当前位置:文档之家› 大学期末考试数学实验试题

大学期末考试数学实验试题

大学期末考试数学实验试题
大学期末考试数学实验试题

考试试题

课程名称:数学实验第一学期出题教师:数学组

适用专业:机械, 物流, 土木, 自动化

班级:学号:姓名:

选做题目序号:

1. 一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数.

分析:兔子在第一个月的对数是1,第二个月也是1,第三个月则是2对,第四月是3对,以此类推,则数列是1,1,2,3,5,8,13,……从第三个元开始,每个元素都是前两个元素之和,由此可用循环语句得出结果。

>> clear

>> x=zeros(1,24);%定义一个1行24列的零矩阵%

>> x(1)=1;%令x(1)=1%

>> x(2)=1;%令x(2)=2%

>> for i=3:24,%i从3开始循环,一直到24%

x(i)=x(i-1)+x(i-2);%每个元素等于前两个元素之和%

end

>> disp(x)%输出矩阵%

Columns 1 through 5

1 1

2

3 5

Columns 6 through 10

8 13 21 34 55

Columns 11 through 15

89 144 233 377 610 Columns 16 through 20

987 1597 2584 4181 6765 Columns 21 through 24

10946 17711 28657 46368

x(24)=46368即是本题所要求的数据。

2. 定积分的过程可以分为分割、求和、取极限三部分, 以1

x

e dx

?为例, 利用已学过的Matlab命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较.

分析:首先将1

x

e dx

?在x=(0,1)之间分割成20个子区间,选取每个子区间的端点,并计算端点处的函数值,取区间的左端点乘以区间长度,然后全部加起来。当分点逐渐增多的时候,等距的值越来越小,可以趋近无穷,然后求和。

%分割求和%

>> clear

>> x=linspace(0,1,21);%等距划分为20个子区间%

>> y=exp(x);%选取每个子区间的端点,并计算端点处的函数值%

>> y1=y(1:20);s1=sum(y1)/20%取区间的左端点乘以区间长度,然后全部加起来%

s1 =

6381/3808

%绘出图像%

>> clear

>> x=linspace(0,1,21);

>> y=exp(x);

>> plot(x,y,'r');hold on

>> for i=1:20

fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b')%绘出蓝色实心等间距的矩形条状图%

hold on

end

>> plot(x,y,'r')%将曲线绘出曲线为红色%

%取极限%

>> clear

>> syms k n

>> s=symsum(exp(k/n)/n,k,1,n);

>> limit(s,n,inf)

ans =

exp(1)-1

%用广义法求极限%

>>clear

>>syms x;

>>int(exp(x),0,1)

ans=

exp(1)-1

3. 现有一个木工、一个电工和一个油漆工, 三人相互同意彼此装修他们自己的房子. 在装修前, 他们达成了如下协议: 每人总共工作10 天(包括给自己家干活在内); 每人的日工资根据一般的市价, 在60~80元之间; 每人的日工资数应使得每人的总收入与总支出相等. 表1是他们协商后制定出的工资天数的分配

方案, 如何计算出他们每人应得的工资(工资数要求为正整数)?

分析:由题目中每人的日工资数应使每人的总收入与总支出相等,可得出方程组

8*x-y-6*z=0;4*x-5*y+z=0;4*x+4*y-7*z=0;解方程组即可。

%解方程组%

>> clear

>> a=[8,-1,-6;4,-5,1;4,4,-7];

>> rref(a)

ans =

1 0 -31/36

0 1 -8/9

0 0 0

得出x=-31/36*z y=-8/9*z

由于z为60~80之间的整数,则令z为一个矩阵,然后将每个元素带入关系式中,在得出的结果中寻找整数。

>> clear

>> z=60:80%定义z的范围%

z =

Columns 1 through 8

60 61 62 63 64 65 66 67

Columns 9 through 16

68 69 70 71 72 73 74 75

Columns 17 through 21

76 77 78 79 80

>> for i=1:21,

z(i)=31/36*z(i);%每个元素满足X与Z的关系式%

end

>> disp(z)

Columns 1 through 8

155/3 1891/36 961/18 217/4 496/9 2015/36 341/6 2077/36

Columns 9 through 16

527/9 713/12 1085/18 2201/36 62 2263/36 1147/18 775/12

Columns 17 through 21

589/9 2387/36 403/6 2449/36 620/9

>> clear

>> z=60:80;

>> for i=1:21,

z(i)=8/9*z(i);

end

>> disp(z)

Columns 1 through 8

53.3333 54.2222 55.1111 56.0000 56.8889 57.7778 58.6667 59.5556

Columns 9 through 16

60.4444 61.3333 62.2222 63.1111 64.0000 64.8889 65.7778 66.6667

Columns 17 through 21

67.5556 68.4444 69.3333 70.2222 71.1111

由此可以找出当z=72时x=62,y=64,得出结果。

4. 电影院的监测系统显示,当一场电影刚散场时,剧场内的二氧化碳的含量是4%. 排风扇每分钟换入3

1000m的新鲜空气,其中二氧化碳的含量是0.02%. 电影院的容积是3

10000m. 假设在整个换气过程中空气的变化时均匀的. 问,经过多长时间后剧场内二氧化碳的含量才能降到1%.

