当前位置:文档之家› 高压直流输电换流阀水冷系统介绍及分析

高压直流输电换流阀水冷系统介绍及分析

高压直流输电换流阀水冷系统介绍及分析
高压直流输电换流阀水冷系统介绍及分析

高压直流输电换流阀水冷系统介绍及分析

【摘要】高压直流输电系统换流阀水冷系统是直流换流站特有的辅助系统,由于其机械回路和控制保护回路均比较复杂,极易因其故障危及高压直流输电系统的安全运行。本文通过对目前运用的两种换流阀水冷系统的分析比较,找出其回路和原理差异,提出预防手段及改进措施,可以提高运行维护手段,避免设备事故的发生,保障电网的安全可靠性。

【关键词】高压直流;水冷系统;分析

一、换流阀水冷系统组成

高压直流输电系统每极可控硅阀配置一套独立的水冷却系统。该系统由两个冷却循环系统组成:

一是内冷水循环系统,通过低含氧量的去离子水对阀进行冷却;

二是外冷水循环系统,通过冷却塔对内冷水进行冷却。

内冷水系统主要由主循环泵、补水泵、主通道过滤器、去离子交换器、脱氧罐、膨胀罐、补水箱、氮气罐、旁通阀等组成。

外冷水系统主要由喷淋泵、排水泵、外冷水循环过滤器、冷却塔及其风扇、化学药剂容器、平衡水池等组成。

二、换流阀水冷系统工作流程说明

1.主循环冷却回路

恒定压力和流速的冷却介质,经过主循环水泵的提升,源源不断地流经三通阀,经过室外换热设备(主要为空气冷却器和密闭式冷却塔),将被冷却器件发出的热量在室外与空气或水进行热交换,冷却后的介质再进入晶闸管阀散热器,带出热量,回流到住循环泵入口,形成密闭式循环冷却系统。

由外冷温控系统通过变频器控制冷却风扇的转速从而控制冷却风量等,实现精密控制冷却系统的循环冷却水温度的要求。在法冷却水系统内管路和室外管路之间设置电动三通阀,当室外环境温度较低和换流阀低负荷运行或零负荷时,由电动三通阀实现冷却水温的调节。阀冷却水系统设定的电加热器对冷却水温度进行强制补偿,防止进入换流阀的温度过低而导致的凝露现象。

2.水处理回路中

为适应大功率电力电子设备在高电压提条件下的使用要求,防止在高电压环

高压直流输电换流阀冷却系统运行维护规范

第一章总则 为规范可控硅换流阀冷却系统的运行维护管理,充分运用表单和预案管理工具提高运行维护管理水平,保证设备安全、可靠运行,特制定本规范。 本规范适用于广州站、肇庆站、宝安站和穗东站等的可控硅换流阀冷却系统运行维护管理工作。包括可控硅换流阀冷却系统运行巡视、测温、操作,以及日常维护、年度检修、预防性试验和大型检修等内容。 一、规范性引用文件 Q/CSG20001-04 《变电运行管理标准》 GB 10069.3-2008IEC 60034-9:2007 《旋转电机噪声测定方法及限值第3部分:噪 声限值》 GB 14711-2006 《中小型旋转电机安全要求》 GB 1971-2006/IEC 60034-8:2002 《旋转电机:线端标志与旋转方向》 GB 50170-2006 《电气装置安装工程:旋转电机施工及验收规范》 GB 755-2008/IEC 60034-1:2004 《旋转电机:定额和性能》 GB 10890-1989 《泵的噪声测量与评价方法》 GB7021-86 《离心泵名词术语》 GB 50217-2007 《电力工程电缆设计规范》 GB/T 1032-2005 《三相异步电动机试验方法》 GB/T 2900.25-2008/IEC 60050-411:1996 《电工术语:旋转电机》 GB/T 3214-1991 《水泵流量的测定方法》 GB/T 5656-2008 《离心泵技术条件(Ⅱ类)》 GB/T 3797-2005 《电气控制设备》 GB/T 14285-2006 《继电保护和安全自动装置技术规程》 SHS 03060-2004 《磁力泵维护检修规程》 DL/T 1010.5-2006 《高压静止无功补偿装置第5部分:密闭式水冷却装置》 DL/T 1072-2007 《核电厂水泵定期试验规范》 DL/T 1132-2009 《电站炉水循环泵电机检修导则》 DL/T 5161.7-2002 《电气装置安装工程质量检验及评定规程第7部分:旋转电机施工

