当前位置:文档之家› 烧结知识汇总

烧结知识汇总

烧结知识汇总
烧结知识汇总

烧结炼铁知识汇总

一、铁矿石基本知识

1、矿石的概念

钢铁企业的产品离不开铁,铁是元素周期表上第26位元素,原子量为55.85,在大气压下于1534℃熔化,2740℃气化。铁元素约占地壳4%,固态铁的密度是7870Kg∕m3。

矿石是受地壳中天然的物理化学作用和生物作用而产生的自然化合物为主的矿物,所谓铁矿石是指在现有的技术条件下,能从中提取铁金属之矿物。所谓岩石是指在现有的技术条件下,不能从中提取金属或有用之矿物。因此,矿石和岩石的概念是相对的。

2、种类

一般铁矿石常见的铁矿物有:赤铁矿(Fe2O3)、磁铁矿(Fe3O4)、褐铁矿(nFe2O3·mH2O,n=1~3,m=1~4)、菱铁矿(FeCO3)等。

通常实际品位低于理论品位,其原因是矿石中含有相当数量的脉石矿物,这些脉石矿物主要是石英、各种硅酸盐和碳酸盐等矿物以及数量不等的S、P等杂质和CO2、结晶水等在高温下分解的物质。绝大多数矿石的脉石是酸性的。

1)磁铁矿:含铁一般在45~70%,S、P高,坚硬,致密难还原。很少直接入炉,大多进行选矿。

Fe3O4 Fe72.4%,O 27.6%;Fe3O4中FeO31.03%,Fe2O368.97%

颜色呈黑色,有磁性,结构致密坚硬,还原性差。(钒钛磁铁矿)

2)赤铁矿:含铁一般在55~65%,S、P少,软易破碎,易还原。

例如:巴西矿、澳矿、国内海南铁矿等

Fe2O3 Fe69.94%,O 30.06%

颜色呈红色,暗红色,还原性较好

3)褐铁矿(针铁矿FeO(OH) Fe62.9%): 含铁一般在37~62%,疏松,大部松软易还原。

例如:扬迪粉、火箭粉、PB粉、MAC粉、国内黄梅铁矿等。

Fe2O3 .n H2O

颜色呈黄褐色,吸湿性强,烧失量高,孔隙率大,还原性能好

褐铁矿是统称,实际上它不是一个矿物种,而是针铁矿、纤铁矿、水针铁矿、水纤铁矿以含水氧化硅、泥质等的混合物,化学成分变化大,含水量变化也大。

通常表达式褐铁矿是Fe2O3·nH2O,nH2O就称做结晶水,n数值变化大小说明结晶水含量的多少。在一般商务报价时,对矿石化学成分常表达有LOI烧损或Combined Water,基本上是同一概念。

矿石中结晶水要加热到900oC时才挥发,而一般表面附着水在105oC时即挥发。结晶水它与其他化学元素同样,在岩浆状态转入冷却凝固时,是与铁矿物、石英等结晶在一起的,因此加热900oC才能挥发。

如果做一个通俗的解释:例如我们人体的成分是H、O、C、N、P、S、K、Ca、Mg、Fe、F、Cl、Br、I(J)等化学元素组成的,肌肉中主要是水,我们洗澡时,身上肌肉外边的附着水是Moisture,用手巾能擦掉,而我们人体肌肉里的水则可认为是相当于结晶水,Combined Water,用手巾擦不掉。

平常我们说的烧损(LOI)Lost of Ignition,一般是表示结晶水含量的大小,它是指加热900oC 时的挥发量。只有褐铁矿有结晶水,磁铁矿、赤铁矿均不含结晶水,菱铁矿有烧损,但烧后损失的是CO2,不是H2O。

4)菱铁矿:含铁一般在30~40%,S、P少,易破碎,焙烧后易还原,朝鲜该矿种较多。

FeCO3 Fe48.2%,FeO62.01%,CO237.99%

颜色呈灰色,经焙烧后呈多孔状结构,易破碎,还原性能好,不含结晶水,但此类矿石还有

烧损值,加热后CO2挥发FeO 62.01%,

5)钛铁矿Fe TiO3 Fe36.8%, TiO2 36.6%, O 31.6%

菱面体结晶,铁黑色,出现在超基性岩,碱性岩及变质岩中。磁铁矿、赤铁矿通常按如下区分:

TFe/FeO<3.5 为磁铁矿。例如:55/18=3.06

TFe/FeO>7.0 为假象赤铁矿。例如:55/7=7.86

TFe/FeO=3.5~7.0 为半假象赤铁矿。例如:55/10=5.5

矿石工业类型划分以磁铁性(MFe )与全铁(Fe)的比值来划分磁铁矿石MFe/TFe ≥85%;

混合矿石MFe/TFe 85%~15%;

赤铁矿石MFe/TFe ≤ 15%

进口矿典型值及冶金性能

国别品种

化学成分%

冶金性能Fe SiO2 Al2O3 P Loi

澳洲纽曼粉62.5 4.5 2.2 0.08 2.5 赤铁矿,烧结性能较好

澳洲PB粉61.5 3.6 2.3 0.08 5 部分褐铁矿,烧结性能较好

澳洲麦克粉61.5 3.6 2.2 0.07 5 部分褐铁矿,烧结性能较好

澳洲火箭粉58.5 4.2 2.2 0.05 9.5 褐铁矿,烧结性能较好

澳洲扬迪粉58 5 1.7 0.05 8.5 褐铁矿,烧结性能较好

澳洲罗布河粉57 5.7 2.7 0.02 9.5 褐铁矿,烧结性能较好

巴西南部粉64.5 4.0 1.5 0.05 1.5 赤铁矿,烧结性能较好

巴西卡拉加斯粉66.0 1.2 1.0 0.04 1 赤铁矿,烧结性能较差

巴西CVRD粉65 3.5 1.0 0.04 1.5 赤铁矿,烧结性能很好

印度果凹粉61.5 3.5 2.5 0.06 2.5 赤铁矿,烧结性能较好

南非伊斯科粉65 4.0 1.5 0.07 1.5 赤铁矿,烧结性能一般

澳洲PB块62.8 3.0 1.5 0.07 4 褐铁矿,还原性好,热强度一般澳洲纽曼块64 2.6 1.3 0.06 1.5 赤铁矿,还原性好,热强度较好澳洲扬迪块59.5 4.0 1.5 0.05 8.5 褐铁矿,还原性好,热强度较差巴西巴西块66.5 2.5 1.0 0.05 1 赤铁矿,还原性好,热强度尚可南非南非块66 2.5 1.3 0.07 1 赤铁矿,还原性好,热强度一般

二、烧结生产对铁矿粉的质量要求

1、烧结生产简介

烧结产生的原因:过去炼铁只能将开采后的铁矿石大块筛出入炉使用,细粉无法入炉使用,堆得到处都是。慢慢的,高品位铁矿石大块越来越少,铁矿石细粉堆的越来越多。经过多年后,人们就设想可否将铁矿粉利用起来,终于研究出烧结的方法来利用铁矿粉。

所谓铁矿粉烧结,就是将细粒含铁物料与燃料、熔剂按一定的比例配料,再加水湿润、混匀和制粒形成混合料,布料于烧结设备上,通过点火、抽风,借助燃料燃烧产生的高温和一系列物理化学变化,生成部分低熔点物质,并软化熔融产生一定数量的液相,将铁矿物颗粒粘结起来,冷却后,即固结成为具有一定强度的多孔块状产品——烧结矿。烧结生产经历了固相反应、液相生成和冷凝固结的过程。

2、烧结对铁矿粉的质量要求

1)烧结矿强度、还原性与铁矿石自身强度、还原性的关系

烧结矿是一个由多种矿物组成的复合体,它由含铁矿物及脉石矿物组成的液相粘结而成,以鉄酸钙、鉄酸一钙为粘结相,其强度和还原性都好。硅酸盐、铁橄榄石、铁酸二钙为粘结相还原性差。

烧结矿的强度、还原性与铁矿石自身的强度、还原性有关。铁矿石的强度好、还原性好,烧结矿的强度、还原性相对也好。赤铁矿、磁铁矿自身强度都较好,褐铁矿、菱铁矿强度差,还原性好(见表1)。烧结矿的气孔率和还原性的关系,气孔率大,还原性好,但强度差。

