当前位置:文档之家› 基础代数学群、环及域

基础代数学群、环及域

基础代数学群、环及域
基础代数学群、环及域

基础代数学群、环及域

P. M. Cohn, Department of Mathematics, University College London, UK

Basic Algebra

Groups, Rings and Fields

2003, 465pp.

Hardcover EUR 46.95

ISBN 1-85233-587-4

Springer-Verlag

本书作者在上世纪80~90年代曾出版三卷本的《Algebra》(Wiley and Sons出版公司),被公认为大学抽象代数引论性教材的典范。作者现在对此作了改写和增删,重新编写为二卷本教材,本书是其中的第1卷,包括了抽象代数的基础理论,可以作为大学数学系2~3年级及研究生低年级的教材。

全书含11章:第1章是作为抽象代数的基本语言的集论知识;第2~6章分别讲群、格和范畴、环和模、代数及多线性代数;第7章和第11章讲域论(包括无限域扩张);第8章讲述二次型及与之紧密相关的有序域;第9、10两章论

述赋值论和交换环论(它们对代数几何有重要意义)。各节及每章末尾均有大量习题和补充题。

本书保持了作者叙述清晰,论证严谨的一贯风格,并增加了许多例子,可读性强,可供我国大学数学系师生和研究人员阅读。

朱尧辰,研究员

(中国科学院应用数学研究所)

Zhu Yaochen, Professor

(Institute of Applied Mathematics,the Chinese Academy of Sciences)

现代代数基础复习资料

1 设a ,b 为群G 的元素,设a 为5阶元,且33 a b ba =,证明ab ba =。 证明:因为33a b ba =,所以133b a b a -=,所以1326()b a b a -=,即166 b a b a -=。 又a 为5阶元,所以5a e =,所以1 b ab a -=,即ab ba =。 2 证明对群G 的非空子集H ,若对所有,x y H ∈,1 xy -也属于H ,证明H 是一个子群。 证明:因对,x y H ∈,1xy H -∈,所以11 ,,x H e xx H x xe H --?∈=∈=∈, 1 111 ,,()y H y e y H x y x y H ----?∈=∈=∈,所以H 是G 的子群。 3 证明在任意群G 中,对其任意两个元素a ,b ,ab 与ba 的阶相等。 证明:因为()1 ab a ba a -=,故ab 与ba 共轭。 设ab n =,若()m ba e =,则1[()]m a ba a e -=,即()|m ab e n m =? 所以||||ab ba n ==。 4 置换群4S 中有多少个2阶元? 解:由置换群中每个元素都可表示为不相交的轮换之积,而k 轮换的阶为k 。两不相交轮换的阶为k 轮换的最小公倍数。故二阶元有9个,为: (1 2),(1 3),(1 4), (2 3), (2 4),(3 4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)。 5证明群G 的自同构的集合以映射的合成为乘法构成一个群。 证明::AutG G =群的所有自同构的集合,恒等映射,id AutG AutG ∈≠?故 由G 上的所有双射显然构成一个群,关于映射的乘法,下证AutG 为其子群 (1)AutG 对于映射的合成封闭: ,(),()A u t G a b G a b G στττ?∈?∈?∈,, 故()(())(()())(())(())()()ab ab a b a b a b στστσττστστστστ==== 故AutG στ∈。 (2)下证1 AutG AutG σσ -?∈?∈ '''''1'1,,,,(),()(),()AutG a b G a b G a a b b a a b b σσσσσ--∈?∈?∈====使即 则1 1 ' ' 1 '' 1 '' '' 1 1 ()(()())(())()()()ab a b a b a b a b a b σσσσσσσσσσ------===== 所以1AutG σ -∈。 故AutG 关于映射合成的乘法构成一个群。 6 设G 是一个群。证明由()n x x φ=定义的映射:G G φ→是G 到自身的同态。