特高压直流输电中换流阀施工技术研究 李昊

特高压直流输电中换流阀施工技术研究李昊 发表时间:2019-11-21T11:17:19.017Z 来源:《电力设备》2019年第14期作者:李昊1 樊功帅2 李为成3 [导读] 摘要:特高压直流输电技能是指利用直流电压进行输电的技能。 (许继集团许继柔性输电分公司河南省许昌市 461000) 摘要:特高压直流输电技能是指利用直流电压进行输电的技能。直流输电作为特高压输电的一种方法,是处理高压、大容量、远距离输电和网络互联等问题的重要手段。遵循需求扩张电力系统和电力电子技能的开展,特高压直流输电技能越来越成熟,变频器站作为特高压直流输电的龙头,特别是高可靠性要求,特别是在阀中心元素,不能算人民币部分组装,复杂的结构和装置难度高。 关键词:特高压直流输电;换流阀;施工技术;研究 1特高压直流输电 1.1特高压直流输电性能特点 特高压直流输电原理如下:发电体系宣布通讯电力后,提高了电压后,在发送端矫正通讯电力转换器为高压直流电,然后将高压直流发送到接纳端经过直流输电线路,然后接纳端回转直流到交流电力转换器,最后发送的权利在发送端电网。与通讯传输比较,直流传输技术具有线路成本低、传输容量大、传输距离长、控制灵敏、节省传输走廊占地面积等特色。因此,特高压直流输电技术是我国电力长距离大规模输电的必然选择。 1.2主接线方式 中国±800kV特高压直流输电变流阀采用双12脉冲阀串联结构,如图1所示。其电压组合包括±400kV+±400kV、±500kV+±300kV、 +600kV+±200kV3三种方式。一般选用±400kV+±400kV组合(如上海庙至山东临沂换流站)。双12脉冲阀的主接线应按操作要求配置旁路开关,根据操作条件切换操作方式。双12脉冲阀可在全电压、单极全电压、单极半电压运行。 图1 双12脉冲阀组串联结构 2换流阀施工技术研究 2.1换流阀的工作原理 换流阀是特高压直流输电中完成整流和逆变功用的重要设备。它是特高压直流输电体系的要害部件。它的运转与整个特高压直流体系的平稳运转密切相关。换流阀安装在室内,具有空气绝缘和水冷却功用。阀门类型包括水银阀、晶闸管阀和IGBT阀。为了满意电力运送的需求,变电站多采用可控硅阀。换向器阀由可控硅、可控硅操控单元、阻尼电容、饱和电抗器、阻尼电阻、电压均衡电容、电压均衡电阻等部件组成。晶闸管是换流阀的核心元件,换流阀的流量取决于晶闸管的质量。经过串联多个晶闸管元件,可以获得所需的体系电压。有单阀、双阀、四阀,两个单阀可构成一个双阀,两个双阀可构成一个四阀。单桥整流是换向阀的核心原理,换向效果是经过晶闸管、电抗器、阻尼电阻等元件的组合来完成的。原理如图2所示。 换流阀单导通时,传导有两种情况,一种是正向电压,一种是触发电流。换向阀封闭要求电流降为零,即便电压降为零,只要电流,

直流输电技术课程报告

Harbin Institute of Technology 直流输电技术课程报告题目柔性直流输电在城市配电网中的应用 课程名称:直流输电技术 院系:电气工程系 姓名: 学号: 哈尔滨工业大学 2015年4 月17日

柔性直流输电在城市配电网中的应用 摘要:柔性直流输电技术的出现为城市高压电网的构建及微电网接入大电网提拱了新的技术手段和解决方案, 因此研究柔性直流输电技术在城市电网中的应用具有重要意义。本文简述了柔性直流输电技术的基本原理、应用领域、相比于传统输电技术的优势以及在城市电网应用的可行性条件分析,并给出了家庭和办公直流输电的两种方案。 关键词:柔性直流输电,城市电网,应用领域,运行条件,方案 1.引言 随着社会的不断发展和科学技术的不断进步,电力传输系统经过直流、交流和交直流混合输电三个阶段。由于直流电不能直接升压,这使得直流输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。19 世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展, 逐渐形成现代交流电网的雏形。大功率换流器的研究成功,为高压直流输电突破了技术上的障碍[1]。 直流输电相比交流输电在某些方面具有一定的优势。自从1954年第一个商业化高压直流输电(HVDC)工程投入运行以来,HVDC在远距离大功率输电、海底电缆送电、不同额定频率或相同额定频率交流系统之间的非同步联接等场合得到了广泛应用。常规HVDC采用相控换流器技术,存在一些固有的缺陷。例如需要安装大量的无功补偿以及滤波设备,不能向无源网络供电以及只有应用于远距离、大容量输电才能发挥其经济上的优势等。 1990年MeGill大学的BoonTeCk001提出用PWM控制的电压源型换流器进行直流输电。由于采用了IGBT、GTO等全控型器件,基于电压源换流器的直流输电(VSC-HVDC)系统具有可独立调节有功和无功功率的优点,可以向无源网络送电,克服了常规HVDC的本质缺陷,把HVDC的优势扩展到配电网,拓宽了HVDC的应用范围,具有广阔的应用前景。1997年3月世界上第一个采用IGBT 构成电压源换流器的直流输电工业性试验工程---赫尔斯杨工程在瑞典中部投入运行,输送功率3MW,直流电压10kV,输送距离10km。从运行情况来看,不论是暂态还是稳态,该工程电力输送稳定,换流器能够满足噪声水平、谐波畸变、电话干扰和电磁场等方面的技术要求。由于这种换流器的功能强,体积小,可以减少换流器的滤波装置,省去换流变压器,简化换流器结构,ABB公司将其称之为轻型直流输电(HVDCLight),Siemens则将基于VSC换流器的直流输电称为HVDCplus,“plus”表示电力连接系统(PowerLink universalsystem),并分别注册表明其专利权,siemens没有实际的VSC型直流输电工程。截至目前世界上已有10座基于VSC的HVDC工程,输电容量己达350Mw。ABB公司HVDCLight 输电工程输送容量电缆可达久1200MW,架空线可达2400MW,电压等级达320kV。我国国家电网公司和南方电网公司正在规划建设VSC-HVDC的工业示范工程。上海南汇风电场将成为我国首个基于VSC-HVDC的风电接入工程[2]。 2.柔性直流输电概述 传统直流输电采用自然换相技术的电流源型换流器,与之相比,VSC-HVDC 是一种以电压源换流器、可控关断器件和脉宽调制(PWM技术)为基础的新型直