分析:可以将电影院分成10部分,每部分3

1000m,其中包括4%的二氧化碳,即40立方米。当充入新鲜空气时,新鲜空气中也含有0.02%的二氧化碳,即等于每一部分充气以后二氧化碳的浓度有原来的40(立方米)降到含量只有0.02%,而换掉的二氧化碳浓度为每分钟39.8(立方米),即可列式求结果。

%估算一下,什么时候二氧化碳的含量才能降到1%%

>> clear

>> x=zeros(1,10);

>> for i=1:10,

x(i)=(400-39.8*i)/10000;

end

>>disp(x)

x =

Columns 1 through 7

3.6020 3.2040 2.8060 2.4080 2.0100 1.6120 1.2140

Columns 8 through 10

0.8160 0.4180 0.0200

>> disp(x<1)

0 0 0 0 0 0 0 1 1 1

>> clear

>> syms x

>> y=solve('(400-39.8*x)/10000=0.01','x')

y =

7.5376884422110552763819095477387

当充气时间为7.5376884422110552763819095477387……时,即约为7.54分时,二氧化碳的浓度为0.01%。下面画图说明符合要求的时间范围

代码为:

>> clear

>> x1=linspace(1,10);

>> y=(400-39.8*x1)/10000;

>> plot(x1,y)

>> subplot(2,2,1)

>> plot(x1,y)

>> grid on

>> x2=linspace(5,10);

>> y=(400-39.8*x2)/10000; >> subplot(2,2,2) >> plot(x2,y) >> grid on

>> x3=linspace(7.4,7.7); >> y=(400-39.8*x2)/10000; >> subplot(2,2,3) >> plot(x3,y) >> grid on

>> x4=linspace(7.5,7.6); >> y=(400-39.8*x2)/10000; >> subplot(2,2,4) >> plot(x4,y) >> grid on

由此可以看出当时间大于7.534时浓度小于0.01%。

5. 取函数()x f x xe =为实验函数, 用 Matlab 命令分别就01, 0, 2x =-, 将

()f x 按 0x x - 展开成 8 阶Taylor 公式, 求出相应的 8次近似多项式, 在区间

[-4, 4] 上画出这些近似多项式. 从这个实验中能给你哪些思考?

%利用命令求出TAYLOR 的展开式% >> clear >> syms x

>> y1=taylor(x*exp(x),-1,9) y1 =

-exp(-1)+1/2*exp(-1)*(x+1)^2+1/3*exp(-1)*(x+1)^3+1/8*exp(-1)*(x+1)^4+1/30*exp(-1)*(x+1)^5+1/144*exp(-1)*(x+1)^6+1/840*exp(-1)*(x+1)^7+1/5760*exp(-1)*(x+1)^8

>> y2=taylor(x*exp(x),0,9) y2 =

x+x^2+1/2*x^3+1/6*x^4+1/24*x^5+1/120*x^6+1/720*x^7+1/5040*x^8 >> y3=taylor(x*exp(x),2,9)

y3 =

9*exp(9)+10*exp(9)*(x-9)

图形为:

代码:

>> xx=[-4,-3,-2,-1,0,1,2,3,4];

>> yy=subs(y1,x,xx);

>> plot(xx,yy)

>> yy2=subs(y2,x,xx);

>> plot(xx,yy)

>> subplot(2,2,1);

>> plot(xx,yy)

>> subplot(2,2,2);

>> plot(xx,yy2)

>> yy3=subs(y3,x,xx);

>> subplot(2,2,3);

>> plot(xx,yy3)

>>

%求近似多项式,并且画图%

>> clear

>> i=zeros(1,8)

i =

0 0 0 0 0 0 0 0

>> for x=1:8,

i(x)=-exp(-1)+1/2*exp(-1)*(x+1)^2+1/3*exp(-1)*(x+1)^3+1/8*exp(-1)*(x+1)^4 +1/30*exp(-1)*(x+1)^5+1/144*exp(-1)*(x+1)^6+1/840*exp(-1)*(x+1)^7+1/5760*ex p(-1)*(x+1)^8;

end

>> disp(i)

1.0e+003 *

0.0027 0.0145 0.0566 0.1857 0.5368 1.3966 3.3240 7.3314

>> for x=1:8,

i(x)=x+x^2+1/2*x^3+1/6*x^4+1/24*x^5+1/120*x^6+1/720*x^7+1/5040*x^8;

end

>> disp(i)

1.0e+004 *

0.0003 0.0015 0.0060 0.0207 0.0643 0.1801 0.4596 1.0802

>> for x=1:8,

i(x)=9*exp(9)+10*exp(9)*(x-9);

end

>> disp(i)

1.0e+005 *

-5.7532 -4.9429 -4.1326 -3.3223 -2.5120 -1.7016 -0.8913 -0.0810

>> clear

>> x=[1 2 3 4 5 6 7 8];

>> y1=[0.0027e+003 0.0145e+003 0.0566e+003 0.1857e+003 0.5368e+003 1.3966e+003 3.3240e+003 7.3314e+003];