近世代数基础练习题

1.证明:在环R 到环R 的一个同态满射φ之下,R 的一个子环S 的象S 是R 的一个子环。 证明: S 为R 的一个子环, ∴0∈S , 而0=(0)φ∈S , 故S 非空。 对,a b ?∈S ,?,a b ∈S ,使得a =()a φ,b =()b φ 由于S 是环R 的子环,故a b S -∈,ab S ∈ ∴ a b -=()a φ-()b φ=()a b φ-S ∈ a b = ()a φ()b φ=()ab φS ∈ 故S 是R 的一个子环。 2. 证明:在环R 到环R 的一个同态满射φ之下, R 的一个子环S 的逆象S 是R 的一个子环。 证明: S 为R 的子环, ∴0∈S , 而0=(0)φ∈S , ∴0∈S ,故S 非空。 对?,a b ∈S ,?,a b ∈S ,使得 a =()a φ,b =()b φ, 由于S 是环R 的子环, 故 a b -=()a φ-()b φ=()a b φ-S ∈ a b =()a φ()b φ=()ab φS ∈ ∴a b S -∈,ab S ∈ 故S 是R 的一个子环。 3.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的象A 是R 的一个理想。 证明: A 为R 的理想,∴ 0A ∈,,而0=(0)φ∈A ,故A 非空。 对,a b A ?∈,r R ?∈, ?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的一个理想,故 a b A -∈,ra A ∈,ar A ∈

∴ a b -=()a φ-()b φ=()a b φ-A ∈ ra =()r φ()a φ=()ra A φ∈, ar =()a φ()r φ=()ar A φ∈ 故 A 是环R 的一个理想。 4.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的逆象A 是R 的一个理想。 证明: A 为环R 的理想,∴0∈A , 而0=φ(0)∈A , ∴0∈A, 故A 非空。 对于?,a b ∈A ,?r R ∈,?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的理想, 故 a -b ∈A ,ar A ∈,ra A ∈。 a -b =()a φ-()b φ=()a b φ-A ∈ r a =()r φ()a φ=()ra φ∈A , ar =()a φ()r φ=()ar φA ∈ ∴a b A -∈,ra A ∈,ar A ∈, 故 A 是R 的一个理想。

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数与线性代数都称为经典代数(Classical algebra),它的研究对象主要就是代数方程与线性方程组)。近世代数(modern algebra)又称为抽象代数(abstract algebra),它的研究对象就是代数系,所谓代数系,就是由一个集合与定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论与域论等几个方面的理论,其中群论就是基础。下面,我们首先简要回顾一下集合、映射与整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算与整数 3.1.1 集合 集合就是指一些对象的总体,这些对象称为集合的元或元素。“元素a 就是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不就是集合A 的元”。 设有两个集合A 与B,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 就是B 的子集,记作B A ?。若B A ?且A B ?,即A 与B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 就是B 的真子集,或称B 真包含A,记作B A ?。 不含任何元素的集合叫空集,空集就是任何一个集合的子集。 集合的表示方法通常有两种:一种就是直接列出所有的元素,另一种就是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{}Λ,3,2,1,0±±±=Z ; 非零整数集合{}{}Λ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{}Λ,3,2,1=+Z ; 有理数集合Q,实数集合R,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 就是无限集,∞

什么是代数学

什么是代数学 在学习代数学过程中有人问:"近世代数讲完群环域以后就没再讲其他的东西,后面还应该学习些什么知识,才可以继续深入研究下去。" 这个问题的复杂程度不亚与代数学本身,我仅谈一下自己认识到的一些看法: 首先说明,认为近世代数讲完群环域以后就完全是其他更高级的东西的说法是不对的,近世代数中讲的仅仅是群环域的基本概念及引论,事实上它们每一种都有一门或几门学科分支,国内很多学校已经有这样的硕士,博士点,接下来的环与模范畴、同调代数当然是最基本的。我来介绍一下我所接触的代数学: 我认为代数学是研究代数结构的学问,这有两层含义: 第一层含义是研究各种代数结构,从而就不仅是群环域,还有这些结构的各种子结构,弱结构和对这些结构的公理进行变形后得到的各种结构;第二层含义是通过各种途径和技术来研究这些代数结构,比如同调的方法,范畴论的方法, 还有新近的量子化方法等等。 代数有两种含义,广义的和狭义的。 广义的代数是指群,环,域等等(下面将要看到,这个等等是不寻常的)这些结构及研究他们的方法论的总和; 狭义的代数一般专指向量空间上定义了某种满足一些公理化条件的乘法后的这种结构,这个概念当然可以推广到模上。需要注意的是很多书上所说的代数还专门指乘法满足结合律的结合代数,这就是说这个空间对于其中的乘法运算构成环。 下面列举我接触到的部分课程清单(个人观点, 分类不很科学和完整,请大家指正和补充): [基本理论]: 群及其表示论 分支: 一般群论拓扑群(连续群)置换群及其应用可解群幂零群 典型群有限群论李群李型单群高阶K-群无限Ablel群 半群理论 Ellis半群离散群组合群论(线性)代数群 群表示论(常表示与模表示) 等等 [基本理论]: 环与模范畴, 代数及其表示论, 分支: 一般环论根论正则环局部环非交换环非交换(结合)代数 分次环与模有限维代数可除代数 C*代数算子代数 V on Neumann代数非交换多项式代数 (Ore代数) Artin代数及表示论 腔胞代数 Lie代数无限维李代数 Lie超代数 Colored李代数 Kac-Moody代数顶点算子代数微分代数(拟)遗传代数(Quasi-hereditary) 量子代数拓扑代数等等 一些有"名" 的代数:

13年《基础代数》复习题

基础代数》复习题 0.概念:群中元素的阶数; 正规子群; 商群;单群;(左、右) 理想;商环;分式环;整环;环的特征;模;域;代数元; (1)写出所有不同构的 18、 36 阶交换群。 写出所有不同构的p 2 阶群,P 为奇素数。 (1)证明 56 阶群有正规的 Sylow 2-子群或者有正规 的 Sylow 7- 子群。 2)证明 p 2q 阶群不是单群。 3)设是 p, q 是不同的素数, 证明 pq 阶群都有正规的 Sylow 子群. 4. 证明任意 2p 阶群都同构于循环群或者二面体群。 5.判断下面的命题是否正确?对正确的请加以证明;对不 正确的请举出反例说明。 (1)在有限群中,如果 a 与b 共轭,c 与d 共轭,那么ac 与 bd 共轭。 (2)如果H 是G 的正规子群,K 是H 的正规子群,那么K 是 G 的正规子群。 ⑶ 设Z(G)是有限群G 的中心,并且G/Z(G)是循环群,那 么 G 是交换群。 (4)设G 是有限群,那么对它的阶数|G|的每个因子n, G 都 有n 阶子群。 1. 求二面体群的全部子群、正规子群。 2. 3.

(5)设G是有限群,G的任意指数为2、3的子群都是G的 正规子群。 6.用GL(n,q)和SL(n,q)分别表示有限域 GF(q)上n维向量 空间上全体可逆线性变换、行列式为1的全体可逆线性变换所构成的群.O (1)分别求GL(n,q)和SL(n,q)的阶数。 (2)分别求GL(n,q)和SL(n,q)的中心。 7.设M2(F)是域F上全体2级矩阵按矩阵的加法、乘法所构 成的环。 (1)求M2(F)的所有左理想和右理想。 ⑵求M2(F)的所有理想。 &设G是有限群,P是其阶数|G|的最小素因子,证明 任意指数为P的子群都是G的正规子群。 9 .设G是有限群,如果Aut G = 1 ,那么G的阶数为1 10.求5次交错群、4次对称群的所有不共轭的子群 11叙述群同态基本定理、Sylow定理、同构定理. 12.试给出G的子群H是正规子群的几个等价条件 13求在模18剩余类环乙8 中的所有零因子、幕零元 14设G是有限群,P是其阶数|G|的最小素因子,证明任意阶数为P 的正规子群包含在 G的中心中。 15设a是有限域F=GF(2)上多项式x3+x + 1的根, (1)求扩域F(a)作为有限域F上线性空间的一组基; (2)化简(a4+a3+a2+a+1)(a中1)Section A 之所以不把二氧化碳列为污染物,是因为二氧化碳是大气的天然成份,植

近世代数学习系列一 学习方法

近世代数学习方法 “近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。为此,下面介绍五种常用的学习方法。 一、通过例子来加深对基本理论的理解 针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。 当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。 二、通过变换角度来寻求问题的解法 通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。下面举例说明这种方法: 例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。 对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知