特高压直流输电换流阀短路保护原理及特性研究

特高压直流输电换流阀短路保护原理及特性研究 摘要:随着特高压直流输电(UHVDC)技术的发展,直流输电已经成为了远距离大 容量输电的主要模式,直流输电已得到了越来越广泛的应用。在大电网时代,直 流输电不仅成为交流输电的一种有力补充,而且成为了电力系统中最具有重要经 济和技术意义的环节之一,成为了国内电力科研工作者研究的重要方向。换流器 是高压直流输电系统中最为关键、复杂且昂贵的元件,其故障形式和机理、保护 配置和原理与交流系统有着很大的不同。 关键词:特高压;直流输电;换流阀;短路保护;原理;分析 1导言 特高压直流输电系统以其更远的输送距离,更大的输送功率,更大区域的非 同步互联,更低的功率损耗,灵活的功率调节,更低的线路造价等优势而被越来 越多的应用在电力传输领域。特高压直流输电换流阀的本体,作为关键设备,其 运行稳定性、安全性、可靠性是通过设计、制造、安装、调试的全过程质量控制 才能得以实现的。特高压直流输电换流阀的安装过程,是换流阀从图纸和零部件 完成到实体阀的最后关键阶段,需要对整个安装过程中影响特高压换流阀性能的 关键节点进行合理控制,才能彻底保证特高压换流阀的优良品质,实现更好的长 期稳定运行。 2阀短路保护(VSCP)检测原理 为了保护换流阀免受由于换流变压器压器直流侧短路造成的过应力破坏,特 高压直流输电系统中均设置了阀短路保护;该保护主要通过测量换流变压器压器阀侧电流(IVY,IVD)和直流极母线电流(IDC1/2P)和中性线电流(IDC1/2N),并计算出最大的换流变压器压器电流和最大的直流电流,正常运行时这2个值是平衡的。当 换流变压器压器阀侧电流幅值高于直流电流则可作为阀短路或其他相间短路的判据,在交流侧电流过大时,换流器被立即跳闸。 3特高压直流输电换流阀 特高压直流输电工程通常采用双极十二脉动换流器单元系统,电压等级在 ±800kV及以上,电流可以从4000A到最高6250A。该特高压双极直流输电系统包括2个完整的可独立输电的单极直流系统,即极1直流系统和极2直流系统。每 个完整的单极系统包含2个单极换流器单元,分别安装在整流换流站和逆变换流站。每个换流站内的单极换流器单元由2个12脉动阀组串联组成。一个阀厅仅 包含一个12脉动阀组。因此每个换流站共分四个独立阀厅,即极1高压阀厅、 极1低压阀厅、极2高压阀厅、极2低压阀厅。锡盟站换流阀设备由西安西电电 力系统有限公司自主制造,换流阀采用空气绝缘、水冷却的户内悬吊式双重阀结构。每个阀厅换流阀阀组由6个双重阀阀塔组成。根据电流流向不同,双重阀阀 塔分为2种结构,即电流上结构和电流下结构。阀侧星形接法的3相双重阀阀塔 是其中一种结构,阀侧三角形接法的3相双重阀阀塔是另一种结构。每个阀厅换 流阀阀组通过冷却水管、管母金具、光纤分别与换流阀冷却系统、换流变压器、 换流阀控制单元对应连接。在换流阀整体设计中,综合考虑了各种相关的复杂因素,如过电压与绝缘配合、阀电子电路单元抗电磁干扰、主回路电气件合理布局 和散热、换流阀的防火和抗震等要求、机械性能和电气性能要求、安装维护便捷 要求等,按特定装配工艺,将换流阀的各个组成部件通过标准化作业组装在一起,具有安装快捷,维护方便的特点,有效保证了换流阀和整个直流输电系统的稳定性、可靠性及安全性。

高压直流输电换流阀性能分析研究

±800kV/5000A自主化换流阀性能分析 马元社,李侠,刘宁,娄彦涛,张雷 (西安西电电力系统有限公司,陕西省西安市 710075) 摘要:文中介绍了西电电力系统公司(XDPS)自主研制的±800kV/5000A换流阀主要参数。从换流阀的电压耐受能力、电流耐受能力和大角度运行能力详细分析了自主设计换流阀的主要性能。在国家高压电器检测检验中心通过的型式试验验证了所设计换流阀性能可靠,满足实际工程应用。 关键词:特高压直流;换流阀;电压应力;电流应力 1引言 特高压直流输电具有输送距离远、输送容量大、损耗低的优势,是实现我国能源资源优化配置的重要途径之一[1]。目前我国已经建成的特高压±800kV直流工程有云南-广东和向家坝-上海直流工程,在建的有锦屏-苏南直流工程,已经开始招标的有哈密-郑州直流工程,十二五期间我国还将有数条特高压直流工程开始建设,其社会经济效益显著。随着我国特高压直流工程技术的不断发展以及我国社会经济发展的需要,自主研制±800kV特高压直流输电工程换流阀对于我国打破国外技术垄断,提升我国特高压直流工程国产化水平具有重要意义。 2011年11月西安西电电力系统有限公司设计具有自主知识产权的特高压±800kV/5000A换流阀研制成功,在国家高压电器检测检验中心通过了全部型式试验,并于2012年1月通过了国家能源局组织的国家级鉴定,技术指标达到国际先进水平。文中对西安西电电力系统有限公司研制的±800kV/5000A换流阀进行了介绍,重点对换流阀的性能进行了分析。 2±800kV/5000A换流阀设计参数 (1)环境条件 表1 阀厅内使用条件 名称参数 全封闭户内,微正压,带通风和空调 长期运行温度范围+10~+50℃ 最高温度+60 ℃ 最低温度+5 ℃ 长期运行湿度50%RH 最大湿度60%RH 地面水平加速度0.2 g 海拔高度不超过1000m (2)电气参数 为了满足不同工程的不同技术要求,换流阀采用标准化设计,模块化设计是实现标准化的最好途径。工程运行表明,模块化设计具有良好的可用率、高的可靠性及最经济的工程造价[2]。自主设计±800kV/5000A换流阀采用模块化设计,模块示意图见图1。