>> y2=[0.0003e+004 0.0015e+004 0.0060e+004 0.0207e+004 0.0643e+004 0.1801e+004 0.4596e+004 1.0802e+004];

>> y3=[-5.7532e+004 -4.9429e+004 -4.1326e+004 -3.3223e+004 -2.5120e+004 -1.7016e+004 -0.8913e+004 -0.0810e+004];

>> n=8;

>> p=polyfit(x,y1,n)

p =

Columns 1 through 8

-0.0000 0.0044 -0.0364 0.3264 -0.8477 2.2983 0 0.0504

Column 9

0.9045

>> p=polyfit(x,y2,n)

p =

Columns 1 through 8

-0.0003 0.0179 -0.2053 1.4535 -4.7364 8.2601 0 -9.0918

Column 9

7.3023

>> p=polyfit(x,y3,n)

p3 =

1.0e+004 *

Columns 1 through 8

0.0000 -0.0000 0.0000 -0.0001 0.0003 -0.0004 0 0.8108

Column 9

-6.5638

>> xi=linspace(0,8,100); >> z1=polyval(p1,xi);

>> z2=polyval(p2,xi);

>> z3=polyval(p3,xi);

>> plot(x,y1,'o',x,y1,xi,z1,':') >> plot(x,y2,'o',x,y2,xi,z2,':') >> plot(x,y3,'o',x,y3,xi,z3,':') >> plot(x,y2,'o',x,y2,xi,z2,':')

6. 正态分布的密度函数和分布函数分别为

:

22()()22(),,

F().x t x

f x x x dt μμσσ----=-∞<<∞=?

我们知道: 正态分布的密度函数是对称函数, 且对称轴为x μ=, 当μ取定时, σ越小, 图形越尖锐; 当σ越大时, 图形越平缓. 请利用求正态分布密度函数的命令normpdf 和分布函数命令normcdf, 通过图形验证正态分布的密度函数和分布函数与参数,μσ的关系, 并用 Matlab 命令求正态分布的期望和方差.

7. (1) 一般说来多项式拟合的次数越高, 对原函数的近似就越精确. 以并将它们和原函数画在一张图上进行比较()sin()x y f x e x -==为例, 求其五次拟合多项式和八次多项式,.

%求出x=0 1 2 3 4 5 6 7 8 9的各个值% >> clear

>> x=0;

>> y1=exp(-x)*sin(x)

y1 =

>> x=1;

>> y2=exp(-x)*sin(x)

y2 =

0.3096

>> x=2;

>> y=exp(-x)*sin(x)

y =

0.1231

>> x=3;

>> y=exp(-x)*sin(x)

y =

0.0070

>> x=4;

>> y=exp(-x)*sin(x)

y =

-0.0139

>> x=5;

>> y=exp(-x)*sin(x)

y =

-0.0065

>> x=6;

>> y=exp(-x)*sin(x)

y =

-6.9260e-004

>> x=7;

>> y=exp(-x)*sin(x)

y =

5.9909e-004

>> x=8;

>> y=exp(-x)*sin(x)

y =

3.3189e-004

>> x=9;

>> y=exp(-x)*sin(x)

y =

5.0859e-005

%求x的5次近似多项式%

>> x=[0 1 2 3 4 5];

>> y=[0 0.3096 0.1231 0.0070 -0.139 -0.0065];

>> n=5;

>> p=polyfit(x,y,n)

p =

0.0090 -0.1174 0.5748 -1.2850 1.1283 -0.0000%此为多项式的各项系数的行向量%

%将曲线拟合解与数据点比较,可将两者都绘成图%

>> xi=linspace(0,5,100);%用于绘图的x轴的数据点%

>> z=polyval(p,xi);

>> plot(x,y,'o',x,y,xi,z,':')%绘出原始数据X和Y,用“o”标出数据点,在数据点之间,再用直线重画原始数据,并用虚线,画出多项式数据xi和z% %求8次近似多项式%

>> x=[0 1 2 3 4 5 6 7 8 9];

>> y=[0 0.3096 0.1231 0.0070 -0.139 -0.0065 -6.9260e-004 5.9909e-004 3.3189e-004 5.0859e-005];

>> n=8;

>> p=polyfit(x,y,n)

p =

-0.0000 0.0008 -0.0120 0.0920 -0.4085 1.0869 -1.6974 1.2446 0.0003

>> xi=linspace(0,9,100);

>> z=polyval(p,xi);

>> plot(x,y,'o',x,y,xi,z,':')

%将两个图放到一起进行比较%

>> subplot(1,2,1)

>> x=[0 1 2 3 4 5];

>> y=[0 0.3096 0.1231 0.0070 -0.139 -0.0065];

>> n=5;

>> p=polyfit(x,y,n);

>> xi=linspace(0,5,100);

>> z=polyval(p,xi);

>> plot(x,y,'o',x,y,xi,z,':')

>> subplot(1,2,2)

>> x=[0 1 2 3 4 5 6 7 8 9];

>> y=[0 0.3096 0.1231 0.0070 -0.139 -0.0065 -6.9260e-004 5.9909e-004 3.3189e-004 5.0859e-005];

>> n=8;

>> p=polyfit(x,y,n);