数与代数教学方法初探

“数与代数”教学方法初探 常丰镇中心小学杨维涛与传统的小学数学相比,“数与代数”这一部分有了很大的变化,其中最为重要的转变是:“把数学看作是大量概念的记忆与技能的掌握”转变到“认为数学是一种数感形成和问题解决的过程”,也就是说,学生学习的最终目标是数学素养的提高,不是学习一些孤立的概念与技能。针对此,特从以下三个方面提出“数与代数”知识教学建议: 一、教材处理办法 小学阶段的“数与代数”与其他三个知识领域相比,涉及面最广、知识点最多。具体来说可以分为以下几个内容板块:数的认识、数的运算、常见的量、式与方程以及探索规律,另外解决问题的教学是融入其中的。因此,下面我们将从以下各个方面进行具体的阐述: (一)、数的认识——理解意义培养数感 1.数的教学以理解数的意义为重点。 (1)让学生在生动具体的情境中认识数。 (2)理解数的意义要与数的读写和计算紧密结合起来。 2.让学生在数学活动中形成数感 “数感”主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达的交流信息;能为解决问题而选择适当的算法,并对结果的合理性作出解释。 (二)、数的运算——理解算理掌握算法 计算是帮助人们解决问题的工具,是小学生学习数学需要掌握得基础知

识和基本技能,人教版实验教材在编排计算内容时,最突出的变化是不再孤立的进行计算教学,而是将计算教学与解决问题教学有机的结合在一起。 (三)、常见的量——重视体验体会意义 小学阶段常见的量很多,在这部分内容的教学中,应把通过学生的体验、感悟,来体会“量”的意义作为重点。 “常见的量”这部分内容的操作性比较强,而教材的编排中也安排了很多活动,如毫米的认识中的测量课本,分米的认识中的测量课桌,千米的认识中要求到校外走1千米的路程,秒的认识中要求学生通过踢毽子、画画、走楼梯、写字等活动体验1分钟的长短等等,因此,在教学中我们要充分创造让学生亲身体验的机会。并且要注意活动素材的选择应与教学重点相结合。 (四)、式与方程——把握转折:从“算术”走向“代数” “式与方程”是代数学习的开端,作为学生进行数学学习的重要转折点,教师在教学中要注意的问题比较多。所以只能择其主要,概述如下: 1.学习用字母表示数,要循序渐进。 用字母表示数是代数学习的首要环节,理解用字母表示数的意义是学习代数的关键,也是在后续学习中运用代数式、方程、不等式、函数进行交流的前提条件。在教学时,要从学生熟悉的生活中选择一些典型的数量关系,引导学生用字母表示。 2.认识方程,要体验“数学建模” 方程思想的首要方面是“能根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型”。因此,教学应通过设计丰

高等代数学习报告

竭诚为您提供优质文档/双击可除 高等代数学习报告 篇一:高等代数期末论文学习总结 高等代数学习总结 摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之 一。本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。关键词: 行列式矩阵二次型 正文: 《高等代数》是数学学科的一门传统课程。在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用 性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。它是在初等代数的基础上研究对象进一步的扩充,引

进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。 在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。经过两学期的学习后,我发现,这两者之间区别还是挺大的。高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。 经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。下面就对两学期的学习做一个回顾和总结。行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域 定义:设A=(??????)为数域F上的n×n矩阵,规定A的行列式为

代数学基础学习笔记

代数学基础学习笔记 第一章 代数基本概念
习题解答与提示(P54)
1. 如果群 G 中,对任意元素 a,b 有(ab) =a b ,则 G 为交换群. 证明: 对任意 a,b G,由结合律我们可得到 (ab) =a(ba)b, a b =a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群 G 为交换群.
2 2 2
2
2
2
2. 如果群 G 中,每个元素 a 都适合 a =e, 则 G 为交换群. 证明: [方法 1] 对任意 a,b G, ba=bae=ba(ab) =ba(ab)(ab) =ba b(ab)=beb(ab)=b (ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,b G, a b =e=(ab) , 由上一题的结论可知 G 为交换群.
1
2 2 2 2 2 2
2

代数学基础学习笔记
3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合 条件: (1) (2) (3) a(bc)=(ab)c; 由 ab=ac 推出 a=c; 由 ac=bc 推出 a=b;
证明 G 在该乘法下成一群. 证明:[方法 1] 设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2) 可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2> 再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3> G={a1,a2,…,an}={a1ak, a2ak,…, anak}------------<4> 由<1>和<3>知对任意 at G, 存在 am G,使得 akam=at. 由<2>和<4>知对任意 at G, 存在 as G,使得 asak=at. 由下一题的结论可知 G 在该乘法下成一群.
下面用另一种方法证明,这种方法看起来有些长但思
2