2)铁矿粉的种类及粒度组成对烧结生产的影响

铁矿粉的粒度组成、矿物组成等直接影响烧结矿的质量及产能。不同铁矿石对烧结矿的质量及产能都有影响(见表1)。单种铁矿粉烧结性能较差,需要不同的矿种组成不同的矿物,具有较好的烧结性能。粒度组成对烧结质量及产能也有影响,粒度太大,混匀效果差,成分易偏析,烧结易产生生矿及强度差,粒度太细,影响烧结产能。最佳粒度0~8mm,其中3~6mm达35%以上较好。

3)铁矿粉成分对烧结生产的影响

碱度和SiO2含量影响

提高碱度(CaO/ SiO2)即提高CaO,为生成铁酸钙创造了条件,而且碱性熔体对铁氧化物的溶蚀比酸性熔体快,粘结相容易和残存原矿形成熔蚀结构,有助于提高烧结矿的强度,烧结是需要添加CaO的,因此,铁矿粉中的CaO是十分有益的。

SiO2含量应有一定含量范围,烧结矿成分中SiO2小于4.5%,将会影响烧结矿的产量和质量,SiO2含量低时,粘结相数量少,所以其强度及产量均低于高SiO2型;SiO2含量上升,降低了烧结矿铁品位(因为要增加CaO配比)。烧结矿中SiO2含量可以通过烧结配料来解决,控制在合理的范围,烧结矿中SiO2含量在4.7%~5.2%较为合适。

MgO含量的影响

加入MgO一方面能提高硅酸盐熔体的结晶能力,减少玻璃质含量,从而提高烧结矿强度;另一方面在熔剂性烧结料中加入适量MgO,由于出现新的含镁矿物可使硅酸盐熔化温度降低,其低熔点化合物可以完全熔融,增加了烧结料层的液相数量;另外,由于MgO的存在,减少了硅酸二钙及难还原的钙铁橄榄石、铁橄榄石生成的机会。但MgO含量不能太高,否则会影响烧结矿的强度和还原性。通常,铁矿粉中的MgO是十分有益的,因为铁矿粉中MgO含量不会高于烧结要求的含量,烧结是需要添加MgO的。

Al2O3含量的影响

Al2O3能加宽针状铁酸钙存在的温度范围,针状铁酸钙的生成量与Al2O3/SiO2值有关。据报道:针状铁酸钙最大生成量对应的Al2O3/SiO2值为0.3~0.35或SiO2/ Al2O3=2.85~3.0;Al2O3能增加液相表面张力,降低液相粘度,促进氧离子扩散,有利于铁酸钙的生成;Al2O3可降低烧结料的熔化温度,在相同的烧结温度下,液相量会显著增加。但烧结矿中Al2O3过高,会促使Fe2O3还原应力集中和膨胀裂纹扩展,从而会加剧低温还原粉化。

三、高炉冶炼对铁矿石质量的要求

1、高炉炼铁生产简介

高炉炼铁是一种古老的冶炼方法,高生产率、低消耗、低成本是它的最大优势,加上不断地吸收新技术,高炉炼铁法仍然不断地发展。因而就目前而言,高炉炼铁仍然是炼铁的主力军。经过了几个世纪的发展,现代高炉技术已经达到非常高的水平。

高炉冶炼过程是一个连续的生产过程。炉料从炉顶进入炉腔,在高炉底部的炉缸和炉腹中装满焦炭。炉腰和炉身中则是铁矿石、焦炭等层层相间,一直装到炉喉。从安装在炉缸上的风口鼓入大量的、温度高达1000-1200℃的热风,炉料中焦炭在风口前燃烧,迅速产生大量的热,使风口附近炉腔中心温度高达1800℃以上。全过程是在炉料自上而下,煤气自下而上,在相互接触过

程中,经过一系列物理化学反应完成的。经过两个过程:一是还原气体的生成,二是还原气体逐步还原铁的氧化物。在高炉冶炼过程中主要有以下几个步骤:1)铁的间接还原和直接还原反应;2)造渣过程;3)生铁的形成。

2、铁矿石质量对高炉冶炼的影响

1)铁矿石品位的影响

铁矿石品位指的是铁矿石含铁的量,铁矿石含铁量高,有利于降低高炉焦比和提高产量。国内经验参数:品位提高1%,焦比降低2%,产量提高3%。这是由于铁矿石中铁份降低,脉石数量增加,熔剂用量加大和渣量也随之升高,而且渣量增加的倍数要大于铁份降低的倍数。因此,高炉冶炼要求铁矿石品位越高越好。

对于褐铁矿、菱铁矿的铁矿石,对含铁量的要求可以适当降低,原因是褐铁矿、菱铁矿在高温下,结晶水分解及CO2挥发,铁品位相对提高。

2)脉石化学成分的影响

脉石的化学成份对铁矿石的冶炼价值影响很大,由于大多数矿石的脉石和焦炭灰份为酸性,故在铁矿石中CaO多,烧结时加入的石灰石量(生石灰粉)可以少加或不加,具有较高的冶炼价值,矿石含铁量允许降低些。铁矿石中SiO2则低些好,SiO2多,消耗石灰石(生石灰粉)量大,烧结品位降低,入炉矿品位也随之降低,引起焦比升高,产量下降。在含铁品位相同的铁矿石中,如SiO2含量不同,其冶炼价值也不同。

铁矿石中MgO高时,会减少烧结添加白云石粉的量。适量的MgO能改善高炉炉渣的流动性、脱硫能力和增加其稳定性。铁矿石中含MgO是十分有益的,含量高具有较高的冶炼价值。

Al2O3在炉渣中为中性氧化物,一般泥土,焦炭灰份中Al2O3较高,铁矿石中Al2O3含量要求低些好,Al2O3过高会造成高炉炉渣流动性变差,高炉炉渣成分通常要求Al2O3含量在13~15%较为合适。

根据脉石中成份不同,铁矿石分为自熔性矿和半自熔性矿:

(CaO+MgO)/(SiO2+ Al2O3)=0.8~1.2 为自熔性矿

(CaO+MgO)/(SiO2+ Al2O3)=0.5~0.8 为半自熔性矿

铁矿石脉石中含TiO2,在冶炼过程中有使高炉炉渣变稠的特点,容易导致渣铁流动不畅、炉缸堆积和生铁含硫升高等,在冶炼过程中,炉渣中TiO2含量超过5%,就会造成高炉冶炼十分困难。

3)有害元素的影响

有害元素通常指硫(S)、磷(P)、钾(K)、钠(N a)、铅(Pb)、Zn(锌)、As(砷)、Cu。通常高炉冶炼对铁矿石要求如下:

Pb<0.1%、Zn<0.1%、As<0.07%、Cu<0.2%、K2O+Na2O≤0.25%。

硫(S):硫对钢材是最为有害的成份,它使钢材产生“热脆性”。虽然铁矿石中有90%以上的硫可在冶炼中除去,但需增加熔剂的用量,引起渣量增加,产量减低,所以要求铁矿石中硫的含量越低越好,一般应小于0.2%。

磷(P):磷对钢材来说也是常见有害元素之一,它使钢材产生“冷脆性”。在选矿和烧结中磷均不能去除,在炼铁中磷全部还原进入生铁,冶炼要求铁矿石中磷含量越低越好,一般可根据规定的生铁含磷量计算出矿石中允许的含磷量,一般应小于0.1%。脱磷只能通过炼钢来进行,增加了炼钢的脱磷成本。

碱金属:碱金属主要有钾和钠。钾、钠对高炉的影响不是正比例性质,高炉本身有一定的排碱能力,碱金属在控制范围内对高炉影响不大。但是入炉铁矿石碱金属含量太多,超过高炉排碱能力,就会形成碱金属富集,导致高炉中上部炉料碱金属含量大大超过入炉料原始水平。铁矿石含有较多的碱金属极易造成软化温度降低,软熔带上移,不利于发展间接还原,造成焦比升高。球团含有碱金属会造成球团异常膨胀引起严重粉化,恶化料柱透气性。碱金属对焦炭性能破坏也

很严重。另外,高炉中上部碱金属化合物黏附在炉墙上,促使炉墙结厚、结瘤并破坏砖衬。因此,铁矿石含碱金属越低越好。

铅(Pb):铅在高炉中几乎全部被还原,由于密度高达11.34 t∕m3,故沉于死铁层之下,易破坏炉底砖缝,有可能会造成炉底烧穿。冶炼中要求铅含量越低越好,应小于0.1%。

锌(Zn):锌很容易气化,在冶炼中被还原后成为ZnO后膨胀,会引起炉衬膨胀和炉壳破坏,冶炼中要求锌含量越低越好,应小于0.1%

砷(As):砷对钢材来说也是有害元素之一,它使钢材产生冷脆性,使得钢材焊接性能变差。铁矿石中砷基本还原进入生铁,影响生铁质量。此外砷在烧结过程中挥发,对环境影响较大。要求砷含量小于0.07%。