>> xi=linspace(0,9,100);

>> z=polyval(p,xi);

>> plot(x,y,'o',x,y,xi,z,':')

>>

(2) 给定实验数据如表2所示

试用polyfit() 命令将以上数据拟合成指数函数()bx

(a,b均为常数).

g x ae

>> clear

>> x=[1 2 3 4 5 6 7 8];

>> y=[15.3 20.5 27.4 36.6 49.1 65.6 87.8 117.6];

>> n=8;

>> p=polyfit(x,y,n)

p =

-0.0001 0.0045 -0.0546 0.3397 -1.1106 1.7661 0

武汉大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 2. lim (cos cos cos )→∞ -+++=2 2 221 n n n n n n π π ππ . 3. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共 16分) 4.  )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 5. ) ( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 6. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1) -二阶可导且'>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 7. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 8. 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且 →=0 ()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在 =0x 处的连续性. 13. 求微分方程2ln xy y x x '+=满足 =- 1(1)9y 的 解. 四、 解答题(本大题10分) 14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01, 且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵 坐标之和,求此曲线方程. 五、解答题(本大题10分) 15. 过坐标原点作曲线x y ln =的切线,该切线与曲线 x y ln =及x 轴围成平面图形D. (1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所 得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分) 16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的 [,]∈01q ,1 ()()≥??q f x d x q f x dx . 17. 设函数)(x f 在[]π,0上连续,且 )(0 =?π x d x f , cos )(0 =? π dx x x f .证明:在()π,0内至少存在两个 不同的点21,ξξ,使.0)()(21==ξξf f (提示:设 ?= x dx x f x F 0 )()()

高等数学实验试题

东华大学20 ~ 20 学年第__ __学期期_末_试题A 踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负 课程名称______高等数学实验___________使用专业____ 班级_____________姓名________________学号__________ 机号 要求:写出M 函数(如果需要的话)、MATLAB 指令和计算结果。1.设矩阵A = 6 14230215 1 0321 21----, 求A 的行列式和特征值。 2. 设 f (x ,y ) =2x cos (xy 2 ),求 21,2 x y f x y ==???。

3. 求积分? --1 2 2 1)2(x x xdx 的数值解。 4. 求解微分方程0.5e - x d y -sin x d x=0, y (0)=0, 要求写出x =2 时的y 值。 5. 求解下列方程在k=6,θ=π/3附近的解???=-=-1)sin (3 )cos 1(θθθk k

6. 取k 7. 编写一个M 函数文件,使对任意给定的精度ε, 求N 使得 επ≤-∑=612 1 2 N n n 并对ε= 0.001求解。

8. 在英国工党成员的第二代加入工党的概率为0.5,加入保守党的概率为0.4,加入自由党的概率为0.1。而保守党成员的第二代加入保守党的概率为0.7,加入工党的概率为0.2,加入自由党的概率为0.1。而自由党成员的第二代加入保守党的概率为0.2,加入工党的概率为0.4,加入自由党的概率为0.4。求自由党成员的第三代加入工党的概率是多少?假设这样的规律保持不变,在经过很多代后,英国政党大致分布如何?