关于高等代数与数学分析的学习体会

高等代数与数学分析的学习体会 摘要:作为数学系的学生,高等代数和数学分析,是我们一进大学就开始学习的两门最重要的课程。同时它们也是数学中最基础的两门课程,几乎所有的后学课程都要用到它们。在本文中,我就自己对这两门课程的基本内容,学习体会,以及这两门课程与后学课程的联系三个方面谈了一些自己的看法。 高等代数部分 基本内容: 在谈自己对高等代数的学习体会之前,我想先回顾一下高等代数的基本内容。我们大一所学习的高等代数,主要包括两部分:多项式代数和线性代数。 其中线性代数部分又可以分成:行列式,线性方程组,矩阵,二次型,线性空间,线性变换, —矩阵,欧几里得空间,双线性函数与辛空间等一些章节。而在这些章节中,又是以向量理论,线性方程理论和线性变换的相关理论为核心的。 如果和以前学过的初等代数相比,我觉得,高等代数在初等代数的基础上把研究对象作了进一步的扩充。它引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 简单体会: 记得大一刚学习高等代数的时候,那时感觉自己真的学得云里雾里,因为那时感觉它实在是太抽象了而无法理解。但是通过不断地对它的学习,慢慢地开始有好转,开始感觉它不再那么陌生,并对它有了初步的认识。而当我学完抽象代数之后,我发现自己对高等代数的有了更好的理解。其实高等代数中的每个不同的章节,都是由一个集合再加上一套运算规则,进而构成的一个代数结构。 例如,第一章多项式,我们所有的讨论都是在某个数域P上的一元多项式环中进行。其中的某个数域P中的一元多项式全体,就相当于某个集合,在这个集合的基础上再加上关于多项式的运算规则,就构成了一个代数结构。 因为高等代数具有这种结构,所以在学习每种代数结构时,我们总会先学这个代数结构是建立在那个集合上以及它的运算规则是怎样定义的。因此,在高等代数学习中对每种代数

代数学基本定理

代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。 代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。 有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在[1] 。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。 2证明历史 代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。迄今为止,该定理尚无纯代数方法的证明。大数学家J.P. 塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。 该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯分析,证明仍然很不严格的。 代数基本定理的第一个严格证明通常认为是高斯给出的(1799年在哥廷根大学的博士论文),基本思想如下: 设为n次实系数多项式,记,考虑方根: 即与 这里与分别表示oxy坐标平面上的两条曲线C1、C2,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出,即,因此z0便是方程的一个根,这个论证具有高度的创造性,但从现代的标准看依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂,正中隐含了很多需要验证的拓扑结论等等。 高斯后来又给出了另外三个证法,其中第四个证法是他71岁公布的,并且在这个证明中他允许多项式的系数是复数。 3证明方法 所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。 定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式 就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。 许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有: 复分析证明

高等代数教学大纲

中国海洋大学本科生课程大纲 课程属性:学科基础 课程性质:必修 一、课程介绍 1.课程描述: 高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。高等代数内容包含理工科所开设的线性代数的主要内容。 2.设计思路: 开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。 19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。 - 2 -

高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。 3.课程与其他课程的关系: 先修课程:无; 并行课程:数学分析、空间解析几何; 后置课程:近世代数。高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。 二、课程目标 本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。 到课程结束时,学生应达到以下几方面要求: (1)知识掌握良好。会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准 - 2 -

初中代数基础知识试题-123

一、 填空题 1. 一个数等于它倒数的4倍,这个数是__________. 2. 已知:| x | = 3,| y | = 2,且 xy <0,那么 x + y =__________. 3. 16的平方根是_________. 4. 用四舍五入法,对200626取近似值,保留四个有效数字是2006261≈_________. 5. 如果 a = 1 +2,b=211 -,那么a 与b 的关系是_________. 6. 如果单项式 b y x 2223与87y x a -是同类项,那么=+b a _________. 7. 若代数式1 ||)1)(2(-+-x x x 的值为零,那么x 的取值应为_________. 8. 某商品原价为 a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场 物价调整,又一次降价20%,降价后这种商品的价格是_________. 9. 计算:=?÷4 21245])[(a a a __________. 10. 因式分解:a 3 + a 2b – ab 2 – b 3 =_________. 11. 在实数范围内分解因式:9x 2 + 6x – 4 =________. 12. 化简:=+-÷-b a b a b ab 2 22 )(____________. 13. 化简:=---n m n m 1)(____________. 14. 计算:=--12134 ____________. 15. 如果| y – 3 | + (2x – 4)2 = 0,,那么2x – y =____________. 16. 如果 x = 1是方程x 2 + kx + k -5 = 0的一个根,那么 k =____________. 17. 若???-==25y x 是方程组? ??==+n xy m y x 的一个解,那么这个方程组的另一个解是____________. 18. 分式方程11 14=--x x 的解是____________. 19. 分式方程25211322=-+-x x x x ,设y x x =-1 2,那么原方程可化为关于y 的整式方程是____________. 20. 无理方程x x =-2的解是____________.