铜(Cu):铜会使钢材“热脆”,钢材不易轧制和焊接。少量铜能改善钢的耐蚀性。铜在冶炼中易还原且全部进入生铁,继而进入钢材,若含铜量大于0.30%,钢材焊接性能降低,热脆性能增加,一般要求铜含量小于0.2%,这样可增加钢材的抗腐蚀性能。

钛能改善钢的耐磨性和耐腐蚀性。但在高炉冶炼时,会使炉渣性质变坏,约有90%的钛进入炉渣。钛含量低时对炉渣及冶炼过程影响不大,含量高时,会使炉渣变稠,流动性差,对冶炼过程影响很大,而且易结炉瘤。钛有护炉作用,不少高炉专门买钛矿加入高炉护炉。

总之,高炉冶炼要求铁矿石有害元素越低越好。

4)铁矿石强度和粒度组成

铁矿石的强度差(铁矿石的强度见表1),在高炉内易碎。粉末多,影响高炉炉内料柱的透气性,易引起炉况不顺,煤气利用不好,焦比上升,产量下降。

粒度大,还原速度慢,焦比升高。高炉冶炼要求铁矿石强度好,粒度小而均匀。一般要求小于6mm及大于40mm的铁矿石不直接入炉,对于难还原的磁铁矿粒度上限要求更小些。通常入炉最佳的粒度范围为15~25mm。进口块矿的粒度规格为6~30mm,因此粒度较好。

5)铁矿石的还原性和化学成分的稳定性

铁矿石的还原性好,有利于降低焦比。磁铁矿还原性差,因此最好不直接入炉。磁铁矿:Fe3O4= Fe2O3.FeO,因此,FeO含量高的铁矿石,还原性差,不宜直接入炉。

铁矿石化学成分波动会引起炉渣成份、炉渣碱度和生铁质量的波动,从而破坏了炉况顺行,并使焦比升高,产量降低。根据国外资料介绍,入炉原料铁分波动从±1.5%减为±0.5%,高炉可增产生铁4.5%,焦比下降2.5%。梅山钢铁公司曾进行测定,如将原料铁分波动从±1%减为±0.5%,可使高炉增产1.65%,焦比下降1.5%。我们通常采用料堆混匀,目的就是稳定矿石的成分。因此,高炉冶炼要求铁矿石化学成分相对稳定。

6)精料方针:高炉冶炼对铁矿石要求的精料方针可以归纳为七个字:高、稳、熟、匀、净、小、好。

四、铁矿石品位的计算和价值评价

1、吨度价

贸易界对铁矿石一般有一个吨度价的概念,就是铁矿石的吨单价与铁矿石TFe品位的比值。直接进口的铁矿石通常按美元吨度价计算,国内贸易通常按人民币计算。

(弊端)比如我们与某公司签订协议,购买10万吨TFe63%的铁矿石,FOB单价(湿吨,水分8%)为人民币530元/吨,吨度价为8.41元,实际到货品位仅有62%

分析:按一般情况处理,FOB单价降为521.59元/吨,吨度价不变。而实际上买方因为品位下降吃亏了。因为假定吨矿海运杂费人民币100元,则:

原TFe63%品位CIF吨度价为(530+100)÷63=10元

TFe62%品位CIF吨度价为(521.59+100)÷62=10.03(元)

相当于每吨多付海运杂费0.03×63=1.89(元)。但如果买方和卖方签合同按CIF价计算,品位从63%下降到62%不会影响吨度价,但是买方依然吃亏了。

买方吃亏的原因是:一个铁品位的国内物流费用,另降低一个铁品位要增加高炉的燃料比,增加吨铁矿耗及产量减少损失等。因此,铁矿石品位的加减价,不能按笼统的按吨度价来结算。

2、铁矿石品位对价值的影响

对高炉而言,铁矿石品位降低意味着渣量增大,熔化渣所需要的燃料增多,高炉产量下降,焦比升高。按国内通用经验参数:铁品位降低1%,焦比升高2%,产量下降3%。

如按焦价1800元/吨、喷吹煤粉价1000元/吨、铁矿石单价630+30=660 元/吨、吨铁固定费用220元计,焦比0.48吨/吨、煤比0.12吨/吨、吨铁矿耗(湿吨)1.66吨/吨计,吨铁利润按200元计,则1%铁品位影响铁矿石价格如下:

(1)吨铁焦比影响1%铁品位价格:11.86元/吨

(0.48×1800+0.12×1000)×2%=19.68(元/吨)

则焦比影响1%铁品位价格:19.68÷1.66=11.86(元/吨)

(2)吨铁矿耗影响1%铁品位价格:10.66元/吨

1%铁品位影响吨铁矿耗:

【0.94÷(0.975×0.62)-0.94÷(0.975×0.63)】÷0.92=0.0268(t/t)

则矿耗铁影响1%铁品位价格:0.0268×660÷1.66=10.66(元/吨)

(3)产量影响1%铁品位价格:7.59元/吨

1%铁品位影响固定费用及效益:(220+200)×3%÷1.66=7.59(元/吨)

如果该钢铁公司生铁产量属于限制性环节,由于品位下降造成整个公司生产规模下降,那么固定费用就不是炼铁厂而是整个公司的固定费用。

1%铁品位影响铁矿石价格合计:

30.11元/吨(1)+(2)+(3)=11.86+10.66+7.59=30.11元/吨

3、赤铁矿和磁铁矿铁品位的差异

前面讲过纯赤铁矿的品位是70%,而纯磁铁矿的品位是72.4%,原因是赤铁矿的氧化度高于磁铁矿。如果赤铁矿和磁铁矿均加工成为烧结矿入炉,而烧结矿的氧化度是一致的,那就需要将两个矿种的氧化度折算为一致进行比较,折算依据是FeO百分含量。

一般来说,赤铁矿烧结后,烧损约1.5%,磁铁矿烧结后,增重约1.5%,同品位的赤铁矿粉矿及磁铁矿粉矿烧结后,赤铁矿品位比磁铁矿品位约高两个百分比。

例如:Fe=64%:赤64/0.985-磁64/1.015= 64.97-63.05=1.92

4、钙镁氧化物对铁矿石铁品位的影响

由于高炉造渣需要钙镁氧化物,所以烧结矿需要添加钙镁氧化物,因此铁矿石中的钙镁氧化物属于有效成分,在考虑品位时应该进行折算。公式:TFe折=TFe/(1-CaO%-MgO%)例如:62%铁矿石含CaO 3%、MgO 2%,则:

TFe折=62%/(1-3%-2%)=65.26%

5、结晶水、碳酸盐和硫化物对对铁矿石铁品位的影响

对于需经过烧结才能入炉的铁矿石,结晶水、碳酸盐和硫化物在烧结过程中的分解、挥发,提高了铁矿石品位,故应该扣除烧损等计算铁品位。在评价铁矿石时,结晶水和碳酸盐分解造成烧结燃耗上升因素应适当考虑(但硫化物氧化是放热反应)。

公式:TFe折=TFe/(1-Loi%)。

例如:铁矿石TFe=58%,烧损=9.5%,TFe折=58%/(1-9.5%)=64.08%

6、铁矿石中SiO2对烧结矿铁品位的影响

某些铁品位相同,SiO2不同的铁矿石,烧结成为烧结矿后,在烧结矿碱度相同情况下,发现烧结矿品位不一致的现象,这是因为铁矿石中的SiO2需CaO平衡,SiO2增加需要增加更多的CaO来平衡,相当于降低了品位。

例如:一种铁矿石TFe=64%、SiO2=4%;另一种铁矿石TFe=64%、SiO2=7%;烧结矿R2=CaO/

SiO2=1.8,问这二种铁矿石烧结后,烧结矿品位相差多少?

