当前位置:文档之家› 超细亚晶粒铝合金的强化机理

超细亚晶粒铝合金的强化机理

超细亚晶粒铝合金的强化机理
超细亚晶粒铝合金的强化机理

细晶强化的机理及其应用

J I A N G S U U N I V E R S I T Y 材料强化与质量评定细晶强化的机理及其应用 Fine-grain strengthening mechanism and its application 学院名称:机械工程学院 专业班级:机械1402 学生姓名:XX 指导教师姓名:XX 指导教师职称:副教授 2015年8 月

细晶强化的机理及其应用 摘要:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性[1]。因此,在实际使用中,人们常用细晶强化的方法来提高金属的力学性能。 关键词:定义、细晶强化机制、细化晶粒本质与途径、细晶强化新方法Fine-grain strengthening mechanism and its application Abstract: polycrystal metal is usually composed of many grain, grain size can be used to represent the number of grain per unit volume, the more the number, grain is fine. Experiments show that the fine grained metal at room temperature than coarse grain metal has higher strength, hardness, plasticity and toughness . Therefore, in the practical use, people often use fine-grain strengthening method to increase mechanical properties of the metal. Keywords:definition, fine-grain strengthening mechanism, refining grain essence new methods and ways, fine-grain strengthening 1引言 通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化[2]。 细晶强化机制包括提高塑性机制和提高强度机制。提高塑性的机制是:晶粒越细,在一定体积内的晶粒数目越多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较为均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度的机制是[3]:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 细化晶粒本质[4]:形成足够多的晶核,使它们在尚未显著长大时便相互接触,完成结晶过程。

铝和铝合金的大气腐蚀机理优选稿

铝和铝合金的大气腐蚀 机理

1铝和铝合金的大气腐蚀机理 铝和铝合金的表面氧化膜是铝合金具有耐大气腐蚀性的主要原因.铝的氧化膜(γ- Al 2O 3)在室温的大气中就可以生成,而且非常迅速和致密,厚度为25~30.也就是说,氧化膜在 大气环境中具有自修复功能.若有水存在或者暴露在大气中几个月以后,最初形成的γ-Al 2O 3的外层转变为一薄层γ-AlOOH.然后,在γ-AlOOH 上又会覆盖上一层Al(OH)3(也可写 成Al 2O 3·3H 2O).从铝-水体系的电位-pH 图可知,Al(OH)3在较大的pH 范围内都会保持稳 定.Al(OH)3从pH=4开始溶解;当pH=2.4时,认为Al(OH)3会完全溶解(事实上,即使pH=2.0 时,铝表面的腐蚀类型仍然是孔蚀.).大部分的降雨、差不多所有的雾、表面蒸发浓缩的液层和铝表面小孔内的电解质都会使铝处于腐蚀状态.环境因素对铝的大气腐蚀的影响和其它金属相似,与环境大气的相对湿度、温度、大气中SO 2的浓度、Cl -的含量以及降水的数 量、酸度相关性较大,同时也受到O 3,NO x 及CO 2等污染组分的轻微影响.大气污染物通过干 湿沉降,使得金属表面存在着和大气中同样丰富的化学组分.暴露在大气中的铝合金表面可分为三层:铝合金及其氧化膜、腐蚀产物层和大气污染物形成的污染层或薄液膜.根据大气化学组分对铝和铝合金化学、电化学反应的不同及形成的腐蚀产物的性质不同,存在着不同的腐蚀机制. 1.氯离子的存在是引起铝和铝合金大气腐蚀的重要原因.由于铝的氯化物具有可溶性,在户外暴露的铝表面上并没有大量的氯化物层存在,只有少量的氯离子进入到腐蚀产物层.Cl -通过竟争吸附,逐渐取代Al(OH)3表面上的OH -生成AlCl 3,如方程式(1)~(3)所示: Al(OH)3+Cl -→Al(OH)2Cl+OH -(1) Al(OH)2Cl+Cl -→Al(OH)Cl 2+OH -(2) Al(OH)Cl 2+Cl -→AlCl 3+OH -(3)