关于高等代数学习的感想

关于高等代数学习的感想 数学是一门需要耐心与细心的学科,很多同学一提到数学就觉得头疼。的确,数学繁复的证明,难记的公式,复杂的计算让很多同学望而生畏,正因为如此,一旦经过自己的努力解出一道数学题,那种兴奋的感觉是难以形容的。我想,数学的魅力就在于此吧。 大一下学期,我们开设了高等代数这门课程。高等代数主要是对多项式、行列式、矩阵、线性空间、线性变换等进行学习。记得高等代数第一节课时,我就对高代复杂且枯燥的证明失去信心,看着密密麻麻的证明和叙述,我完全没有看下去的兴趣。高代老师段辉明看出了我们的困惑,她耐心地引导我们,尽量使ppt内容简洁易懂,活跃课堂气氛,使同学们在幽默轻松的环境下学习。渐渐地,高代的课堂上充满了欢乐,同学们对高代的兴趣也逐渐提升,大家的学习成绩自然也提高了不少。 经过对高代一学期的学习,我总结出以下的学习技巧:1、按部就班。数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。2、强调理解。概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。3、基本训练。学习数学是不能缺少训练的,平时多做一些难度适中的练习,但要避免陷入死钻难题的误区,要熟悉常考的题型,训练要做到有的放矢。4、标出重点。平常看题看课本的时候,

碰到有好的解题方法或重点内容,可以用鲜艳的彩笔划出来,以便以后复习时能一目了然。5、学会做笔记。做笔记是一种与动手相结合的学习行为,有助于对知识的理解和记忆,是一种必须掌握的技能。学习笔记主要有课堂笔记、读书笔记和复习笔记等,课堂笔记应注意结合教材进行记录,不能全抄全录老师的板书。读书笔记应注意做好圈点勾批,所谓"不动笔墨不读书"。复习笔记应注意做好知识的归纳整理,理清知识结构和联系。还需要指出的是,不论哪种笔记都要做好疑难问题的记录,便于集中处理。做好课堂笔记是学好高等代数必不可少的环节,它为下一步复习提供资料。做课堂笔记是有技巧的,要记那些书本里没有的东西、具有概括性的和一些技巧性的解题方法、常见的题型,这为你以后考试复习提供很好的资料。6、要学好高等代数最基本的就是要做好课前预习,做好课堂笔记及讲究解题的方法、做好课后的复习。这三个步骤是学好高等代数的重要环节。做好课前预习是学好高等代数的重要环节,它为做好后面两个步骤打下基础。我们应对各个章节有一个总的系统的认识,从结构上去把握它,在头脑中初步形成知识体系的框架,对它所包含的内容做一个总体及全面的了解,然后逐步细化、深化,由浅入深,由易到难,这样我们才能把握全局,运筹帷幄,分清主次,使学习有的放矢,对老师要讲的内容,都能知道知识点的意义,从而能使听课收到更好的效果。课后及时复习可以巩固你所学的内容,使你对所学内容进一步了解。7、做好及时复习。在你学完某节内容的当天就得回去看所学的内容,结合书本知识和课堂笔记对所学的内容进行深一步的研究,及时找出不能