① TFe折=64/(1+1.8×4%)=59.70%

② TFe折=64/(1+1.8×7%)=56.84%

TFe差=(59.7-56.84)%=2.86%

7、铁矿石中Al2O3对铁矿石价值的影响

前面介绍烧结生产时,适量的Al2O3有利于烧结。但前面又介绍铁矿石Al2O3含量高,会造成高炉炉渣成分Al2O3高,高炉炉渣成分Al2O3大于15%(13%~15%较为合适),通常对高炉造渣带来不利影响,因此,铁矿石Al2O3含量高不好。如果我们采用高、低Al2O3配矿方法,可以解决Al2O3问题。但大多数铁矿石Al2O3都较高,低Al2O3的铁矿石通常价格也相对高些(如巴西矿),一般无法准确计算出铁矿石Al2O3高了一个百分点应该降价多少的问题。

根据经验总结,Al2O3含量按0.6倍计算铁品位较为合理(如Al2O3能通过配料平衡解决,则可不考虑)。

公式:TFe折=TFe/(1+0.6× Al2O3 %)。

例如:TFe=64%、Al2O3 =2%,TFe折=64/(1+0.6*2%)=63.24%

8、铁矿石品位的综合计算

假设是一种铁矿石进行烧结,在同样的碱度、MgO含量条件下,通过比较每一种铁矿石烧结后的成分,可有效解决氧化度、碱性氧化物、结晶水、碳酸盐和硫化物对烧结矿品位的影响,正确评判出铁矿石的价值。

公式:TFe折=TFe/(1+R2×SiO2%+0.6× Al2O3%-CaO%-MgO%-Loi%)

高炉入炉料的综合二元碱度(R2)通常在1.2~1.25,我们在对铁矿石综合计算时,计算铁矿石SiO2影响铁品位,可以按R2=1.2计算。在计算成分时,要将烧损因素考虑进去。

烧结成本增加=(吨烧燃料成本+吨烧工序成本)×Loi%,由于烧损对烧结成本影响不大,因此,在计算时可以忽略。

五、影响铁矿石经济价值的其他因素

前面我们计算了铁品位对铁矿石价值的影响,并通过各种方法得出了较为真实的入炉品位,以及各成分对铁矿石的价值的影响。但是影响铁矿石经济价值的其他因素还有很多。

1、有害、有益元素的影响

1)硫对铁矿石用途的影响

2)P对冶炼品种的影响

3)其它元素的影响

1)硫对铁矿石用途的影响

对直接入炉的块矿来说,铁矿石的硫含量影响较大。根据炼铁经验参数:入炉铁矿石中含硫量升高0.1%,焦比升高1.5%,产量下降2%。这是由于脱硫要求提高炉渣碱度,需要增加熔剂用量,同时渣量也随之增大。所以直接入炉的铁矿石含硫量愈低愈好。一般规定铁矿石中S≤0.06%为一级矿,S≤0.2%为二级矿,S>0.3%为高硫矿。对于直接入炉的铁矿石要求S≤0.2%。

对于高硫矿我们要区别对待,铁矿石中的硫,通过烧结的方法,可以脱除80%~90%的硫。一般铁矿石硫高价格会低些,如果含铁品位高,磷、SiO2等其它有害杂质低,价格又有优势,我们可以考虑在烧结中搭配使用,这样可以取得较好的经济效果。因此,烧结用铁矿粉和铁精粉,硫含量影响较小,但随着环保要求的提高,影响有增大的趋势。

2)P对冶炼品种的影响

炼铁、烧结过程均不能去除铁矿石中的磷,控制生铁含磷量主要是靠控制铁矿石含磷量,磷对铁矿石价值的影响,主要在于炼钢脱磷的成本。对于冶炼球墨生铁,一定要严格控制铁矿石含磷量,因为,球墨生铁含磷量要求小于等于0.07%。但对于冶炼一般炼钢生铁(一般炼钢生铁含磷量要求小于等于0.15%至0.40%.),矿石含磷量可适当放宽,并可以采取高、低含磷量搭配的方法,

充分利用含磷高、价格低的铁矿石

3)其它元素的影响

锰能提高钢的耐磨性,锰又能改善高炉炉渣的性质,提高炉渣和铁水的流动性,对提高高炉产量及降低焦比是有利的,另锰可以降低炼钢铁合金消耗,因此,铁矿石含锰量高可提高铁矿石的价值。根据不同的钢种,镍、钒、铬等一般也有类似效果。

钛能改善钢的耐磨性和耐腐蚀性,但使高炉炉渣性质变坏,影响炉渣的流动性,且易结炉瘤,影响高炉的产量、焦比等各项指标。因此,需严格控制铁矿石含钛量。

其它有害元素高,如碱金属(钾、钠)、铅、Zn、As 、Cu等,都会影响铁矿石的价值。铁矿石有害杂质稍高,如价格低,可以适当配些,可降低铁矿石综合成本。

2、粒度组成、热爆裂性及还原性的影响

对高炉而言,直接入炉的铁矿石(块矿),要求平均粒度要小而均匀,含粉率低,热爆裂要低,还原性好,才具有较好的价值。粒度越均匀,透气性越好,越有利于高炉顺行。铁矿石FeO 含量越低,还原性越好。

对烧结而言,平均粒度越大,透气性越好,但粒度过大,成分易偏析,且烧结后生矿多,影响烧结矿质量。粒度很细也不是太坏,最不希望中间粒级比例高(象油菜籽这样的粒级),原因是中间粒级既不能作为成球核心,也不能作为粘附物料。通俗的说,希望铁矿石最好粒级是3-6mm,其次是泥,最不希望是沙。

3、市场资源量及批量的影响

由于烧结配矿的需要,当市场某种矿紧缺,如果没有其它矿种可替代,必然该矿种价格会上升,通俗的说,物以稀为贵。因此,贸易环节必须关注国内港口各品种的库存情况,以及了解可相互替代的矿种,通常按化学成分相近的矿种来相互替代。

对于采购来说,批量的大小要综合考虑,批量大有利于生产稳定,批量小有利于周转快。在市场价格稳定及价格趋涨的情况下,只要资金条件允许,尽可能扩大采购批量;市场价格在跌势情况下,尽可能缩小采购批量,规避风险。

4、烧结配矿要求的影响

通常烧结配矿需要五种或更多的铁矿石进行烧结,每种铁矿石性能不同,矿种多了其成分和性能可以互补,以达到最佳的烧结效果。配矿时,在满足烧结矿成分及各项指标的前提下,尽可能按矿石性价比好的优先配用,可以达到烧结矿成本最低、经济效益最高的效果。在矿石性价比与配矿矿种发生矛盾时,优先满足烧结生产工艺、烧结矿质量以及高炉冶炼的要求,这是间接效益,其次再考虑矿石性价比。因此,烧结配矿影响了矿石的价值。

选用进口矿要按其综合性价比来进行选择,即配矿成分的要求、铁矿石的烧结性能和冶金性能以及铁矿石的综合价格比较,不能仅仅考虑价格这一种因素,这样才能达到最佳的经济效果。

陶瓷材料的微波烧结特性及应用

第24卷 第5期 2002年5月武 汉 理 工 大 学 学 报JOURNAL OF W UHAN UN I VERSI T Y OF TECHNOLOG Y V o l .24 N o.5 M ay .2002文章编号:167124431(2002)0520043204 陶瓷材料的微波烧结特性及应用3 王 念 周 健(武汉理工大学)  摘 要: 介绍了微波烧结陶瓷材料的应用历史、基本原理,分析了陶瓷材料的微波烧结特性和微波烧结在氧化物陶瓷、非氧化物陶瓷及透明陶瓷方面的应用,指出了应用中存在的一些亟待解决的问题,展望了微波烧结陶瓷材料的应用前景。 关键词: 微波加热; 微波烧结; 陶瓷材料 中图分类号: TQ 17012文献标识码: A 收稿日期:2001212208. 作者简介:王 念(19772),男,硕士生;武汉,武汉理工大学材料复合新技术国家重点实验室(430070).3武汉市晨光计划(20005004034)1 微波是一种电磁波,它遵循光的有关定律,可以被物质传递、吸收或反射,同时还能透过各种气体,很方便地实现在各种气氛保护下的微波加热及有气相参与的合成反应[1]。材料在微波场中可简要地分为下列三种类型[2]:(1)微波透明型材料:主要是低损耗绝缘体,如大多数高分子材料及部分非金属材料,可使微波部分反射及部分穿透,很少吸收微波。这类材料可以长期处于微波场中而不发热,可用作加热腔体内的透波材料。(2)全反射微波材料:主要是导电性能良好的金属材料,这些材料对微波的反射系数接近于1,仅极少数 入射的微波能量能透入,可用作微波加热设备中的波导、微波腔体、搅拌器等。 (3)微波吸收型材料:主要是一些介于金属与绝缘体之间的电介质材料,包括纺织纤维材料、纸张、木材、陶瓷、水、石蜡等。 微波加热技术早在20世纪40年代末期就已产生,50年代美国的V on H i ppel 在材料介质特性方面的开创性研究为微波加热的应用奠定了基础[3]。微波烧结就是利用微波加热原理来对材料进行的烧结。作为一种新型的陶瓷加工技术,微波烧结的应用时间并不长。加拿大的W .R .T inga 等人在60年代末期最早尝试了用微波加热及烧结陶瓷材料,并获得了初步成功[2]。进入80年代以后,人们对微波烧结技术进行了广泛而深 入的研究,并成功的制备出了A l 2O 3、B 4C 、Y 2O 32Zr O 2、Si O 2、T i O 2、ZnO 等陶瓷材料[3]。 1 微波烧结陶瓷材料的基本原理 1.1 微波烧结的微观机理 陶瓷材料在微波电磁场的作用下,会产生如电子极化、原子极化、偶极子转向极化和界面极化等介质极化[4],参加极化的微观粒子种类不同,建立或消除极化的时间周期也不一样。由于微波电磁场的频率很高,使材料内部的介质极化过程无法跟随外电场的变化,极化强度矢量P 会滞后于电场强度矢量E 一个角度,导致与电场同相的电流产生,这就构成了材料内部的耗散。在微波波段,主要是偶极子转向极化和界面极化产生的吸收电流构成材料的功率耗散。 微波烧结的成功与否,关键取决于材料自身的特性,如介电性能、磁性能以及导电性能等。当微波穿透和传播到介电材料中时,内部电磁场使电子、离子等产生运动,而弹性惯性和摩擦力使这些运动受到阻碍,从而引起了损耗,这就产生了体加热[5]。从满足微波烧结的角度出发,陶瓷材料应具有的最重要特性是损耗正切 tg ?[6],它表征了材料将所吸收的微波能转化为热能的能力;同时为达到材料与微波的最佳耦合状态,一个 适中的相对介电常数Ε 和较高的介电损耗因子Ε 是必须的,因为Ε 表征了微波通过材料的能力,而Ε 则表