铝合金晶粒细化剂的试验方法_1

铝合金晶粒细化剂的试验方法⑴ 高泽生 (涿州市铝合金材料厂 河北涿州 072750) 摘要 介绍了铝合金晶粒细化剂性能的各种试验方法:铝合金晶粒细化剂标准试验TP1法;K BI环模试验法;雷诺高尔夫T模试验法;德国铝联合公司VAW法和美国铝业公司Al2 coa冷指试验法。 关键词 TP1试验法 铝合金 晶粒细化剂 雷诺高尔夫T模试验法 VAW法 K BI环模试验法 Alcoa冷指试验法 铝合金晶粒细化剂的供需双方都要有一个评定晶粒细化试验结果与铸品中晶粒尺寸相互关系的标准方法。80年代中期,由于没有统一的标准试验法,一些供应厂开发了自己的检验方法,按用户要求供应产品。这些方法包括Alcan试验法、K B I环模试验法、雷诺标准高尔夫T模试验法(Reynolds standard G olf Tee Test)、VAW法、美国铝业公司冷指试验法(Al2 coa cold Finger Test)。 由于这些方法使用的工具和试验条件不同,所得的晶粒细化结果,即晶粒尺寸也不相同。因此,必须提供一个共同认可的统一方法。这个方法就是铝业协会通过的以70年代开发的Alcan试验法为蓝本的“铝合金晶粒细化剂标准试验法TP1”,首次公布于1987年〔1〕, 1988年1月正式发行。文献〔2〕概述了自1986~1997年TP1法的开发过程。这就是本文下面介绍的TP1标准试验法。 以后发表的有关TP1标准法的研究文献,主要涉及测量精度、再现性〔3〕、实验方法与试验技术具体问题〔4〕。文献〔3〕的结论是,当晶粒细化剂加入量足够产生均匀的等轴晶时,TP 1法是精确的,特别是晶粒尺寸在100~130μm范围内再现性和精度最高。一般情况下,精确度偏差为±10μm。研究还发现,TP1法对基体合金中的铁和硅浓度敏感。例如用9919%Al和9917%Al制造的丝,铁含量较高的9917%Al制造的晶粒细化剂显示了高的细化效果,铁含量由0115%变化至0120%时平均晶粒尺寸减小5μ,即每0101%Fe有2μm的变化。 下面分别介绍这些试验方法。 1 标准试验法TP1 本方法适用于确定晶粒细化剂在标准条件下对于规定成分的铝合金在凝固期间减小晶粒尺寸的能力,也适用检验晶粒细化剂组织均匀性和有无缺陷。兹重点介绍如下。 1.1 取样 ⑴化学分析试样 华夫锭:应从一个小锭的顶部、底部和中心部取相等重量的钻屑混合组成。 丝:至少由两个不相邻的段上能代表整个截面的铣屑或剪屑组成。 ⑵晶粒细化试验试样 华夫锭:从一个熔次任选一小锭的中央部取要求重量的晶粒细化剂(图4b)。 丝:从一卷任意部取一段要求重量的晶粒细化剂;金相检验试样的纵、横截面如图5所示;机械性能测量试样长度应保证300mm。1.2 化学成分 按上述方法取的化学分析试样,按美国联 收稿日期:1998-06-03

金属材料的强化方法

第五章金属材料的强化方法 一、金属材料的基本强化途径 许多离子晶体和共价晶体受力后直到断裂,其变形都属于弹性变形。 而金属材料的应力与应变关系如图5-1所示。 它在断裂前通常有大量塑性变形。它是晶体的一部分相对于另一部分沿一定晶面晶向的相对滑动。但是,晶体的实际滑移过程并不是晶体的一部分相对于另一部分的刚性滑移。 如果是刚性的滑移,则滑移所需的切应力极大,其数值远高于实际测定值。如,使铜单晶刚性滑移的最小切应力(计算值)为1540MPa, 而实际测定值仅为1MPa。各种金属的这种理论强度与实际测定值均相差3~4个数量级。这样的结果,迫使人们去探求滑移的机理问题,即金属晶体滑移的机理是什么?20世纪20年代,泰勒等人提出的位错理论解释了这种差异。 位错是实际晶体中存在的真实缺陷。现已可以直接观察到位错。 图5-2 位错结构

图5-3 位错参与的滑移过程 位错在力τ的作用下向右的滑移,最终移出表面而消失。由于只需沿滑移面A —A 改变近邻原子的位置即可实现滑移,因此,所需的力很小,上述过程很易进行。 由上述的分析可知,金属晶体中的位错数量愈少,则其强度愈高。现已能制造出位错数量极少的金属晶体,其实测强度值接近理论强度值。这种晶体的直径在1μm 数量级,称之为晶须。 由位错参与的塑性变形过程似乎可得到另一结论,即金属中位错愈多,滑移过程愈易于进行,其强度也愈低。事实并不是这样。如图5-4所示。 图5-4 强度和位错与其它畸变 可见,仅仅是在位错密度增加的初期,金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。这是因为位错密度继续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从一个位错源中产生并且在某个强障碍面前停止的时候就构成了位错的塞积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交截过程中在一位错上产生短位错);4)割阶运动引起的阻力。 金属受力变形达到断裂之前,其最大强度由两部分构成:一是未变形金属的流变应力σl ,即宏观上为产生微量塑性变形所需要的应力。流变应力的大小决定于位错的易动性:晶体内部滑移面上的位错源越容易动作,运动位错在扫过晶体滑移面时所受的阻力越小,则流变应力越低;其二是因应变硬化产生的附加强度,它由塑性变形过程中应变硬化速率 εσd d 和塑性变形量l f εε-来决定。所以,在断裂前的最大强度大致可按下式计算: ?+=f l d d d l εεεε σσσ)(max 工程结构材料主要是在弹性范围内使用的,因此,在构件的设计和使用中,流变应力的重要性更为突出。 对流变应力有贡献的阻力主要是两类:

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

Al-Ti-B合金晶粒细化

目录 1、引言 (1) 2、细化原理 (1) 2.1、包晶相图理论 (2) 2.2、碳化物-硼化物理论 (2) 2.3、双重形核理论 (3) 2.4、α-Al晶体增殖理论 (3) 3、合金元素的作用 (3) 3.1、Ti对铝合金熔铸组织的细化作用 (3) 3.2、B对铝合金熔铸组织的细化作用 (4) 3.3、其它杂质元素对铝合金熔铸组织的 细化影响 (4) 4、小结 (5) 5、参考文献 (6)

Al-Ti-B合金晶粒细化 【摘要】铝合金中加入少量Ti和B时,铝合金组织可得到明显细化,合金的强度、韧度、耐磨性、抗疲劳性能及热稳定性等均有所提高。 【关键词】铝钛硼合金晶粒细化合金元素 Al-Ti-B Alloy grain refinement 【Abstract】Aluminum alloy to add a small amount of Ti and B, the refined aluminum alloy group is obviously, the strength of the alloy, toughness, wear resistance, fatigue resistance and thermal stability were improved 【Key words】Al-Ti-B alloy grain refinement alloying elements 1、引言 根据Hall-Petch公式可知,材料的屈服强度和材料的晶粒大小成反比,细小的晶粒尺寸可以有效地提高材料的强度和韧性,同时改善合金的机械加工性能,对于铝在各行业的应用均具有重要的意义 [1]。目前,细化铝合金晶粒的方法主要包括以下4种: ①控制金属凝固时的冷却速度[2]; ②机械物理细化法,包括机械振动和机械搅拌等; ③物理场细化法[3],如电场、磁场和超声波处理等; ④化学细化法,加入各种晶粒细化剂,促进铝及合金的形核或抑 制晶核长大。 在工业生产中,细化晶粒尺寸最常用的方法是化学细化法,即在熔融的铝液中加入晶粒细化剂,起到异质形核的作用,进而细化晶粒尺寸。铝钛硼合金晶粒细化是铝加工业普遍采用的晶粒细化方法,对铝合金的铸态组织具有强烈的细化作用。它可以使合金成份均匀,加快铸造速度,减少裂纹,消除羽毛状晶和冷隔。在随后的压力加工过程中,还可以提高铝板的力学性能,减小板材的变形织构和各向异性,提高板材的深冲性能和成品率。铝钛硼的组织对铸态晶粒的细化效果起关键性作用。 2、细化机理 由于铝合金的细化过程非常复杂,与熔炼条件和铸造条件相关,且容易受到杂质元素的影响,导致细化效果发生改变。因此,仍没有一种理论能较全面的解释整个细化过程。目前,铝晶粒细化的细化理论主要包括[4]:包晶相图理论、碳化物-硼化物、双形核理论、α-Al 晶体增殖理论、超形核理论等。 2.1、包晶相图理论

