当前位置:文档之家› 求不定积分常用的几种方法

求不定积分常用的几种方法

求不定积分常用的几种方法
求不定积分常用的几种方法

求不定积分常用的几种方法作者:王佳佳

来源:《科学与财富》2020年第26期

不定积分公式大全

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 1 1μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ?+-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1 csc cot 22 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1 即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

积分大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一?不定积分的概念与性质 定义1如果F (x)是区间I上的可导函数,并且对任意的x I,有F'(x)=f(x)dx则称F (x)是f(x)在区间I上的一个原函数。 定理1 (原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数 F (x),使得F (x) =f(x) (x I) 简单的说就是,连续函数一定有原函数 定理2设F (x)是f(x)在区间I上的一个原函数,贝U (1) F (x) +C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2 设F (x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数 F (x) +C称 为f(x)在区间I上的不定积分,记为f(x)d(x),即f(x)d(x)=F(x)+C 其中记号称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则[f(x) g(x)]dx= f(x)dx g(x)dx. 性质2 设函数f(x)存在原函数,k为非零常数,贝U kf(x)dx=k f(x)dx. 二.换元积分法的定理 如果不定积分g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[ (x)] ( (x).做变量代换u= (x),并注意到’(x) dx=d (x),则可将变量x的积分转化成变量u的积分,于是有 g(x)dx= f[ (x)] ( (x)dx= f(u)du. 如果f(u)du 可以积出,则不定积分g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△3 2()i i i S f x x n ξ??=?=? ??? (3)求和:33111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ???????∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ????????? ?? =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ? =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++. 所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原 函数. 三、几何意义法 例3 求定积分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯 形的 面积,只要作出图形就可求出. 解:1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所以1 1)d x -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函 数,所以在对称区间的积分值均为零.

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

不定积分最全公式

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx d x=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e |cos(x)|+C = log e |sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11.∫tan 2(x)dx = tan(x)-x+C 12.∫cot 2(x)dx = -cot(x)-x+C 13.∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14.∫sin(ax)co s(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15.∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16.∫xsin(x)dx = sin(x)-xcos(x)+C 17.∫xcos(x)dx = cos(x)+xsin(x)+C 18.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20.∫e x dx = e x +C 21. ∫ a dx = a log |x| (a 为常数) x

常用求导积分公式及不定积分基本方法定稿版

常用求导积分公式及不定积分基本方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 22 csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='?? ????? (3)若F (x )是f (x )的一个原函数,则 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与 . 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有 . 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有 . 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分 . 分析:该不定积分应利用幂函数的积分公式.

不定积分的常用求法(定稿)[1]

郑州大学毕业论文 题目:不定积分的常用求法 指导老师:任国彪职称:讲师 学生姓名:王嘉朋学号:20082100428 专业:数学与应用数学(金融数学方向) 院系:数学系 完成时间:2012年5月25日 2012年5月25日

摘要 微积分是微分学与积分学的简称,微积分的创立是数学史上最重要的事情之一。不定积分的相关知识是微积分中重要的知识,掌握不定积分的求法是学好微积分的前提。另外,不定积分的求法和定积分的求法有一定的相关性,在求面积以及质量中也有一定的应用。但是不定积分的计算是数学分析中的难点之一。求不定积分的方法灵活多样,本文介绍了微分学的来源,创立以及发展历史。并且基于自己对不定积分的理解,通过实例对不定积分的求法进行了总结。 关键字:微积分,微分学,积分学,不定积分,求解方法。 Abstract: Calculus is short for differential calculus and integral calculus and its foundation is one of the most important events in math history. Relevant knowledge in indefinite integral is very significant in calculus learning. Grasping solutions to indefinite integral is the premise of leaning calculus well. Besides, there is correlation between solutions to indefinite integral and definite integral. Indefinite integral can be applied in obtaining area and mass. However,calculating indefinite integral is one of the most hardest parts in math analysis. A variety of methods can be used in seeking indefinite integral. This paper introduced the origin of calculus, founding and developing history. Besides, through some examples based on understanding of indefinite integral,this paper also summarized solutions to indefinite integral. Keywords: calculus; differential calculus; integral calculus; solutions

不定积分最全公式

不定积分最全公式-CAL-FENGHAI.-(YICAI)-Company One1

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2)dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2)dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e|cos(x)|+C = log e|sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11. ∫tan 2(x)dx = tan(x)-x+C 12. ∫cot 2(x)dx = -cot(x)-x+C 13. ∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14. ∫sin(ax)cos(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15. ∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16. ∫xsin(x)dx = sin(x)-xcos(x)+C 17. ∫xcos(x)dx = cos(x)+xsin(x)+C 18. ∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19. ∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20. ∫e x dx = e x +C 21. ∫a dx = a log |x| (a 为常数) x

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 This model paper was revised by LINDA on December 15, 2012.

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '= 二、基本积分公式 1. 1d (111)x x x C μμμμ+=+ =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+?

6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 2 1d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+ ( ln x x C =++ 9. 221 1d ln 2x a x C a x a x a -=+-+? 三、常用三角函数关系 1. 倍角公式 21cos 2sin 2x x -= 21cos 2cos 2x x += 2. 正余切与正余割 正割 1 sec cos x x = 22sec 1tan x x =+ 余割 1csc sin x x = 2 2csc 1cot x x =+ 四、常用凑微分类型 1. 1 1 ()d d ()ln ()()()f x x f x f x C f x f x '==+??;

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

不定积分公式大全 基本公式有哪些

不定积分公式大全基本公式有哪些 inx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec (x) dx = tanx + C ∫ csc (x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a + x ) = (1/a)arctan(x/a) + C ∫dx/√(a- x ) = arcsin(x/a) + C ∫dx/√(x+ a ) = ln|x + √(x+ a )| + C ∫dx/√(x- a ) = ln|x + √(x- a )| + C ∫√(x- a ) dx = (x/2)√(x- a ) - (a /2)ln|x + √(x- a )| + C ∫√(x+ a ) dx = (x/2)√(x+ a ) + (a /2)ln|x + √(x+ a )| + C ∫√(a- x ) dx = (x/2)√(a- x ) + (a /2)arcsin(x/a) + C 不定积分的基本公式有哪些

不定积分基本公式

第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined Integral and Direct Integral ) 课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容: 一、不定积分的基本公式 由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 ( )1222()01 ()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1 (arctan )1(arccos )1 (cot )1x x x x C x x x e e a a a x x x x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'= '= +'='=- +21 (log )ln a x x x a '= 不定积分的基本公式 ( ) 1 22 2011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x x x x dx C dx x C x x dx C a e dx e C a a dx C a dx x C x xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x C x C dx x C x αα α+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++????????????? ?2arccos arc cot 11 log ln a x C dx x C x dx x C x a =-+=-++=+???

求积分的几种常规方法

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化 老师:左功武 完成时间:2015年12月29日 求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则

和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 1.1 不定积分 积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c 不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。 1.2 定积分 相对于不定积分,还有定积分。所谓定积分,其形式为∫[a:b]f(x)dx 。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 微积分的最初发展中,定积分即黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。而实变函数中,可以利用测度论将黎曼积分推广到更加一般的情况,如勒贝格积分. 用公式表示是:∫[a,b]f(x)dx=lim(n->∞)∑(0-n)a+f(ti)*(b-a)/n 定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0

相关主题
文本预览
相关文档 最新文档