烧结配料知识

烧结配料知识 一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。 4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/(m2.h)。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示: 设备作业率=运转台时/日历台时× 100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。 日历台时=台数× 24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时× 100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数× 100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)× 100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥6.3mm)、粉末(< 5mm)等,有的厂还

烧结理论知识培训教材

目录 第一章烧结厂烧结工艺、设备情况简介……………………… 第一节烧结厂简介………………………………………………………………………… 第二节烧结生产工艺流程………………………………………………………………… 第三节烧结设备情况简介…………………………………………………………………第二章烧结的基础理论知识………………………………………………………第一节烧结生产主要技术经济指标………………………………………………………第二节原料基本知识………………………………………………………………………第三节配料基本知识………………………………………………………………………第四节混料基本知识………………………………………………………………………第六节烧结基本知识……………………………………………………………………… 第五节成品矿处理基本知识………………………………………………………………第三章烧结应知应会知识………………………………………………………… 第一节配料工技能知识…………………………………………………………………… 第二节混料工技能知识…………………………………………………………………… 第三节烧结工技能知识……………………………………………………………………第四章烧结工艺方面的知识……………………………………………………… 第一节原料管理…………………………………………………………………………… 第二节铁矿石烧结………………………………………………………………………… 第三节烧结工艺操作管理………………………………………………………………… 第四节烧结调整基准……………………………………………………………………… 第五节烧结现场配料计算及检化验事项…………………………………………………第五章烧结生产以来典型生产事故案例……………………………………… 生产事故案例一…………………………………………………………………………… 生产事故案例二…………………………………………………………………………… 生产事故案例三…………………………………………………………………………… 生产事故案例四……………………………………………………………………………第六章烧结设备情况介绍…………………………………………………………第一节原料系统设备…………………………………………………………………… 一、铁料设备………………………………………………………………………………… 二、熔剂设备………………………………………………………………………………… 三、燃料设备………………………………………………………………………………… 第二节烧结机系统设备………………………………………………………………

一烧结基本原理

一烧结基本原理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整, 例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加

烧结生产知识

烧结生产知识 一、铁矿石烧结知识(原料条件) 1、天然矿粉与烧结 1)天然矿粉包括富矿粉和贫矿粉,其中天然矿粉含铁量在45%以上的通常称为富矿粉,含铁量低于45%的通常称为贫矿粉。45%这个界限随着冶炼技术的发展是会变化的。 2)铁矿粉烧结是重要的造块技术之一。由于开采时产生大量的铁矿粉,特别是贫铁矿富选促进了铁精矿粉的生产发展,使铁矿粉烧结成为规模最大的造块作业。烧结矿比天然矿石有许多优点,如含铁量高、气孔率大、易还原、有害杂质少、含碱性熔剂等。 2、铁矿石分类: 按照铁矿物不同的存在形态,分为磁铁矿、赤铁矿、褐铁矿、菱铁矿四大类。 1)磁铁矿:磁铁矿化学式为Fe3O4,也可以视为Fe2O3与FeO的固溶体。比密度为4.9--5.2t/m3,硬度为5.5--6.5,难还原和破碎,有金属光泽,具有磁性。其理论含铁量为72.4%。磁铁矿晶体为八面体,组织结构较致密坚硬,一般成块状和粒状,表面颜色由钢灰色到黑色,条痕均是黑色,俗称青矿。 2)赤铁矿:赤铁矿俗称“红矿”,化学式为Fe2O3,其矿物成份是不含结晶水的三氧化二铁,密度为4.8—5.3,硬度不一,结晶完整的赤铁矿硬度为5.5—6.0,理论含铁量70%。赤铁矿由非常致密的结晶组织到很分散的粒状,结晶的赤铁矿外表颜色为钢灰色和铁黑色,其它为暗红色,但条痕均为暗红色。 3)褐铁矿:褐铁矿石(mFe2O3. nH2O)是一种含结晶水的Fe2O3,按结晶水含量不同,褐铁矿分为五种,其中以2Fe2O3. 3H2O形式存在的较多。 4)菱铁矿:菱铁矿石的化学式为FeCO3,理论含铁量为48.2%。自然界中常见的是坚硬致密的菱铁矿,外表颜色为灰色和黄褐色,风化后变为深褐色,条痕为灰色或带黄色,由玻璃光泽。菱铁矿的比重为3.8吨/米3,无磁性。 3、铁矿粉分类: 1)精矿粉:也称选粉。是天然矿石经过破碎、磨碎、选矿等加工处理,除去一部分脉石和杂质,使含铁量提高后的极细的矿粉叫精矿粉。精矿粉按照选矿方法的不同分为多种精矿粉,如磁选、浮选、重选等精矿粉。 2)富矿粉:是铁矿石受到自然界的风化作用,或在开采、运输、处理过程中产生粉末,其粒度为0~10mm。 4、烧结生产对含铁原料有那些要求: 铁矿粉是烧结生产的主要原料,它的物理化学性质对烧结矿质量影响最大,主要要求铁矿粉品位高、成分稳定、杂质少、脉石成分适用于造渣,粒度适宜。烧结用的精矿粒度不宜太细,一般小于0.074mm(-200目)的量小于80%。 5、常用熔剂的性能、成分及表示符号 烧结过程中通常使用的碱性熔剂有石灰石(CaCO3)、消石灰[Ca(OH)2]、生石灰(CaO)、白云石[Ca. Mg(CO3)2]和菱镁石(MgCO3) 。纯石灰石CaO理论含量56%;生石灰一般含CaO85%左右;消石灰又称熟石灰,理论含CaO为75.68%;菱镁石(MgCO3)的理论含MgO为47.6%。 烧结过程中又有的也使用一些酸性熔剂,主要有:橄榄石、蛇纹石、石英石。橄榄石的化学式为(Mg. Fe)2. SiO2,蛇纹石的化学式为3MgO.2SiO2.H2O。对酸性熔剂,要求其含SiO2含量在90%以上,Al2O3在2%以上。 6、常用燃料:无烟煤、焦粉。 二、烧结理论与工艺内容 1、烧结的含义:铁矿粉在一定的高温作用下,部分颗粒表面发生软化和融化,产生一定量的液

烧结理论知识培训教材(doc 95页)

烧结理论知识培训教材(doc 95页)

目录 第一章烧结厂烧结工艺、设备情况简介……………………… 第一节烧结厂简介………………………………………………………………………… 第二节烧结生产工艺流程………………………………………………………………… 第三节烧结设备情况简介…………………………………………………………………第二章烧结的基础理论知识……………………………………………………… 第一节烧结生产主要技术经济指标……………………………………………………… 第二节原料基本知识……………………………………………………………………… 第三节配料基本知识………………………………………………… 12

…………………… 第四节混料基本知识……………………………………………………………………… 第六节烧结基本知识……………………………………………………………………… 第五节成品矿处理基本知识………………………………………………………………第三章烧结应知应会知 识………………………………………………………… 第一节配料工技能知识…………………………………………………………………… 第二节混料工技能知识…………………………………………………………………… 第三节烧结工技能知识…………………………………………………………………… 12