GF管路系统在高压直流输电换流阀纯水冷却系统中的应用

GF管路系统在高压直流输电换流阀用纯水冷却系统中的应用 一、高压直流输电发展概述 高压直流输电是将三相交流电通过换流站转换为直流电,然后通过高压直流输电线路送往另一个换流站,重新还原为三相交流电的输电方式,是目前最先进的高效、经济、环保的大容量、长距离、低损耗输电技术。作为远距离电力传输的理想技术,高压直流输电技术可以将偏远地区的电能顺利输送到用电负荷的中心区域,目前在国内得到了广泛应用,主要用于远距离大功率输电、海底电缆送电及不同或相同额定频率交流系统之间的非同步联络等方面。 换流站是高压直流输电系统中实现交直流电力变换的电力工程主要设施之一,换流站的设备需求投资占据整个直流输电工程投资规模的半数以上,而换流阀作为换流站的核心设备,其投资需求占据总投资的10%左右,可见,换流阀在直流输电工程中具有极其重要的作用。基于换流阀内可控硅元件及其辅助设备的特性,其对冷却系统的要求十分苛刻,冷却效果的好坏将直接影响其换流性能的发挥,从而进一步影响到整个直流工程运行的经济性和可靠性。从比热容的角度看,水的比热容是常见物质中最高的,为4.2 KJ/(Kg.℃),是煤油(2.1 KJ/(Kg.℃))的两倍,它的换热系数是空气自然对流冷却的150-300倍,可大大提高被冷却器件的通流容量,相比油冷却方式,水的比热较油几乎大一倍,无论是从冷却效果和环境影响方面看,水冷却都具有明显的优势,散热效率最高。同时,水作为热转移媒质还有无污染、可循环利用和能耗低的优点,特别是密闭式循环冷却设备还可以通过“水-风”或“水-水”换能的方式将热量高效地与外界交换,而不需借助在室内安装大功率空调来吸收热量,所以水冷也是最节能的冷却方式。然而,水中的杂质离子会在高压下产生电腐蚀和漏电,所以对冷却水的要求很高,比如水的杂质含量、氧气含量、电导率(<0.5μs/cm)、水温、水压和流速等都要严格控制,以保证冷却水的纯度,同时还可以在循环系统中加装离子交换树脂,对冷却水进行进一步的纯化处理。 目前,在IEC(国际电工委员会)和IEEE(美国电气和电子工程师协会)的一系列关于换流阀体的性能和试验方法的标准中均将密闭式循环纯水冷却设备作为首选的冷却方法,而在高压直流输电( HVDC)和可控串补( TCSC)中更将其列为唯一可行的冷却方式。因此,配备安全可靠的密闭式循环纯水冷却系统,对冷却水温度、流量、水质等指标精确调控,实现系统的控制与保护及通讯功能,使高压直流输电系统中的核心部件—换流阀正常工作,是高压直流输电回路稳定运行的基础。 二、高压直流输电设备的国产化发展趋势 根据智能电网发展建设规划,在“十二五”期间,我国的智能电网将全面进入建设高峰期。国内电网建设的持续快速发展推动了高压直流输电工程建设步伐的加快,为高压直流输电技术的快速发展和建设规模的稳步推进提供了动力源泉,而纯水冷却设备作为直流输电工程中换流阀的关键冷却设备也将迎来极大的发展机遇。 近年来,经过多年的超常规、跨越式发展,国内直流输电工程成套设备设计制造技术实现了由技术引进向自主创新的战略转型发展。 通过国外先进直流技术的引进、消化、吸收和再创新过程,国内直流输电工程设备的国产化率已经提高到70%以上了,主要设备基本都是国内厂商供货,换流阀纯水冷却设备也逐步

直流输电换流阀组分析

云广±800 kV直流输电系统串联双阀组换流 变分接开关125℃闭锁调整分析及处理 陈灿旭 (中国南方电网超高压输电公司广州局,广东广州 510663) 摘要:总结分析了云广±800 kV直流输电工程中换流变分接开关125℃闭锁调整的原因,对其存在的风险进行深入剖析,最后提出有效的处理措施,降低云广特高压直流输电系统闭锁的风险。 关键词:特高压直流工程;换流变分接开关;闭锁调整; 1引言 云广特高压直流系统是世界范围内第一个±800kV特高压直流输电系统,每极采用双12脉动阀组串联运行的结构形式[1][2],每个阀组都由阀组控制系统独立控制,双阀组由极控系统协调控制,当双阀组均处于解锁状态时,双阀组的运行工况基本相同,阀组两端的直流电压也基本相同。但当其中一个阀组的换流变分接开关控制故障时,原有的平衡运行工况就会被打破,若故障一直持续,就会加剧双阀组间的不平衡,严重时引起阀组跳闸。自2009年底投运以来,多次出现分接开关异常情况,较常见且风险较大的是分接开关125℃闭锁调整,本文首先介绍云广特高压直流输电系统换流变分接开关的工作过程,接着对换流变分接开关125℃闭锁调整功能回路进行详细分析,然后对其存在的风险进行深入剖析,最后提出有效处理措施,以降低云广特高压直流输电系统闭锁风险。 2真空分接开关结构及工作过程 云广直流输电系统换流变电气上均为单相双绕组换流变,而高端HY换流变为三主柱两旁轭的铁芯绕组结构,其网侧有三个并联的分绕组,而其他换流变是两柱两旁轭的铁芯绕组结构,相应网侧有两个并联分绕组。相应的,穗东站使用MR公司两种参数相似的真空分接开关,其包含若干熄弧用的主触头真空泡,相比依靠油来灭弧的油浸式分接开关,真空分接开关的维护量更少,灭弧性能更优,而且不会引起油的碳化。 真空分接开关结构主要包括电动机构、分接选择器和切换开关三部分。电动机构主要是由传动机构、控制结构和电气控制设备、箱体等组成。分接选择器是能承载电流,但不接通和开断电流的装置,它由级进选择器、触头系统和转换选择器组成。真空分接开关与油浸式分接开关最大的不同就在切换开关的结构上,图1为从HY高端换流变分接开关油室内部取出来的切换开关实物图。

