)显示0~9数字 在完成简单字符显示电路之后,设计一个用于显示0~9数字的七段数码管电路。电路图如下图所示,c3~c0是七段数码器的输入,当输入0000~1001时,则输出0~9,如表中所示;当输入1010~1111时,输出空格。 参考原理图:

(3)循环显示4个字符 电路的工作原理是,输入端U、V、W和X的输入值分别是000、001、010和011,通过s1和s0选择四个输入端其中一个作为七段解码器的输入值,从而显示H、L、E和O任一字符。 参考原理图: 三、实验步骤 (1)显示简单字符 <1>VHDL硬件描述语言为:

<2>功能仿真: <3>时序仿真: <4>引脚分配: <5>程序下载:

之后在DE2上验证,拨动开关,能显示对应的字母。(2)显示0~9数字 <1>VHDL硬件描述语言为: <2>功能仿真: <3>时序仿真:

计数译码显示电路实验

实验五计数、译码、显示电路 一、实验目的 掌握中规模集成计数器74LS161及七段译码器CD4511的逻辑功能,掌握共阴极七段显示器的使用方法,熟悉用示波器测试计数器输出波形的方法。 二、实验原理 计数、译码、显示电路就是由计数器、译码器与显示器三部分电路组成的逻辑电路。下面分别加以介绍。 1.计数器:计数器就是一种中规模集成电路,其种类有很多。如果按照触发器翻转的次序分类,可分为同步计数器与异步计数器两种;如果按照计数数字的增减可分为加法计数器、减法计数器与可逆计数器三种;如果按照计数器进位规律又可分为二进制计数器、十进制计数器、可编程N进制计数器等多种。 常用计数器均有典型产品,不须自 己设计,只要合理选用即可。 本实验选用四位二进制同步计数 器74LS161做计数器,该计数器外加适 当的反馈电路可以构成十六进制以内 的任意进制计数器。图5-1就是它的逻 辑图。这个电路除了具有二进制加法计 数功能外,还具有预置数、清零、保持的 功能。图中LD就是预置数控制端,D、 R就是 C、B、A就是预置数据输入端, D 清零端,EP、ET就是计数器使能控制 端,RCO就是进位信号输出端,它的主要 功能有: ①异步清零功能

R=0(输出低电平),则输出QDQCQBQA=0000,除EP、ET信号外,与其它输入信号无若 D 关,也不需要CP脉冲的配合,所以称为“异步清零”。 ②同步并行置数功能 R=1,且LD=0的条件下,当CP上升沿到来后,触发器QDQCQBQA同时接收D、C、在 D B、A输入端的并行数据。由于数据进入计数器需要CP脉冲的作用,所以称为“同步置数”,由于4个触发器同时置入,又称为“并行”。 ③保持功能 R=1,LD=1的条件下,EP、ET两个使能端只要有一个低电平,计数器将处于数据保在 D 持状态,与CP及D、C、B、A输入无关。 ④计数功能 R=1、LD=1、EP=1、ET=1的条件下,计数器对CP端输入脉冲进行计数,计数方式在 D 为二进制加法,状态变化在QDQCQBQA=0000~1111间循环。74LS161的功能表详见表5-l 所示。 表5-1 74LS161的功能表 本实验所需计数器就是十进制计数器,必须对74LS161外加适当的反馈电路构成十进制计数器,状态变化在QDQCQBQA=0000~1001间循环。 用反馈的方法构成十进制计数器一般有两种形式,即与反馈置数法。反馈置零法就是利用R构成,即:当Q D Q C Q B Q A=1010(十进制数10)时,通过反馈线强制计数器清零,如图 清除端 D 5-2(a)所示。由于该电路会出现瞬间1010状态,会引起译码电路的误动作,因此很少被采用。反

相关主题
文本预览
相关文档 最新文档