关于数学史考试的习题

数学史概论期末试题一 一、单项选择题 1.世界上第一个把π计算到3.1415926<n <3.1415927 的数学家是( B ) A.刘徽B.祖冲之C.阿基米德D.卡瓦列利2.我国元代数学著作《四元玉鉴》的作者是( C )A.秦九韶B.杨辉C.朱世杰D.贾宪 3.就微分学与积分学的起源而言( A ) A.积分学早于微分学B.微分学早于积分学C.积分学与微分学同期D.不确定4.在现存的中国古代数学著作中,最早的一部是( D ) A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》5.简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫( D )。 A.笛卡尔公式 B.牛顿公式 C.莱布尼茨公式 D.欧拉公式 6.中国古典数学发展的顶峰时期是( D )。A.两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期 7.最早使用“函数”(function)这一术语的数学家是( A )。A.莱布尼茨B.约翰·伯努利C.雅各布·伯努利D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。 A.高斯 B.波尔查诺 C.魏尔斯特拉斯 D.柯西 9.古埃及的数学知识常常记载在(A )。A.纸草书上B.竹片上C.木板上D.泥板上 10.大数学家欧拉出生于(A )A.瑞士B.奥地利C.德国D.法国 12.《九章算术》的“少广”章主要讨论(D )。A.比例术B.面积术C.体积术D.开方术 13.最早采用位值制记数的国家或民族是( A )。A.美索不达米亚B.埃及C.阿拉伯D.印度 二、填空题 14 15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。 16.二项式展开式的系数图表,在中学课本中称其为_杨辉_ 17卷,包括有(5)条公理、(5)条公设。 18.两千年来有关 20,被称为“数学之王”的数学家是(高斯)。 欧氏几何对应的情形是曲率恒等于零, 对应的情形是曲率为负常数。 .中国历史上最早叙述勾股定理的著作是《周髀算经》,中国历史上最早完成勾股定理证明的数学家是三国时期的(赵爽)。 三、简答题 26.简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。答:莱布尼茨于1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进“函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。 27.写出数学基础探讨过程中所出现的“三大学派”的名称、代表人物、主要观点。答:一,逻辑主义学派,代表人物是罗素和怀特黑德,主要观点是:数学仅仅是逻辑的一部分,全部数学可以由逻辑推导出来。二,形式主义学派,代表人物是希尔伯特,主要观点是:将数学看成是形式系统的科学,它处理的对象不必赋予具体意义的符号。三,直觉主义学派,代表人物是布劳维尔,主要观点是:数学不同于数学语言,数学是一种思维中的非语言的活动,在这种活动中更重要的是内省式构造,而不是公理和命题。 29.《周髀算经》(作者,成书年代,主要成就) 答:该书出版于东汉末年和三国时代,但从史上考证应成书于公元前240 年至公元前156 年之间,可能是北汉平侯张苍修订和补写而成;书中记载的数学知识主要有:分数运算、等差数列公式及一次内插公式和勾股定理在中国早期发展的情况。 31.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。 答:刘徽生活在三国时代;代表著作有《九章算术注》;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。 一、单项选择题 1.世界上讲述方程最早的著作是( A ) A.中国的《九章算术》 B.阿拉伯花拉子米的《代数学》 C.卡尔丹的《大法》 D.牛顿的《普遍算术》 2.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( B )。 A.托勒玫 B.帕波斯 C.阿波罗尼奥斯 D.丢番图 3.美索不达米亚是最早采用位值制记数的民族,他们主要用的是( A )。A.六十进制B.十进制C.五进制D.二十进制 4.“一尺之棰,日取其半,万世不竭”出自我国古代名著( B )。A.《考工记》B.《墨经》C.《史记》D.《庄子》5.下列数学著作中不属于“算经十书”的是( A )。A.《数书九章》B.《五经算术》C.《缀术》D.《缉古算经》6.微积分诞生于( C )。A.15 世纪B.16 世纪C.17 世纪D.18 世纪 7.以“万物皆数”为信条的古希腊数学学派是( D )。A.爱奥尼亚学派B.伊利亚学派C.诡辩学派D.毕达哥拉斯学派8.最早记载勾股定理的我国古代名著是( A )。 A.《九章算术》 B.《孙子算经》 C.《周髀算经》 D.《缀术》 9.首先使用符号“0”来表示零的国家或民族是( A )。A.中国B.印度C.阿拉伯D.古希腊 10.在《几何原本》所建立的几何体系中,“整体大于部分”是( D )。A.定义B.定理C.公设D.公理 11.刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( B )。A.3.1 B.3.14 C.3.142 D.3.1415926 12.费马对微积分诞生的贡献主要在于其发明的( C )。A.求瞬时速度的方法B.求切线的方法C.求极值的方法D.

大学数学实验

大学数学实验 项目一 矩阵运算与方程组求解 实验1 行列式与矩阵 实验目的 掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式. 基本命令 在Mathematica 中, 向量和矩阵是以表的形式给出的. 1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入 {2,4,8,16} {x,x+1,y,Sqrt[2]} 则输入了两个向量. 2. 表的生成函数 (1) 最简单的数值表生成函数Range, 其命令格式如下: Range[正整数n]—生成表{1,2,3,4,…,n }; Range[m, n]—生成表{m ,…,n }; Range[m, n, dx]—生成表{m ,…,n }, 步长为d x . (2) 通用表的生成函数Table. 例如,输入命令 Table[n^3,{n,1,20,2}] 则输出 {1,27,125,343,729,1331,2197,3375,4913,6859} 输入 Table[x*y,{x,3},{y,3}] 则输出 {{1,2,3},{2,4,6},{3,6,9}} 3. 表作为向量和矩阵 一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵 ??? ? ??5432 可以用数表{{2,3},{4,5}}表示. 输入 A={{2,3},{4,5}} 则输出 {{2,3},{4,5}} 命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如, 输入命令: MatrixForm[A] 则输出 ??? ? ??5432 但要注意, 一般地, MatrixForm[A]代表的矩阵A 不能参与运算. 输入 B={1,3,5,7} 输出为 {1,3,5,7} 输入 MatrixForm[B] 输出为

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

《数学实验》试题答案

北京交通大学海滨学院考试试题 课程名称:数学实验2010-2011第一学期出题教师:数学组适用专业: 09机械, 物流, 土木, 自动化 班级:学号:姓名: 选做题目序号: 1.一对刚出生的幼兔经过一个月可以长成成兔, 成兔再经过一个月后可以 繁殖出一对幼兔. 如果不计算兔子的死亡数, 请用Matlab程序给出在未来24个月中每个月的兔子对数。 解: 由题意每月的成兔与幼兔的数量如下表所示: 1 2 3 4 5 6 ··· 成兔0 1 1 2 3 5··· 幼兔 1 0 1 1 2 3··· 运用Matlab程序: x=zeros(1,24); x(1)=1;x(2)=1; for i=2:24 x(i+1)=x(i)+x(i-1); end x 结果为x = 1 1 2 3 5 8 13 21 3 4 5 5 89 144 233 377 610 987 1597 2584 4181 6765 1094 6 7711 2865 7 46368 2.定积分的过程可以分为分割、求和、取极限三部分, 以1 x e dx 为例, 利用