高压直流输电换流阀水冷系统介绍及分析

高压直流输电换流阀水冷系统介绍及分析 【摘要】高压直流输电系统换流阀水冷系统是直流换流站特有的辅助系统,由于其机械回路和控制保护回路均比较复杂,极易因其故障危及高压直流输电系统的安全运行。本文通过对目前运用的两种换流阀水冷系统的分析比较,找出其回路和原理差异,提出预防手段及改进措施,可以提高运行维护手段,避免设备事故的发生,保障电网的安全可靠性。 【关键词】高压直流;水冷系统;分析 一、换流阀水冷系统组成 高压直流输电系统每极可控硅阀配置一套独立的水冷却系统。该系统由两个冷却循环系统组成: 一是内冷水循环系统,通过低含氧量的去离子水对阀进行冷却; 二是外冷水循环系统,通过冷却塔对内冷水进行冷却。 内冷水系统主要由主循环泵、补水泵、主通道过滤器、去离子交换器、脱氧罐、膨胀罐、补水箱、氮气罐、旁通阀等组成。 外冷水系统主要由喷淋泵、排水泵、外冷水循环过滤器、冷却塔及其风扇、化学药剂容器、平衡水池等组成。 二、换流阀水冷系统工作流程说明 1.主循环冷却回路 恒定压力和流速的冷却介质,经过主循环水泵的提升,源源不断地流经三通阀,经过室外换热设备(主要为空气冷却器和密闭式冷却塔),将被冷却器件发出的热量在室外与空气或水进行热交换,冷却后的介质再进入晶闸管阀散热器,带出热量,回流到住循环泵入口,形成密闭式循环冷却系统。 由外冷温控系统通过变频器控制冷却风扇的转速从而控制冷却风量等,实现精密控制冷却系统的循环冷却水温度的要求。在法冷却水系统内管路和室外管路之间设置电动三通阀,当室外环境温度较低和换流阀低负荷运行或零负荷时,由电动三通阀实现冷却水温的调节。阀冷却水系统设定的电加热器对冷却水温度进行强制补偿,防止进入换流阀的温度过低而导致的凝露现象。 2.水处理回路中 为适应大功率电力电子设备在高电压提条件下的使用要求,防止在高电压环

冗余PLC系统在高压换流阀水冷控制系统中应用

冗余PLC系统在高压换流阀水冷控制系统中的应用 摘要:作为直流输电工程的核心设备,高压换流阀的可靠运行至关重要。因此换流阀水冷系统对可靠性的要求也极高。本文从换流阀水冷系统电气控制方面入手,介绍冗余plc控制系统。从控制系统的整体配置到局部安排,从硬件连接方式到软件处理方法,对冗余plc系统进行了说明,阐述了系统的容错能力的提高,从而更高程度上保证了水冷系统的可靠性。 关键词:换流阀水冷系统;冗余;plc;容错 abstract:as the core ofhvdc transmission system,it is essentially important to ensure safe and reliable operation of hvdc converter. the article describes a redundant plc system applied in valve-cooling equipment, based on the automatic control’s point of view. it is explained how to improve the fault-tolerant capability by the introduction of not only the whole and local layout but also the solution of hardware and software. thereby the reliability of the whole valve-cooling equipment is strengthened on a higher platform. keyword:hv valve water-cooling system,redundant,plc,fault-tolerant 中图分类号:k826.16 文献标识码:a 文章编号: 引言 换流阀通过依次将三相交流电压连接到直流端得到期望的直流

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

高压直流输电

高压直流输电 一、高压直流输电系统(HVDC)概述 众所周知,电的发展首先是从直流开始的,但很快就被交流电所取代,并且在相当长的一段时间内,在发电、输电和用电各个领域,都是交流电一统天下的格局。 HVDC技术是从20世纪50年代开始得到应用的。经过半个世纪的发展,HVDC技术的应用取得了长足的进步。据不完全统计,目前包括在建工程在内,世界上己有近百个HVDC 工程,遍布5大洲20多个国家。其中,瑞典在1954年建成投运的哥特兰(Gotland)岛HVDC 工程(20MW,100kV,90km海底电缆)是世界上第一个商业化的HVDC工程,由阿西亚公司(ASEA,今ABB集团)完成;拥有最高电压(±600kV)和最大输送容量(2 x 3150MW)的HVDC工程为巴西伊泰普(Itaipu)工程;输送距离最长(1700km)的HVDC 工程为南非英加——沙巴(1nga2Shaba)工程;电流最大的HVDC工程在我国:如三常、三广和贵广HVDC工程,额定直流电流均为3000A。HVDC的发达地区在欧洲和北美,ABB和西门子等公司拥有最先进的HVDC技术,美国是HVDC工程最多的国家。 HVDC在我国是从20世纪80年代末开始应用的,起步虽然较晚,但发展很快。目前包括在建工程在内,总输送容量已达18000MW以上,总输送距离超过7000km,该两项指标均已成为世界第一。我国第一个HVDC工程是浙江舟山HVDC工程(为工业试验性工程),葛沪HVDC工程是我国第一个远距离大容量HVDC工程,三常HVDC工程是我国第一个输送容量最大(3000MW)的HVDC工程,灵宝(河南省灵宝县)背靠背HVDC工程是我国第一个背靠背HVDC工程。我国已投运的HVDC工程见表1。 表1我国已投运的HVDC工程 另外,2010年前后建成投运的HVDC工程有四川德阳——陕西宝鸡(1800 MW、±500 kV,550km)、宁夏银南——天津东(3000MW、±500kV,1200km)等;至2020年前后,还计划建设云南昆明——广东增城、金沙江水电基地一华中和华东HVDC工程以及东北——华北、华北——华中、华中——南方背靠背HVDC工程等十几个HVDC工程。 我国关于直流输电技术的研究工作,50年代就开始起步。目前,我国己经有多条直流线路投入运行,这些直流输电工程的投运标志着我国的直流输电技术有了显著的提高和发展。随着三峡工程的兴建和贯彻中央“西电东送”的发展战我国将陆续兴建一批超高压、大容量、远距离直流输电工程和交直流并联输电工程。此外,在这些新建工程中还将采用直流输电的新技术。随着我国直流输电技术的日益完善,输电设备价格的下降和可靠性的提高,以及运行管理经验的不断积累,直流输电必将得到更快的发展和大量的应用标志着我国的直