代数学之父

“ 代数学之父”——韦达 一、生平简介 韦达(viete 或vieta ,Fran c ois l540—1603.2.23)是法国数学家。出生于法国东部地区的普瓦图(Poitou),是十六世纪最有影响的数学家之一,被尊称为“代数学之父”。他是第一个引进系统的代数符号,并对方程论做了改进的数学家。由于韦达做出了许多重要贡献,成为十六世纪法国最杰出的数学家之一。 韦达1560年就读于法国普瓦图大学,是大学法律系的毕业生。毕业后长期从事法律工作,出任过地方法院律师,法国行政法院检察官,皇室律师,法国最高法院律师等。后从事政治活动,当过议会的议员。他对数学有着浓厚的兴趣,他把他的业余时间用于学习与研究数学。韦达系统地钻研过卡尔达诺、蒂文、塔尔塔利亚、邦贝利和丢番图的著作。为了使自己研究成果及时公诸于世,他自筹资金出版发行。他的数学研究工作为近代代数学的发展奠定了基础,被称为16世纪最伟大的代数学家。在法兰西与西班牙的战争中,他成功地破译了一份西班牙的数百字的密码,为法国打败西班牙提供了重要情报。韦达致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。 韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。韦达第一个有意识地、系统地使用数学符号的人,他不仅用字母表示已知量、未知量及其乘幂,而且用来表示一般的系数。他把符号代数称为类的算术,从而划定了代数与算术的分界。 韦达从事数学研究只是出于爱好,然而他却完成了代数和三角学方面的巨著。他的《应用于三角形的数学定律》(1579年)是韦达最早的数学专著之一,可能是西欧第一部论述6种三角形函数解平面和球面三角形方法的系统著作。他被称为现代代数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。 二、主要数学成就 1、《应用于三角形的数学定律》 1579年发表的《数学定律;应用于三角形》(Canonmathermaticus seuad triangula)一书,系统地叙述了用所有6种三角函数解平面和球面三角形。该书提出了正切定理: )2()2( B A tg B A tg b a b a +-=+-

高等代数研究学习心得

浅谈高等代数研究的学习 如果将整个数学比作一棵参天大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是“数学分析、高等代数、空间几何”。这个粗浅的比喻,形象地说明这“三门”课程在数学中的地位和作用。高等代数是数学中主干部分,其在科学技术中应用非常广泛,无处不在。 例如:二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。 那什么是高等代数,它和初等代数又有什么联系呢? 初等代数从最简单的一元一次方程开始,初等代数课本一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步,多项式代数。 高等代数又是怎样发展起来的呢? 在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然‘dy/dx’在数学上不过是一个符号,表示包括‘Δy/Δx’的极限的长式

Strongart数学笔记:代数K理论的代数基础小结

代数K理论的代数基础小结 最近我在读一点代数K理论,尽管这是个比较年轻的分支,但是却在代数数论、代数几何、代数拓扑、算子代数等理论中都有着广泛的应用,可以说是代数学中的“泛函分析”。代数K理论自然是建立抽象代数的基础之上,特别需要交换与非交换环的内容,下面我就结合环上K0、K1群,对所需的代数基础作一点简单的小结。 所谓环R的K0群,就是R上的f.g.(有限生成)投射模在同构下的等价类的半群完备化,也就是相应等价类的Grothendieck群。这里考虑f.g.条件,是因为在无限生成的条件下,会出现类似Hilbert Hotel的情况,使得K=2K→K=0.这样一来,环上的f.g.投射模就比一般的投射模更受关注,最常见的问题就是问它们什么时候是自由的。一个答案是需要环是PID,因为PID上f.g.模有类似Abel 群的结构定理;另一个答案则是局部环(未必交换),这可以通过推广Nakayama lemma来证明。顺便说一下,即使不要求f.g.条件,在局部环上的投射模也都是自由的,只是证明起来要麻烦一些啊! 对于K0.K1群而言,比较重要的一类环就是Dedekind domain (DD),它是交换的遗传环,有着各种等价的描述:

1)从环的结构上看,DD就是一维的Noether的整闭整环。这里的整闭条件常常用来说明某个环不是DD,比如Z[√-5]就是PID但不是DD的典型例子。 2)从局部化构造来看,DD是Noether的局部DVR.这就使得对任意素理想p,都可以做p-adic赋值。 3)从理想的角度来看:DD的分式理想构成群。此等价于其任意(分式)理想均可逆。 4)从模的角度来看:DD的f.g.投射模是理想的直和。注意比较一下遗传条件,其理想实际上就是投射模。 此外,DD还有一些重要的性质: a)1+1/2的Noether性:理想由两个元素生成,并且其中一个元素可以事先给定。 b)理想的因子分解性:可以分解为素理想(=极大理想)的乘积。因此,相应的理想运算可以转化为素理想因子指数的运算,特别其准素理想是素理想的幂。 c)DD必为半局部环或半单环,前者即为PID.特别有 DD∩UFD→PID. d)DD的环稳定度为2:就是说其矩阵环的能够生成整个环R的行的最小数是2,这样就可以用二阶矩阵群来刻画K1群,导出所谓的Mennicke symbol.

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: $ {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+ Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 —

相关主题
文本预览
相关文档 最新文档