已学过的Matlab 命令, 通过作图演示计算积分的过程, 并与使用命令int() 直接积分的结果进行比较. 解:根据求积分的过程,我们先对区间[0,1]进行n 等分, 然后针对函数x e 取和,取和的形式为10 1 i n x i e e dx n ξ=≈ ∑ ? ,其中1[ ,]i i i n n ξ-?。这里取i ξ为区间的右端点,则当10n =时,1 x e dx ?可用10 101 1.805610 i i e ==∑ 来近似计算, 当10n =0时,100 100 1 01 =1.7269100 i x i e e dx =≈ ∑?,当10n =000时,10000 10000 1 1 =1.718410000 i x i e e dx =≈ ∑ ?. 示意图如下图,Matlab 命令如下: x=linspace (0,1,21); y=exp(x); y1=y(1:20); s1=sum(y1)/20 y2=y(2:21); s2=sum(y2)/20 plot(x,y); hold on for i=1:20 fill([x(i),x(i+1),x(i+1),x(i),x(i)],[0,0,y(i),y(i),0],'b') end syms k;symsum(exp(k/10)/10,k,1,10);%n=10 symsum(exp(k/100)/100,k,1,100);%n=100 symsum(exp(k/10000)/10000,k,1,10000);%n=10000

清华大学数学实验报告4

清华大学数学实验报告4

————————————————————————————————作者: ————————————————————————————————日期: ?

电13 苗键强2011010645

一、实验目的 1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法, 并对结果作初步分析; 2.练习用非线性方程和方程组建立实际问题的模型并进行求解。 二、实验内容 题目1 【问题描述】 (Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。问贷款利率是多少? (Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行 开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20年还清。从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)? 【分析与解】 假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i 个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。由题意可知: x1=x0(1+p)?x x2=x0(1+p)2?x(1+p)?x x3=x0(1+p)3?x(1+p)2?x(1+p)?x ……

x n=x0(1+p)n?x(1+p)n?1???x(1+p)?x =x0(1+p)n?x (1+p)n?1 p =0 因而有: x0(1+p)n=x (1+p)n?1 p (1) 则可以根据上述方程描述的函数关系求解相应的变量。 (Q1) 根据公式(1),可以得到以下方程: 150p(1+p)180?(1+p)180+1=0 设 f(p)=150p(1+p)180?(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下: fori = 1:25 t = 0.0001*i; p(i) = t; f(i) =150*t*(1+t).^180-(1+t).^180+1; end; plot(p,f),hold on,grid on; 运行以上代码得到如下图像:

大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题) 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) .d )1(22x x x ? +求 2、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题

清华大学2002至2003学年第二学期数学实验期末考试试题A

清华大学2002至2003学年第二学期数学实验期末考试试题A 数学实验试题 2003.6.22 上午 (A卷;90分钟) 一. 某两个地区上半年6个月的降雨量数据如下(单位:mm): 月份123456 地区A259946337054 地区B105030204530 在90%的置信水平下,给出A地区的月降雨量的置信区 间: 在90%的置信水平下,A地区的月降雨量是否不小于70(mm)? 在90%的置信水平下,A、B地区的月降雨量是否相同? A地区某条河流上半年6个月对应的径流量数据如下(单位:m3):110,184,145,122,165,143。该河流的径流量y与当地的降雨量x的线性回归方程为;若当地降雨量为55mm,该河流的径流量的预测区间为(置信水平取90%)。 答案:(程序略) (1) [32.35,76.65] (2) 是 (3) 否 (4) y=91.12+0.9857x (5) [130.9,159.7] 二.(10分) (1)(每空1分)给定矩阵,如果在可行域上考虑线性函数,其中,那么的最小值是,最小点为;最大值是,最大点为。 (每空2分)给定矩阵,,考虑二次规划问题,其最优解为,(2) 最优值为,在最优点处起作用约束 为 。 答案:(1)最小值为11/5,最大值为7/2,最小点为(0,2/5,9/5),最大点为(1/2,0,3/2)。 (2)最优解为(2.5556,1.4444),最优值为–1.0778e+001,其作用约束为。 三.(10分)对线性方程组:,其中A=,b= (3分)当时,用高斯—赛德尔迭代法求解。取初值为,写出迭代第4步的结果=____________________。 (4分)当时,用Jacobi 迭代法求解是否收敛?__________ , 理由是_________________________________________________ 。 (3分)求最大的c, 使得对任意的,用高斯—赛德尔迭代法求解一定收敛,则c应为__________。 答案:(1)x = [ -1.0566 1.0771 2.9897]