铝及铝合金的熔体净化及晶粒细化

铝及铝合金的熔体净化和晶粒细化 摘要:综述了铝合金熔体净化的技术特点,重点分析了气泡浮游法、过滤法、熔剂法等几种常见的熔体吸附净化方法的工作原理和工艺改进,介绍了新型的旋转脉冲喷吹工艺、超声波 净化工艺和电磁净化工艺,并展望了熔体净化工艺研究发展的趋势;综述了晶粒细化剂的发 展历史及细化剂的细化机理和各种细化剂的比较,并着重介绍了新一代的Al-Ti-C晶粒细化剂。关键词:铝合金;熔体净化;细化剂;细化机理 1综述 近年来铝合金材料大致向两个方向发展:一是发展高强高韧等高性能铝合金新材料,以 满足航空航天等军事工业和特殊工业部门的需要;二是发展一系列可以满足各种条件用途的 民用铝合金新材料。与国外相比,我国铝合金研究的整体水平还比较落后,基础理论研究和 技术装备水平及其完善程度都与国外的差距很大。目前,铝合金研究的重点之一是研究和采 用各种先进的熔体净化与变质处理方法,去除铝液中的气体和夹杂物,降低杂质含量,提高 铝熔体的纯度,细化铝的晶粒从而改善铝合金的性能。这也是可持续发展战略中废铝回收亟 待解决的技术难题。 熔体净化是保证铝合金材料冶金质量的关键技术,引起企业界的广泛关注。铝合金熔体 净化的目的,主要是降低熔体中的含气量和非金属夹杂物含量。对熔体纯洁度的要求,一般 铝合金制品的含气量应小于0.15ml/100gAl,特殊的航空材料要求在0.10ml/100gAl以下;钠含量应在5ppm以下;非金属夹杂物不允许有1~5Lm尺寸的颗粒和聚集物,夹杂物含量越低越好。可见,对铝合金熔体的纯洁度要求是非常严格的。要达到上述要求,需采用各种先进的 净化处理技术。 铝及其合金组织的微细化,可显著提高铝材的力学性能和加工工艺性能。晶粒细化处理 是使铝及其合金组织微细化,获取优质铝锭,改善铝材质量的重要途径。铝加工工业的迅速 发展促进了各种铝晶粒细化剂的开发与生产。 本文将在初步总结和分析国内外熔体净化和晶粒细化剂生产实践及文献资料的基础上, 较全面地讨论各种铝合金熔体净化技术及其发展趋势,讨论各种晶粒细化剂及发展趋势。

铝合金强化技术的研究现状及展望

铝合金强化技术的研究现状及展望 摘要:综述了目前铝合金强化技术的研究现状和进展。简述了旋涡搅拌铸造法、压力铸造法、喷射铸造法、熔铸直接接触反应法、细晶强化法等几种铝合金强化技术工艺。简介了国内外铝合金强化技术的发展概况以及铝合金强化技术的应用,同时展望了铝合金材料的发展。 关键词:铝合金;强化技术;漩涡搅拌铸造法;细晶强化法 Study Reality and Prospect of Aluminum Alloy Reinforcing Technology Abstract:Recent research and prospect of aluminum alloy reinforcing technology are discussed. Several aluminum alloy reinforcing technical processes are described, including vortex stirring casting method, pressure casting method, injection molding method, direct contact reaction casting method, grain refining reinforcing method, and so on. The development situation and application of aluminum alloy reinforcing technology at home and abroad are introduced, the aluminum alloy material prospects for development are forecasted. Keywords:aluminum alloy, reinforce technology, vortex stirring casting method, grain refining reinforcing method