第四章烧结工艺方面的知识……………………………………………………… 第一节原料管理…………………………………………………………………………… 第二节铁矿石烧结………………………………………………………………………… 第三节烧结工艺操作管理………………………………………………………………… 第四节烧结调整基准……………………………………………………………………… 第五节烧结现场配料计算及检化验事项…………………………………………………第五章烧结生产以来典型生产事故案例………………………………………生产事故案例一……………………………………………………………………………生产事故案例二………………………………………………… 12

烧结金属材料规格

JIS 烧结金属材料——规格 JIS Z 2550:2000 平成12年(2000)3月20日修正 日本工业标准调查会审议 (日本标准协会发行)

Z 2550:2000 前言 本标准是以工业标准化法为基础,经过日本工业标准调查会审查,由通商产业大臣修改的日本工业标准。根据本标准,对JIS Z 2550:1989(机械构造部件用烧结材料)修改置换。 JIS Z 2550附属书如下所示。 附属书(规定)机械构造部件用烧结材料 主管大臣:通商产业大臣制订:昭和58(1983).11.1 修改:平成12(2000).3.20 公示:平成12(2000).3.21 拟订原案合作者:日本粉末冶金工业协会 审议部会:日本工业标准调查会非铁金属部会(部会长神尾彰彦) 如对此标准有意见或者疑问,请联系工业技术院标准部标准业务科产业基盘标准化推进室(100-8921东京都千代田区霞关1条3-1) 并且,日本工业标准根据工业标准化法第15条规定,以5年为最大期限,必须在此期限内附日本工业标准调查会审议,并及时确认、修改或废止。

日本工业标准 烧结金属材料——规格 Sintered metal materials—Specification 序本标准是以1996年第一版发行的ISO 5755,Sintered metal materials—Specification为基础,制订的日本工业标准,但日本工业标准与ISO标准值的规定项目不一样,不可能直接对比统一。这次修改,在附属书中对采用ISO的材料的日本工业标准材料进行了规定,使两者可以并用。不过,因ISO开始了原国际标准的修改工作,需要注意ISO材料记号的使用。此外,本标准中有侧线或者点线的部分,为附属书材料特性试验的相关部分,是国际标准中没有的事项。 1. 适用范围此标准规定了轴承与机械部件使用的烧结金属材料的化学成分、机械特性 及物理特性。 备注1 选择粉末冶金材料时,材料的特性不单是化学成分及密度,还要考虑到制造方 法。已经适用于制品、用途的材料特性,锻造品和铸造品或许不同。因此,在确认特性 时,最好与生产者联系。 2.此标准对应的国际标准如下所示 ISO 5755,Sintered metal materials—Specification 2. 引用标准以下的标准因被本标准引用,构成了本标准规定的一部分。这些引用标准, 适用其最新版本。 JIS Z 2202 金属材料冲击试验片 JIS Z 2241 金属材料拉伸试验方法 备注ISO 6892,Metallic materials—Tensile testing at ambient temperature与本标准 同等。 JIS Z 2242 金属材料冲击试验方法 JIS Z 2244 维氏硬度试验—试验方法 JIS Z 2245 洛氏硬度试验—试验方法 备注ISO-4498-1,Sintered metal materials(excluding hardmetal)—Determination of apparent hardness—Part1:虽然限定了烧结材料的规格,但试验方法同等。 JIS Z 2501 烧结金属材料密度、含油率及开放气孔率试验方法 备注ISO 2738,Permeable sintered metal materials—Determination of density,oil content and open porosity与此标准一致。 JIS Z 2507 烧结轴承—径向压碎强度试验方法 备注ISO 2739,Sintered metal bushes—Determination of radial crushing strength与 此标准一致。 3. 选取样本选取样本遵循相关的日本工业标准。 4. 试验方法为了评价附表1到附表9及附属书的指示特性,适用以下的试验方法。4.1 化学成分成分分析尽量按日本工业标准规定的方法进行。没有合适的标准时,根据 和受试者的协议进行试验。 4.2 开放气孔率开放气孔率遵从JIS Z 2501进行试验。 4.3 含油率含油率遵从JIS Z 2501进行试验。 4.4 拉伸强度拉伸强度使用附图1.所示试验片,遵从JIS Z 2241进行试验。 4.5 外观硬度外观硬度遵从JIS Z 2244或JIS Z 2202进行试验。

粉末冶金工艺基本知识

粉末冶金工艺基本知识 粉末冶金成形 粉末冶金工艺及材料 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。 1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴ 粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。图描绘了由若干一次颗粒聚集成二次颗粒的情形。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵ 颗粒形状 即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。 ⑶ 比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴ 填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末

烧结基本原理

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结; 2、颗粒间粘结颈长大; 3、孔隙通道的封闭; 4、孔隙球化; 5、孔隙收缩; 6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加 4、冷却阶段:实际的烧结过程,都是连续烧结,所以从烧结温度缓慢冷却一段时间然后快冷,到出炉量达到室温的过程,也是奥氏体分解和最终组

烧结金属材料硬度规范

烧结金属材料硬度规范 由于烧结金属材料硬度的检测和其他金属件有所不同。为了使图纸与工厂及生产厂商的实物检指能够保持一致,须统一标准与规范,经过统计多家供应商的烧结金属零件检指数据加以汇总分析,并参照一系列的国家标准,特编制烧结金属材料硬度的设计检测标准规范。 硬度硬度是烧结金属结构材料(零件)中最常使用的一个性能指标。按烧结金属结构材料(零件)的材质不同,常用的硬度测试方法有布氏硬度HB;洛氏硬度HRA、HRB、HRC;维氏硬度HV及肖氏硬度HS。它们的压头材料、压头大小、压头形状以及采用的压力各不相同。根据试样上压头所留下的压痕尺寸大小,可算出其相应的硬度值。 烧结金属结构材料通常存在孔隙。如果硬度计的压头正好压在它的孔隙处,就不能反映出其基体的真实硬度。多孔性材料的硬度值的离散性比相应的锻轧材料大。烧结金属零件的多孔性决定了其检测方法最好采用维氏硬度计,其值相对稳定而准确。烧结金属件中,含油(滑动)轴承仍用布氏硬度来表示其表观硬度。 经分析生产厂商送检的各类烧结金属零件检指数据,并参照相关国家标准规定: GB/T 9097.1-2002烧结金属材料(不包括硬质合金)表观硬度的测定第一部分:截面硬度基本均匀的材料 GB/T 4340.1-1999 金属维氏硬度试验第1部分试验方法 GB/T 231.1-2002 金属布氏硬度试验第1部分试验方法 对于烧结金属零件(含油轴承除外),在图纸上技术要求中硬度统一使用维氏硬度来标志,同样测试也使用维氏硬度标准。具体的测试统一按GB/T 4340.1-1999中3.3推荐的维氏硬度试验力表3-2,小负荷维氏硬度试验的HV0.3来标注和检测。 密度烧结金属材料制取零件时,材料具有孔隙,零件的密度是可变的。其不仅影响零件的力学性能和精度,同时影响压坯的成品率和生产效率,所以压坯密度设计是烧结金属的零件设计和制造的主要依据之一。在烧结金属零件生产中,一般说来,材料的密度愈高 ,材料的物理—力学性能愈高。烧结金属零件的密度是单位体积的质量,其体积也包含材料中孔隙的体积。 含油率含油率高低是含油轴承性能的重要指标,并与开孔率有关。测试参照国家标准: GB/T 5163-2006 烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定来进行 烧结金属零件在图纸技术要求中必须要有硬度和密度二项指标,齿轮类还须增加材料抗拉及冲击强度极限值的技术要求。具体参照国家标准: GB/T 10423-2002 烧结金属摩擦材料抗拉强度的测定。 一.烧结金属材料-结构件 硬度与密度的分类:统一使用维氏硬度HV0.3,同时以零件在整机中的使用状态分为以下五大类。