数学史练习题及答案

《数学史论约》复习题参考及答案本科 一、填空(22分) 1、数学史的研究对象是(数学这门学科产生、发展的历史),既要研究其历史进程,还要研究其(一般规律); 2、数学史分期的依据主要有两大类,其一是根据(数学学科自身的研究对象、内容结构、知识领域的演进)来分期,其一是根据(数学学科所处的社会、政治、经济、文化环境的变迁)来分期; 3、17世纪产生了影响深远的数学分支学科,它们分别是(解析几何)、(微积分)、(射影几何)、(概率论)、(数论); 4、18世纪数学的发展以(微积分的深入发展)为主线; 5、整数458 用古埃及记数法可以表示为()。 6、研究巴比伦数学的主要历史资料是(契形文字泥板),而莱因特纸草书和莫斯科纸草 书是研究古代(埃及数学)的主要历史资料; 7、古希腊数学发展历经1200多年,可以分为(古典)时期和(亚历山大里亚)时期; 8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和(费马)创立了解析 几何,牛顿和(莱布尼茨)创立了微积分,(笛沙格)和帕斯卡创立了射影几何, (帕斯卡)和费马创立了概率论,费马创立了数论; 9、19世纪数学发展的特征是(创造)精神和(严格)精神都高度发扬; 10、整数458 用巴比伦的记数法可以表示为()。 11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(数学内在学科因素促使其发展), 其一是外史,即(数学外在的似乎因素影响其发展); 12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明: (1)分析基础严密化和(复变函数论创立), (2)(非欧几里得几何学问世)和射影几何的完善, (3)群论和(非交换代数诞生); 13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化, 数学发展整体化,(电子计算机)的挑战,应用数学异军突起,数学传播与(研究)的 社会化协作,(新理论)的导向; 14、《九章算术》的内容分九章,全书共(246)问,魏晋时期的数学家(刘徽)曾为它作注; 15、整数458 用玛雅记数法可以表示为()。 16、数学史的研究对象是数学这门学科产生、发展的历史,既要研究其(历史进程),还要研究其(一般规律); 17、古希腊数学学派有泰勒斯学派、(毕达哥拉斯学派)、(厄利亚学派)、巧辩学派、柏拉图学派、欧多克索学派和(亚里士多德学派); 18、阿拉伯数学家(阿尔-花拉子模)在他的著作(《代数学》)中,系统地研究了当时对一元一次和一元二次方程的求解方法; 19、19世纪数学发展的特点,可以用以下三方面的典型成就加以说明:(1)(分析基础严密化)和复变函数论的创立;(2)非欧几里得几何学问世和(射影几何的完善);(3)在代数学领域(群论)与非交换代数的诞生。 20、整数458 用古印度记数法可以表示为()。 二、选择题 1、数学史的研究对象是(C);

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

大学数学史题库附答案

选择题(每题2分) 1.对古代埃及数学成就的了解主要来源于( A ) A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻 2.对古代巴比伦数学成就的了解主要来源于( C ) A.纸草书 B.羊皮书 C.泥版 D.金字塔内的石刻 3.《九章算术》中的“阳马”是指一种特殊的( B ) A.棱柱 B.棱锥 C.棱台 D.楔形体 4.《九章算术》中的“壍堵”是指一种特殊的( A ) A.三棱柱 B.三棱锥 C.四棱台 D.楔形体 5.射影几何产生于文艺复兴时期的( C ) A.音乐演奏 B.服装设计 C.绘画艺术 D.雕刻艺术 6.欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( A )。 A.斐波那契 B.卡尔丹 C.塔塔利亚 D.费罗 7.被称作“第一位数学家和论证几何学的鼻祖”的数学家是( B ) A.欧几里得 B.泰勒斯 C.毕达哥拉斯 D.阿波罗尼奥斯 8.被称作“非欧几何之父”的数学家是( D ) A.波利亚 B.高斯 C.魏尔斯特拉斯 D.罗巴切夫斯基 9.对微积分的诞生具有重要意义的“行星运行三大定律”,其发现者是( C ) A.伽利略 B.哥白尼 C.开普勒 D.牛顿 10.公元前4世纪,数学家梅内赫莫斯在研究下面的哪个问题时发现了圆锥曲线?( C ) A.不可公度数 B.化圆为方 C.倍立方体 D.三等分角 11.印度古代数学著作《计算方法纲要》的作者是( C ) A.阿耶波多 B.婆罗摩笈多 C.马哈维拉 D.婆什迦罗 12.最早证明了有理数集是可数集的数学家是( A ) A.康托尔 B.欧拉 C.魏尔斯特拉斯 D.柯西 13.下列哪一位数学家不属于“悉檀多”时期的印度数学家?( C ) A.阿耶波多 B.马哈维拉 C.奥马.海亚姆 D.婆罗摩笈多 14.在1900年巴黎国际数学家大会上提出了23个著名的数学问题的数学家是( A ) - 1 - / 9

大学数学实验心得体会

大学数学实验心得体会 [模版仅供参考,切勿通篇使用] 大学数学实验心得体会(一) 数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。 学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。 当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的运算量,

给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。 时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。通过这学期的学习,我也积累了些自己的学习方法和心得。首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。 通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础! 大学数学实验心得体会(二) 在此期间我充分利用研修活动时间学习,感到既有辛苦,又有收获。既有付出,又有新所得。这次远程研修让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,