厦门柔性直流换流阀子模块结构及功能简介

厦门柔性直流换流阀子模块结构及功能简介 发表时间:2018-10-17T10:32:57.787Z 来源:《电力设备》2018年第19期作者:卓智伟 [导读] 摘要:柔性直流输电在国家能源结构调整、区域能源互联发展中具有重要的作用,是一种具有广泛应用前景的先进输电技术。(福建省电力有限公司检修分公司福建厦门 361000) 摘要:柔性直流输电在国家能源结构调整、区域能源互联发展中具有重要的作用,是一种具有广泛应用前景的先进输电技术。换流阀是柔性直流换流站中的核心设备。目前常用的拓扑结构为模块化多电平换流器(MMC)的拓扑构造。其中构成换流阀的基本原件即子模块。本文针对厦门柔性直流换流阀子模块结构及功能做一个简要介绍。 引言 厦门柔直是世界首个采用对称双极接线方案的柔性直流工程,电压等级为±320kV,直流电流1600A,输送容量达1000MW。换流阀是其核心设备,常用的电压源换流器主要有两电平、三电平和模块化多电平三种。厦门柔直采用的是模块化多电平换流器,其制造难度和损耗较低,波形质量高。什么是模块化多电平换流器呢?就是将IGBT换流阀子模块一个一个串联起来,每一个子模块可以等效为一个电容,其额定运行电压为1.6kV,厦门柔直每个桥臂有200个子模块处于工作状态,通过控制投入和退出子模块的数量来实现阶梯正弦波。下面简单介绍构成厦门柔直工程换流阀的基本元件子模块的结构。 1、换流阀 换流阀是柔性直流输电工程中的核心设备,输电过程中的整流和逆变过程均通过换流阀完成。厦门工程换流阀采用模块化、积木式设计。每极换流阀A、B、C三相分上下桥臂共6桥臂18个阀塔构成,每个阀塔由12个阀模块构成,每个阀模块包含6个子模块。 2、子模块组成及结构 IGBT子模块是换流阀的最小电气单元,采用半桥结构,见下图2-1。由以下8个部分组成:旁路开关K、晶闸管T、直流电容器C、均压电阻R、直流取能电源、子模块控制器(CLC+GDU)、散热器和IGBT模块(IGBT-二极管反并联对:S1、S2)。 图2-1子模块电器结构示意图 3、旁路开关 3.1旁路开关结构:旁路开关主要由本体、操动机构、控制板三个部分组成。 3.2主要作用:由图2-1可以看到旁路开关与下管IGBT(S2)并联运行,其主要作用为隔离故障子模块,使其从主电路中完全隔离出来,而使故障子模块不影响整个系统的正常运行。 3.3技术参数:旁路开关额定电压设计为3.6kV,额定电流为1250A,合闸时间为≤3ms;顶部绝缘件为环氧树脂材料,其阻燃性为UL94-V0(UL94标准V-0:对样品进行两次10秒的燃烧测试后,火焰在30秒内熄灭,不能有燃烧物掉下)。 4、晶闸管 4.1晶闸管安装位置:由图2-1可以看到晶闸管T与旁路开关及下管IGBT(S2)并联安装。具 4.2主要作用:直流系统短路故障时,分流通过续流二极管的短路电流,有效避免续流二极管的热击穿。 4.3技术参数:全压接型普通晶闸管,断态重复峰值电压为3400V,通态平均电流为3200A;短路故障时晶闸管最大分流比达到91.5%,保证IGBT换流阀可耐受峰值不小于35kA。 4.4晶闸管功能测试:a、通态压降:25℃,通态压降≤1.8V。b、耐压:DC2.1kV外观:无变形。 5、直流电容器: 5.1直流电容器安装位置:由图2-1可以看到直流电容器并联在上下管IGBT两侧安装。 5.2主要作用:(1)与IGBT器件共同控制换流器交流侧和直流侧交换的功率;(2)抑制功率传输在换流器内部引起的电压波动。 5.3技术参数:无油干式电容器(阻燃、防爆),额定直流电压为2100V,设计电容值为10000uF。 6、直流均压电阻(直流放电电阻): 6.1直流电阻安装位置:由图2-1可以看到直流电阻并联在直流电容器两侧安装。 6.2主要作用:(1)在IGBT换流阀闭锁时,实现各子模块的静态均压;(2)在IGBT换流阀停运时,对各子模块直流电容器进行放电 6.3技术参数:电阻值为25kΩ,额定电压为3500V,额定功耗600W,换流阀闭锁后的自然放电时间常数为250s。 7、直流取能电源: 7.1直流取能电源安装位置及外形:直流取能电源安装在子模块正面底部,其后端通过探针从直流电容处取得工作电压。 7.2主要作用:(1)为子模块的中控板(CLC)和IGBT驱动板(GDU)提供15Vdc电源;(2)为旁路开关的储能电容提供400Vdc的电源 7.3技术参数: (1)输入电压由0上升至400Vdc时,取能电源板导通输出,在此之前闭锁输出 (2)取能电源板导通之后,在输入电压350Vdc~3000Vdc之间均能正常工作,否则闭锁输出(过压恢复电压2700Vdc) 7.4故障信号 取能电源故障类型主要有以下几种:1)输入过压、欠压保护;2)15Vdc输出过压、欠压保护;3)400Vdc输出过压、欠压保护;4)