铁矿粉基础特性对烧结矿性能的影响-炼铁技术炼钢技术

铁矿粉基础特性对烧结矿性能的影响 刘东辉1,吕庆1,孙艳芹2,邹雷雷1,刘然1 (1.河北联合大学冶金与能源学院,教育部现代冶金技术重点实验室,河北唐山063009; 2.东北大学材料与冶金学院,辽宁沈阳110004) 摘要:通过微型烧结和烧结杯试验研究了八种铁矿粉烧结基础特性对烧结矿性能的影响。研究结果表明:烧结矿的转鼓指数(T)随着铁矿粉的黏结相强度和连晶强度的增大而升高,低温还原粉化指数(RDI>3.15mm)随铁矿粉的液相流动性和铁酸钙生成性能的增大而升高,还原度(RI)主要与铁矿粉种类和烧结工艺参数有关。磁铁矿粉烧结矿RI随铁矿粉的液相流动性和铁酸钙生成性能的增大而升高,与其他烧结基础特性无明显关系。 关键词:铁矿粉;基础特性;烧结矿;冶金性能;矿相 结构近年来,由于国内铁矿石的缺乏和国外铁矿石的大量进口,烧结原料的结构发生了巨大的变化。钢铁企业的铁矿石存在种类复杂、来源不稳、烧结基础特性数据缺乏等问题,烧结矿质量难以保证。因此烧结基础特性作为衡量铁矿粉烧结性能的一项指标已被广泛应用[1-2]。实践表明,铁矿粉的烧结基础特性由于矿粉种类不同而存在显著差异,通过对其研究可以为合理利用矿石资源及优化配矿提供理论依据,为此,国内外的烧结工作者对铁矿粉的烧结基础性能进行了大量的研究。但基于铁矿粉烧结基础特性对烧结矿性能影响的研究还未见报道。因此,本文研究了铁矿粉的烧结基础特性与烧结矿性能之间的关系,为优化烧结工艺参数,制订最优配矿方案提供理论依据,对改善烧结矿质量,降低生铁成本和提高企业的经济效益具有重要意义。 1 试验原料 本研究选取的八种铁矿粉中,国外矿三种,分别为AA、AB、AC;国内矿五种,分别为AD、AE、AF、AG、AH。铁矿粉的化学成分如表1所示。 由表1可知,国外矿中AA矿粉SiO2较高,铁品位较低;其他矿粉铁品位大于62%,国内矿粉AE铁品位最高为66.51%;国外矿粉中AA为褐铁矿,AC为半褐铁矿,因含有大量结晶水而使烧损较大,降低烧结矿的成品率,不利于烧结;国内的几种矿粉烧损较小。 2 试验设备和方案 2.1 微型烧结试验 试验装置为TSJ-3型微型烧结机,试验原料为干燥后小于0.162mm的铁矿粉和化学纯试剂CaO。试验方法如下。 1)同化性。将铁矿粉制成重0.8g,直径为8mm的小饼。将CaO制成直径20mm,重2.0g 的小饼。将铁矿粉小饼置于CaO小饼的上方,按设定的升温曲线和试验气氛烧结。小饼接触面上生成略大于铁矿粉小饼一圈反应物时的温度为同化温度。 2)液相流动性。将CaO和铁矿粉按4.0的碱度制成小饼,根据设定的试验气氛和升温曲

烧结基础知识

1. 烧结基础知识 2. 烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成 块的过程。铁矿粉烧结就是一种人造富矿的过程。 2.1. 烧结的方法 (1)鼓风烧结:烧结锅,平地吹; (2)抽风烧结: (a)连续式:带式烧结机与环式烧结机等; (b)间歇式:固定式烧结机,如盘式烧结机与箱式烧结机;移动式烧结机, 如步进式烧结机; (3)在烟气中烧结:回转窑烧结与悬浮烧结。 2.2. 烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节。 机上冷却工艺不包括热矿破碎与热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。 2.3. 烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。

2.3.1. 利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/(m2*h)。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数== 台时产量就是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数就是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2.3.2. 烧结机作业率 作业率就是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示: 设备作业率=×100% 日历台时就是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。 日历台时=台数×24×天数 事故率就是指内部事故时间与运转时间的比值,以百分数表示: 事故率=×100% 设备完好率就是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率就是全厂完好设备的台数与设备总台数的比值,用百分数表示:

金属粉末烧结多孔过滤材料介绍

金属粉末烧结多孔过滤材料介绍 烧结金属微孔过滤元件是:本实用新型涉及一种用于过滤各种物料和分离微径颗粒的烧结金属微孔过滤元件,它是一个由烧结金属微孔过滤筒壁构成的,外形为圆锥台状的微孔圆筒。本实用新型烧结金属微孔过滤元件,其外形为圆锥台状,内部中空,壁厚均匀,其一端封死,另一端开口,锥台形筒壁材质采用烧结金属微孔材料,通过此材质内部的毛细微孔将外部与圆筒内腔相连通,并实现过滤的功能;开口端将烧结金属微孔材料和密质接头直接烧结成型。 我公司(宝鸡市奥龙过滤器材有限公司)是一家专业生产金属粉末冶金烧结过滤材料的科技型企业。我公司生产的微孔钛,微孔不锈钢过滤元件是由金属及合金粉末烧结制成的微孔金属材料,是具有良好的渗透性。以其强度高,耐热性,耐腐蚀性好而广泛应用与在石化,化工,制药,饮料,纺织,冶金,煤炭,电子,车船、医疗器械、消毒,航空航天及原子能、新能源氢燃料电池氧流场(钛)、臭氧发生器(钛)。人工体外心肺氧合器发泡板(钛)、环保等领域。 一:不锈钢粉末烧结滤芯 简介:不锈钢粉末烧结滤芯是由不锈钢粉末通过模具压制,高温烧结,整体成型而成。具有机械强度高,耐高温,耐腐蚀新能好,孔径分布均匀,透气性好,可清洗再生,可焊接机机械加工等优点。通过调整粉末颗粒尺寸和工艺条件,从而能够生产出过滤精度范围较广的多孔金属烧结滤芯。由于多孔金属粉末烧结材料具有的诸多优点,这类产品被广泛应用于催化剂的回收,化工,医药,饮料,食品,冶金,石油,环保发酵等领域中的气液过滤与分离;各种气体,蒸汽的除尘,除菌,除油雾;消音,阻焰,气体缓冲等. 产品特性: 1.形状稳定,抗冲击和交变负载能力优于其他金属虑过材料; 2.透气性,分离效果稳定; 3.接卸强度优异,适用于高温,高压和强腐蚀性的环境中使用; 4.尤其适合于高温气体过滤; 5.可按用户要求订做各种形状和精度的产品,也可通过焊接以用各种接口。 性能:耐酸、耐碱、耐高温、耐低温、防火、防静电 工作环境:硝酸、硫酸、醋酸、草酸、磷酸、5%盐酸、熔融钠、液氢、液氮、硫化氢、乙炔、水蒸气、氢气、煤气、二氧化碳气体等环境中使用。具有各种不同的孔隙

烧结配料知识

烧结配料知识 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、烧结基础知识 1、烧结的含义 将含铁粉状料或细粒料进行高温加热,在不完全熔化的条件下烧结成块的过程。铁矿粉烧结是一种人造富矿的过程。 2、烧结的方法 (1)鼓风烧结:烧结锅,,平地吹;以及带式烧结机。 (2)抽风烧结: a:连续式:带式烧结机和环式烧结机等; b:间歇式:固定式烧结机,如盘式烧结机和箱式烧结机;移动式烧结机,如步进式烧结机; (3)在烟气中烧结:回转窑烧结和悬浮烧结。 3、烧结生产的工艺流程 一般包括:原燃料的接受、贮存,溶剂、燃料的准备,配料,混合,制粒,布料,点火烧结,热矿破碎,热矿筛分,热矿冷却,冷矿筛分,铺底料、成品烧结矿及返矿的贮存、运输等工艺环节(见下图)。 机上冷却工艺不包括热矿破碎和热矿筛分。 现代烧结工艺流程不再使用热矿工艺,应使用冷矿工艺。在冷矿工艺中,宜推广具有铺底料系统的流程。