关于大学高等数学期末考试试题与答案

关于大学高等数学期末考 试试题与答案 Last revision on 21 December 2020

(一)填空题(每题2分,共16分) 1 、函数ln(5)y x =+-的定义域为 . 2、2()12x e f x x a ??=??+? 000x x x <=> ,若0lim ()x f x →存在,则a = . 3、已知 30lim(1)m x x x e →+=,那么m = . 4、函数21()1x f x x k ?-?=-??? 11x x ≠= ,在(),-∞+∞内连续,则k = . 5、曲线x y e =在0x =处的切线方程为 . 6、()F x dx '=? . 7、sec xdx =? . 8、20cos x d tdt dx ??=? ???? . (二)单项选择(每题2分,共12分。在每小题给出的选项中,选出正确答案) 1、下列各式中,不成立的是( )。 A 、lim 0x x e →+∞= B 、lim 0x x e →-∞= C 、21 lim 1x x e →∞= D 、1lim 1x x e →∞= 2、下列变化过程中,( )为无穷小量。 A 、()sin 0x x x → B 、()cos x x x →∞ C 、()0sin x x x → D 、()cos x x x →∞ 3、0lim ()x x f x →存在是)(x f 在0x 处连续的( )条件。 A 、充分 B 、必要 C 、充要 D 、无关 4、函数3y x =在区间[]0,1上满足拉格朗日中值定理的条件,则ξ=( )。 A 、 B 、

5、若曲线()y f x =在区间(),a b 内有()0f x '<,()0f x ''>,则曲线在此区间内 ( )。 A 、单增上凹 B 、单增下凹 C 、单减上凹 D 、单减下凹 6、下列积分正确的是( ). A 、1 12111dx x x --=-? B 、 122π-==?? C 、22cos xdx ππ-=?0 D 、2220 sin 2sin 2xdx xdx πππ-==?? (三)计算题(每题7分,共 56分) 1、求下列极限 (1 )2x → (2)lim (arctan )2x x x π →∞?- 2、求下列导数与微分 (1)x x y cos ln ln sin +=,求dy ; (2)2tan (1)x y x =+,求 dx dy ; (3)ln(12)y x =+,求(0)y '' 3、计算下列积分 (1 ); (2 ); (3)10arctan x xdx ?. (四)应用题(每题8分,共16分) 1. 求ln(1)y x x =-+的单调区间与极值. 2. 求由抛物线21y x +=与直线1y x =+所围成的图形的面积. 参考答案 一、填空题(每空2分,共16分) 1. ()3,5 2. 2 3. 3 4. 2 5. 10x y -+= 6. ()F x C + 7. sec tan x x C ++ln 8.2cos x

大学数学数学实验(第二版)第7,8章部分习题答案

一、实验内容 P206第六题 function f=wuyan2(c) y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.41 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4] t=[0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210] f=y-c(1)/(1+c(1)/3.9-1)*exp^(-c(2)*t) c0=[1 1] c=lsqnonlin('wuyan2',c0) P206第七题 function f=wuyan1(c) q=[0.4518 0.4862 0.5295 0.5934 0.7171 0.8964 1.0202 1.1963 1.4928 1.6909 1.8548 2.1618 2.6638 3.4634 4.6759 5.8478 6.7885 7.4463 7.8345 8.2068 8.9468 9.7315 10.5172 11.7390 13.6876 ]; k=[0.0911 0.0961 0.1230 0.1430 0.1860 0.2543 0.3121 0.3792 0.4754 0.4410 0.4517 0.5595 0.8080 1.3072 1.7042 2.0019 2.2914 2.4941 2.8406 2.9855 3.2918 3.7214 4.3500 5.5567 7.0477]; l=[4.2361 4.3725 4.5295 4.6436 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455 6.8065 6.8950 6.9820 7.0637 7.1394 7.2085 7.3025 7.3470 7.4432 7.5200]; f=q-c(1)*k.^c(2).*l.^c(3) c0=[1 1 1] c=lsqnonlin('wuyan1',c0) c = 0.4091 0.6401 1.1446 a=0.4091 α=0.6401 β=1.1446 P239第五题 c=[-20 -30]; A=[1 2;5 4]; b=[20 70]; v1=[0 0]; [x,f,ef,out,lag]=linprog(c,A,b,[],[],v1) z=-f x = 10.0000 5.0000

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

matlab数学实验练习题

Matlab 数学实验 实验一 插值与拟合 实验内容: 预备知识:编制计算拉格朗日插值的M 文件。 1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。通过数值和图形输出,将三种插值结果与精确值进行比较。适当增加n ,再做比较,由此作初步分析。下列函数任选一种。 (1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y (3)、;22,c o s 10 ≤≤-=x x y (4)、22),exp(2≤≤--=x x y 2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为 ) (0)()(t e V V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。试由下面 一组t ,V 数据确定0V 和τ。 实验二 常微分方程数值解试验 实验目的: 1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法; 2. 掌握用微分方程模型解决简化的实际问题。 实验内容:

实验三地图问题 1.下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量: 以由西向东方向为x轴,由南到北方向为y轴,选择方便的原点,并将从最西边界点到最东边界点在x轴上的区间适当地划分为若干段,在每个分点的y方向测出南边界点和北边界点的y坐标y1和y2,这样就得到了表中的数据(单位mm)。 根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土 的近似面积,并与它的精确值41288km2比较。

相关主题
文本预览
相关文档 最新文档