高压直流输电换流阀水冷系统介绍及分析 范鑫

高压直流输电换流阀水冷系统介绍及分析范鑫 发表时间:2018-04-16T11:18:51.543Z 来源:《电力设备》2017年第31期作者:范鑫[导读] 摘要:目前阀冷系统技术发展已比较成熟,运维经验也愈为丰富,因此对各类缺陷的发生应以预防为主,尤其是注重按照反事故措施的要求开展阀冷系统的隐患排查工作,提前根据系统特点制定相应的事故防范措施,确保直流输电系统安全稳定运行。 (许昌许继晶锐科技有限公司河南许昌 461000)摘要:目前阀冷系统技术发展已比较成熟,运维经验也愈为丰富,因此对各类缺陷的发生应以预防为主,尤其是注重按照反事故措施的要求开展阀冷系统的隐患排查工作,提前根据系统特点制定相应的事故防范措施,确保直流输电系统安全稳定运行。 关键词:高压直流;输电换流阀水冷;系统介绍 1引言 国内部分直流输电工程的运行经验证明,阀水冷系统故障已成为影响换流站运行安全的重要因素之一,当水冷系统发生故障时,轻者引起输电功率的降低,重者引起直流闭锁停运甚至阀片受热损坏。为此,开展阀水冷系统常见故障类型的归纳分析,确定适宜的预防应对措施,对于保障换流阀的安全稳定运行尤为重要。 2.关于换流阀水冷系统工作流程的说明分析 2.1关于主循环冷却回路的分析 恒定压力以及流速的冷却介质在经过主循环泵的提升之后,源源不断的流经三通阀,经过室外换热设备从而将其冷却器件发出的热量在室外和空气或者水进行交换,冷却之后的介质再次进入到晶闸管阀散热器,从而将热量带出,回流到主循环泵的入口处,从而能够形成密闭式的循环冷却系统。 阀冷控制系统通过变频器控制室外换热设备冷却风扇的转速从而能够对冷却风量进行控制,更好的实现精密控制冷却系统的循环冷却水温度等方面的要求。在阀冷却水系统室内管路以及室外管路之间设置一个电动三通阀,在室外温度比较低以及换流阀低负荷或者零负荷运行的时候,通过电动三通阀实现冷却水温度的调节。阀冷却水系统设置电加热器对冷却水的温度进行强制补偿,从而能够更好的防止进入换流阀的循环水温度过低,导致换流阀出现凝露的现象。 2.2关于水处理的回路中 为了能够更好的适应大功率电力电子设备在高电压条件下的使用要求,防止在高电压的环境下出现漏电流,冷却介质必须要具有着较低的电导率,所以在主循环冷却的水路上设置去离子水处理回路,并和主循环回路冷却介质在高压循环泵之前进行合流。从而使一定流量的部分冷却介质流经离子交换器,不断的净化管路之中可能析出的离子,同时也能使与离子交换器连接的补液装置可以自动把原水补充到封闭式的系统当中,更好的去保持冷却介质能够充满。 2.3关于缓冲密封的回路分析 因为所使用的密封方式不同,可以采用膨胀罐加氮气恒压系统去保持系统管路之中的冷却介质充满以及隔绝空气,也可以采用高位膨胀水箱的缓冲密封系统从而保持管路之中的冷却介质可以充满。 2.4关于二次回路的分析 阀冷控制系统主要采用PLC作为控制器,PLC是阀冷系统控制以及保护的核心元件,主要选择西门子S7-400H系列的PLC。 阀冷控制系统CPU以及IO模块全部采用冗余配置。两个CPU通过同步光缆模块进行连接,从而更好的实现了CPU硬件冗余。S7-400H 采用热备用模式的主动冗余原理,没有故障的时候两个子单元都处于运行的状态下,在故障出现的时候,故障的CPU将无扰动的自动切换到无故障的CPU,正常工作的子单元可以独立的完成整个过程的控制。 冗余系统由A、B两个PLC控制系统组成。在开始的时候,A系统为主,B系统为备用,当主系统A当中的任何一个组件出现错误,那么控制任务将会自动的切换到备用系统B之中进行执行,此时B系统变为主,A系统则为备用,其切换的时间小于100ms,切换期间输出信号持续保持,因而并不会出现信息丢失或报警中断。 3.关于换流阀冷却系统的维护检修分析 3.1关于主循环泵的维护分析 第一是主循环泵检修以及维护可以在线进行,也可以在系统停机的时候进行。第二是主循环泵为卧式结构,电机额定转速为1450rpm。第三是每周检测电机电源的三相电流平衡,三相电流的相差应该要小于十度。第四是水泵正常的噪音需要低于八十五分贝,在噪音增加或者是异常的时候,需要立即手动切换到备用泵,同时也需要通知厂家到现场对故障进行排除。第五是电机主轴以及泵体主轴的同心度对于水泵的长期稳定运行有着较大的影响,所以建议更换电机等维护操作应由水泵厂家进行,同时在维护之后使用专业的测量工具(如:百分表等)对电机和泵的同轴度进行测量。第六是检测水泵轴承室润滑油的高度,油杯需要见到润滑油的高度,一般油位达到杯子容量的2/3即可。 3.2关于补水泵以及原水泵的维护分析 第一是补水泵以及原水泵允许在线进行检修。第二是补水泵以及原水泵主要是为立式水泵,机械密封的冷却完全依赖于泵体内的液体介质浸泡,但是机械密封处于泵体的最高位,所以在第一次运行后必须要松开泵体上部的排气阀对其进行排气。第三是补水泵和原水泵允许的噪音需要低于七十二分贝,在噪音增大的时候需要停止运行。第四是每二年需要清洗水泵的电机风叶一次。 3.3关于三通阀执行机构的维护分析 第一是每个月巡检的过程中需要对三通阀执行机构的连杆销轴进行检测,同时每三个月加注适当的润滑油。第二是每年停机检修的过程中,手动对三通阀执行机构进行开关的动作。 3.4关于电磁阀线圈的更换分析 第一是利用螺丝刀去拧开电磁阀线圈侧边的接头螺丝,从而对其电缆接头进行拆开。第二是利用扳手拧开电磁阀线圈顶端的螺母和垫片,从而拔出线圈露出底座阀杆。第三是把新的线圈安装到底座阀杆。第四是使用扳手进行拧紧。第五是使用螺丝刀进行拧紧。 4、某公司水冷系统与ABB水冷系统的分析比较 4.1主水过滤器