4、烧结厂主要技术经济指标 烧结厂的主要技术经济指标包括利用系数、作业率、质量合格率、原材料消耗定额等。 1>、利用系数 每台烧结机每平方米有效抽风面积(m2)每小时(h)的生产量(t)称烧结机利用系数,单位为t/()。它用台时产量与烧结机有效抽风面积的比值表示: 利用系数=台时产量(t/h)/有效抽风面积(m2) =总产量(t)/[总生产台时(t)×?总有效面积(m2)] 台时产量是一台烧结机一小时的生产量,通常以总产量与运转的总台时之比值表示。这个指标体现烧结机生产能力的大小,它与烧结机有效面积的大小无关。 利用系数是衡量烧结机生产效率的指标,它与烧结机有效面积的大小无关。 2>、烧结机作业率 作业率是设备工作状况的一种表示方法,以运转时间占设备日历时间的百分数表示:设备作业率=运转台时/日历台时×?100% 日历台时是个常数,每台烧结机一天的日历台时即为24台时。它与台数、时间有关。日历台时=台数×24×天数 事故率是指内部事故时间与运转时间的比值,以百分数表示: 事故率=事故台时/运转台时×?100% 设备完好率是衡量设备良好状况的指标。按照完好设备的标准,进行定期检查。设备完好率是全厂完好设备的台数与设备总台数的比值,用百分数表示: 设备完好率=完好设备台数/设备总台数×?100% 3>、质量合格率 烧结矿的化学成分和物理性能符合原冶金部YB/T421-92标准要求的叫烧结矿合格品,不符合的烧结矿叫出格品(见附件表1-1)。 根据部颁标准的规定,实际生产检验过程及工艺试验中出现的一部分未检验品和试验品,不参加质量合格率的计算。因此: 质量合格率=(总产量-未验品量-试验品量-出格品量)/(总产量-未验品量-试验品量)×?100% 质量合格率是衡量烧结矿质量好坏的综合指标。 烧结矿合格品、一级品或出格品的判定根据其物理化学性能的检验结果而定,主要包括烧结矿全铁(TFe)、氧化亚铁(FeO)、硫(S)含量、碱度(CaO/SiO2)、转鼓指数(≥)、粉末(<5mm)等,有的厂还包括氧化镁(MgO)、氟(F)、磷(P)等。 一级品率=一级品量/合格品量×?100% 转鼓指数=检测粒度(≥5mm)的重量/试样重量×100% 烧结矿筛分指数=筛分后粒度(≤5mm)的重量/试样重量×100% 4>、烧结矿的原料、燃料、材料消耗定额 生产一吨烧结矿所消耗的原料、燃料、动力、材料等的数量叫消耗定额,包括含铁原料、熔剂料、燃料、煤气、重油、水、电、炉蓖条、胶带、破碎机锤头、润滑油、蒸气等。 5>、生产成本与加工费 生产成本是指生产一吨烧结矿所需的费用,由原料费及加工费两部分构成。 加工费是指生产一吨烧结矿所需的加工费用(不包括原料费)。它包括辅助材料费(如燃料、润滑油、胶带、炉蓖条、水、动力费等),工人工资,车间经费(包括设备折旧费、维修费等)。 6>、劳动生产率

武科大烧结理论总结翻译

第一章 烧结定义:1. 烧结是一种粘结颗粒成一个连贯的热处理,主要的固体结构通过大众运输事件往往发生在原子尺度。结合会提高强度和降低系统的能量。 2. 烧结是用来从金属或/和利用热能陶瓷粉体的密度控制的材料和部件的生产加工技术 烧结驱动力的总的界面能的降低: 相关术语:密度表面积颈项比收缩膨胀 致密化与粗话区别?Figure1.5 两种主要形式的液相烧结:瞬时、持续液相 烧结理论的问题/? 第二章烧结测量技术 1.压汞法它是一种含开孔网络的材料的孔隙大小分布估计方法。 2.泡点测试测量最大连通孔尺寸。 3.氦气测比重是衡量闭合孔隙率 显微结构: 烧结材料的微观结构特征参数,包括孔隙结构以及晶粒大小,晶粒取向,晶粒的形状,相对量的每个阶段,和连接或接触之间的相。 1)烧结颗粒直接成像是可能使用热台光学或电子显微镜。 2)定量显微镜提供了一种从抛光截面取自烧结材料中获取信息。 如何表达的尺寸变化? 正式,线性尺寸变化定义为Δ1/10,反映在初始绿色长度L0变化到最终的烧结长度Ls作为△L.如果烧结后的尺寸较大时,这一过程被称为肿胀和Δ1/10是积极的,而如果烧结后的尺寸小,过程被称为收缩和Δ1/10是负的。 测量表面面积的两个主要的分析技术,气体吸附和气体渗透性。 都需要一个开放的孔结构允许通过测试气体的访问。 热反应: 热测量在某些应用烧结材料是重要的,但很少使用的热性能随烧结。然而,热特性做证明重要的反应烧结过程的理解。例如,不同的热分析是在确定第一温度熔体形成液相烧结过程中的帮助。 对于相对相含量的测定X射线衍射,对浓度分布测定的电子探针分析。 总结: 许多重要的参数可以从微观结构的测定。晶粒尺寸,确定的表面积,孔的尺寸或脖子的尺寸为函数的烧结时间和烧结温度对烧结动力学检查允许 第三章:固相烧结原理 ——烧结形成固体颗粒之间的链接当被加热时! -------链接去除自由表面减少表面能量,通过晶粒生长的晶粒边界区域的二次消除。 相应的温度是绝对的烧结温度对绝对的熔化温度。大多数材料具有烧结温度在0.5和0.8之间的同源性。 因此,有两种形式:工业烧结致密化和那些专注于那些专注于加固不一定引起的尺寸变化。 初期烧结通常发生在加热的特点是快速增长间的脖子。虽然有相当大的颈长,颈部的实际体积小,所以需要一个小的质量形成的脖子。 在中间阶段,孔隙结构变得光滑和发展相互关联的,近似圆筒形性质。曲率和表面面积导致较慢的烧结的同时减少。晶粒生长在中间阶段的烧结后部分发生是很常见的。 出现这些孤立的毛孔显示最后阶段的烧结致密化和慢。 初始阶段通常对应于一个大曲率梯度组织。颈部尺寸比通常小于0.3,收缩率低(小于

烧结金属材料(不包括硬质合金) 室温拉伸试验(标准状态:即将实施)

I C S77.160 H22 中华人民共和国国家标准 G B/T7964 2020 代替G B/T7964 1987 烧结金属材料(不包括硬质合金) 室温拉伸试验 S i n t e r e dm e t a lm a t e r i a l s(e x c l u d i n g h a r d m e t a l) T e n s i o n t e s t i n g a t r o o mt e m p e r a t u r e 2020-03-06发布2021-02-01实施 国家市场监督管理总局

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准代替G B/T7964 1987‘烧结金属材料(不包括硬质合金)室温拉伸试验“三 本标准与G B/T7964 1987相比,除编辑性修改外,主要技术变化如下: 屈服点 改为 屈服强度 , 屈服应力 改为 规定塑性延伸强度 , 伸长率 改为 断后伸长率 (见第1章,1987年版的第1章); 增加了规范性引用文件(见第2章); 由 记录相应的负荷二变形或绘出应力-应变图(负荷-伸长图),计量力学性能 修改为 由计算 机记录相应的负荷二变形,得到负荷-伸长图,并计算力学性能 (见第3章,1987年版的第2章); 修改了使用符号的表示和相应的说明(见第4章,1987年版的第1章); 将 按照G B/T7963 87‘烧结金属材料(不包括硬质合金)拉伸试样“执行 修改为 试样的制 备和要求按照G B/T7963的规定执行 (见第5章,1987年版的第3章); 试验机部分修改为 用于拉伸试验的任何系统的试验机,准确度应为1级或优于1级,并按照 G B/T16825.1进行检验 (见6.1,1987年版的4.1); 明确了引伸计的准确度要求为1级或优于1级(见6.3,1987年版的4.3); 将尺寸测量仪器的 精度0.02mm 修改为 精度0.01mm (见6.4,1987年版的4.4); 将 测量精度0.02mm 修改为 测量精度0.01mm (见7.1.1,1987版的5.1.1); 修改了速率控制模式(见7.2,1987年版的5.2); 删除 指针法 , 屈服点 改为 屈服强度 , 屈服应力 改为 规定塑性延伸强度 , 从拉伸曲线上确定实验过程中的最大值,或从测力度盘上读出最大力值 改为 记录试验过程中的最大力 值 , 伸长率 改为 断后伸长率 (见第8章,1987年版的第6章); 将 测量精度0.02mm 修改为 测量精度0.01mm (见8.5.1,1987年版的6.5); 删除了 修约方法按G B1.1 81‘标准化工作导则编写标准的一般规则“附录C执行 (见1987年版的第7章); 修改了强度修约,改为按1M P a修约(见9.2,1987年版的7.2)三 本标准由中国有色金属工业协会提出三 本标准由全国有色金属标准化技术委员会(S A C/T C243)归口三 本标准起草单位:钢铁研究总院二深圳市注成科技股份有限公司二中南大学二广东省材料与加工研究所三 本标准主要起草人:罗志强二董莎莎二刘龙二李南二张越二王守仁二徐静二谭立新三 本标准所代替标准的历次版本发布情况为: G B/T7964 1987三

相关主题
文本预览
相关文档 最新文档