高压直流输电系统概述

高压直流输电系统概述 院系:电气工程学院 班级:1113班 学号:xxxxxxxxxxx 姓名:xxxxxxxxxx 专业:电工理论新技术

一、高压直流输电系统发展概况 高压直流输电作为一种新兴的输电方法,有很多优于交流输电地方,比如它可以实现不同额定频率或相同额定频率交流系统之间的非同期联络,特别适合高电压、远距离、大容量输电,尤其适合大区电网间的互联,线路功耗小、对环境的危害小,线路故障时的自防护能力强等等。 1954年,世界上第一个基于汞弧阀的高压直输电系统在瑞典投入商业运行.随着电力系统的需求和电力电子技术的发展,高压直流输电技术取得了快速发展. 1972年,基于可控硅阀的新一代高压直流输电系统在加拿大伊尔河流域的背靠背直流工程中使用; 1979年,第一个基于微处理器控制技术的高压直流输电系统投入运行; 1984年,巴西伊泰普水电站建造了电压等级最高(±600 kV)的高压直流输电工程. 我国高压直流输电起步相对较晚,但近年来发展很快. 1987年底我国投运了自行建成的舟山100 kV海底电缆直流输电工程,随后葛洲坝-上海500 kV、1 200MW的大功率直流输电投运,大大促进了我国高压直流输电水平的提高. 2000年以后,我国又相继建成了天生桥-广州、三峡-常州、三峡-广州、贵州-广州等500 kV容量达3 000MW的直流输电工程.此外,海南与台湾等海岛与大陆的联网、各大区电网的互联等等,都给我国直流输电的发展开辟了动人的前景. 近年来,直流输电技术又获得了一次历史性的突破,即基于电压源换流器(Voltage Source Converter,VSC)技术和全控型电力电子功率器件,门极可关断晶闸管(GTO)及绝缘栅双极型晶体管(IGBT)为基础的新一代高压直流输电技术已发展起来,也就是轻型直流输电(HVDC light)技术. 现有的直流输电主要是两端系统.随着直流断路器研制的进展和成功以及直流输电技术的进一步成熟完善,直流输电必将向着多端系统发展.同时许多其他科学技术领域的新成就将使输电技术的用途得到广泛的扩展.光纤与计算机技术的发展也使得直流输电系统的控制、调节与保护更趋完善,运行可靠性进一步提高;高温超导材料及其在强电方面的应用研究正方兴未艾,在直流下运行时,超导电缆无附加损耗,可节省制冷费用,因此在超导输电方面直流输电也很适宜. 一、高压直流输电系统构成 高压直流输电系统的结构按联络线大致可分为单极联络线、双极联络线、同极联络线三大类。 单极联络线的基本结构如图1所示,通常采用一根负极性的导线,由大地或海水提供回路,采用负极性的导线,是因为负极的电晕引起的无线电干扰和受雷击的几率比正极性导线小得多,但当功率反送时,导线的极性反转,则变为负极接地。由于它只需要一根联络线,故出于降低造价的目的,常采用这类系统,对电缆

高压直流输电技术

高压直流输电技术 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

摘要 本文综述了高压直流输电工程的应用领域及研究现状,并从稳态模型出发分析了其控制方式和运行原理,最后介绍了新型高压直流输电系统基本情况,达到了实际的研究意义。 关键词:高压直流输电;稳态模型;控制;新型

目录 摘要....................................................................................................................................II 1 高压直流输电发展概况 (1) 1.1 高压直流输电工程的应用现状 (1) 1.2 高压直流输电的发展趋势 (1) 1.3 高压直流输电的特点 (2) 2 高压直流输电系统控制与运行 (4) 2.1 概述 (4) 2.2 直流输电系统的控制特性 (5) 2.2.1 理想控制特性 (5) 2.2.2 实际控制特性 (6) 2.3 HVDC系统的基本控制 (7) 2.4 HVDC系统的附加控制 (10) 2.4.1 HVDC系统附加控制的原理 (10) 2.4.2 HVDC系统常见的附加控制 (10) 3 新型直流高压输电系统 (12) 3.1 概述 (12) 3.2 基本结构 (12) 参考文献 (13)

1 高压直流输电发展概况 1.1 高压直流输电工程的应用现状 直流输电起步于20世纪50年代,20世纪80年代随着晶闸管应用技术的成熟、可靠性的提高,直流输电得到大的发展。到目前为止,已建成高压直流输电项目60多项,其中以20世纪80年代为之最,占30项。表1.1列出世界上长距离高压直流输电项目,表1.2列出我国直流工程项目。 表2.1 世界上长距离高压直流输电项目 项目额定电压/kV 额定功率/万kW 输电距离/km 投运年份安装地点及供货商卡布拉-巴萨±533 192 1360 1978 莫桑比克2南非因加-沙巴±500 112 1700 1981 扎伊尔 纳尔逊河二期±500 200 940 1985 加拿大 I.P.P ±500 192 784 1986 美国 伊泰普一期±600 315 796 1986 巴西 伊泰普二期±600 315 796 1986 巴西 太平洋联络线±500 310 1361 1989 美国 魁北克多端±500 225 1500 1986/90/92 加拿大-美国 亨德-德里±500 150 814 1992 印度东南联接±500 200 1420 2002 印度 表2.2 我国已投运的高压直流工程项目 项目额定电压/kV 额定功率/万kW 输电距离/km 单极投运年份双极投运年份葛洲坝-上海±500 120 1052 1989 1990 天生桥-广州±500 180 960 2000 2001 三峡-常州±500 300 890 2003 2003 三峡-广州±500 300 956 2003 2004 贵州-广东1回±500 300 900 2004 2004 三峡右岸-上海±500 300 950 2007 2007 贵州-广东2回±500 300 900 2007 2007 1.2 高压直流输电的发展趋势 目前HVDC输电的换流阀仍然是由半控器件晶闸管组成,使用电网换相的相控换流(Phase Control Converter,PCC)技术,因此存在以下一些固有的缺陷:

相关主题
文本预览
相关文档 最新文档