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

铝及铝合金晶粒细化剂-中国有色金属标准质量信息网

铝及铝合金压型板编制说明 (预审稿) 1 任务来源 国内铝及铝合金压型板在仓库、厂房、商场、展览厅、体育馆、地铁及高铁等应用领域有大量应用。这些铝及铝合金压型板,特别是合金类高强度压型板可以应用机械化施工手段,施工速度快、自重轻、用料省,同时又造型灵活、色彩丰富等,已在一定程度上替代传统的建筑用压型钢板(墙体和屋面),并开始得到广泛应用。尤其在最近几年,国内经济发展较快,各类基础建设频繁,对铝及铝合金压型板的需求量上升较快。 随着技术进步和市场需要,我国铝及铝合金压型板的应用逐步由1系合金为主推广到主要使用高强度的3系列、5系列的铝锰(铝锰镁)合金,而发达国家以5系列合金为主。同3系、5系合金相比较,1系合金力学性能普遍较低,这就必须要求通过板厚的增加来提高材料的承载能力;3系合金与1系相比具有以下特点:耐腐蚀,特别是在铝镁锰系合金表面经过涂层处理后更是增加了材料本身的抗氧化能力;加工成型容易,3系列、5系列铝锰、铝镁合金的延伸率、硬度、抗拉强度、屈服强度等指标均高于1系合金且均非常适于屋面卷边、轧压设备的加工,因此广泛应用在屋面、墙面系统等建筑外围护工程中,且板厚可以适当降低(通过计算符合要求),因此可以节约材料的使用量,有利于节能环保。 另一种技术发展趋势是表面无涂层的铝及铝合金压型板逐步向涂漆类铝及铝合金压型板产品发展。铝及铝合金压型板的表面处理多样,美观,可进行阳极氧化,电泳,化学处理,抛光,涂漆处理,屋面板材颜色可随意选择,满足建筑外观的多重颜色要求,增加了铝合金本身的防腐蚀性。 GB/T 6891-2006 铝及铝合金压型板国家标准主要以1系合金为主,以非涂漆产品为主。随着技术的进步及市场需求的需要,铝及铝合金压型板逐渐过渡到以3系、5系高性能合金,以涂漆类产品为主。并且现在压型板含屋面板、墙面板、楼面结构铝承板、门面板等,种类已丰富很多。特别是现在使用的屋面板、墙面板对性能和板厚有严格的要求。因此,随着市场及技术的变化,国标GB/T 6891-2006已不适应铝及铝合金压型板的需要,非常有必要重新修订该标准,以适应市场变化的需求。因此,针对产品的一些重要技术指标修订国家标准加以规范就显得尤为重要,尽快修定《铝及铝合金压型板》国家标准十分必要,而且迫在眉睫。 有色标委下达了编制《铝及铝合金压型板》国家标准的修订任务,并确定了福建省南铝板带加工有限公司为主编单位。 2 工作简况 2015年,在全国有色金属标准化技术委员会组织下,成立了以福建省南铝板带加工有限公司为主要起草单位,以中色科技股份有限公司、江西杭萧钢构有限公司、广东兴发铝业有限公司等单位为参加起草单位的编制小组。在本部分的起草过程中,编制小组认真组织调研、分析、研究欧盟等国外压型板的标准现状、生产水平以及检测手段,并对我国铝及铝合金压型板产品的生产企业进行调研,同时采集具有代表性的压型板生产企业的产品样品,进行产品性能的试验,获得了大量的试验数据。在GB/T 6891-2006的基础上,参考了YS/T 431《铝及铝合金彩色涂层板、带材》、GB/T 3880 《一般工业用铝及铝合金板、带材》、GB/T 12755《建筑用压型钢板》、GB50429 铝合金结构设计规范、BS EN 507、BS EN 508等标准,通过综合研究、分析、整理调查资料及试验数据,确立了本部分的技术要素、性能指标、试验方法形成了标准的讨论稿,于2015年3月25日~3月26日在江苏省无锡市由全国有色金属标准化技术委员会组织召开该标准的第一次工作会议;根据讨论意见编制小组修改标准并安排了中色科技股份有限公司、江西杭萧钢构有限公司、广东兴发铝业有限公司等单位对标准性能指标进一步试验,于2015年6月完成了本标准的征求意见稿,并向全国有关生产企业函送征求意见稿,结合各单位提出的意见于2016年6月完成了本标准预审稿(第一次);2016年6月29

细化晶粒

细晶镁合金的制备方法 制约变形镁合金发展的主要原因在于其较差的室温塑性变形能力,如何在较大程度上改善镁合金的塑性已成为人们关注的焦点。常用的方法包括合金化及晶粒细化等。而结合镁合金室温滑移系少、形变各向异性强的特点,用织构强化或软化来提高或合理利用镁合金的力学性能,已成为变形镁合金研究领域的一个重要分支。 纯镁的晶粒尺寸细化到8um以下时,其脆性转变温度可降至室温。若采用适当合金化及快速凝固工艺将晶粒细化到1um时,甚至在室温下镁合金亦可以具有超塑性,其伸长率可达到1000%。因此通过镁合金晶粒细化可以调整材料的组织和性能,获得具有优良变形性能的材料。细化晶粒的方法有很多,下面介绍几种常见的制备细镁合金的方法。 1 等径角挤压(ECAP) 强应变化塑性变形可以在低温度条件下使金属材料的微观结构得到明显的细化,从而大大提高其强度和韧性。近年来研究表明,大塑性变形可以成功制备具有超细晶(微米级,亚微米级和纳米级)微观结构的金属材料。前苏联科学家Segal于1981年提出了等截面通道角形挤压法(equal channel angular press-ing)等径角挤压法(ECAP)。ECAP的基本原理;将润滑良好、与通道截面尺寸相差无几的块状试样放进入口通道,在外加载荷作用下,由冲头将试样挤放进入口通道,在外加截荷作用下,由冲头将试样挤到出口通道内。入

口通道与出口通道之间存在一个夹角。在理想条件下,变形是通过在两等截面通道交截面(剪切平面)发生简单的切变实现的。经角径角挤压后,试样发生简单切变,但仍保持横截面积不变,挤压过程可以反复进行,从而在试样中实现大塑性变形。通过这项技术,可以不依赖粉末冶金和复杂的形变热处理而制备大体积块状细晶材料。 2 添加适当的合金化元素 根据合金化原理,明确各种元素在镁中产生的作用,针对不同的需要对镁合金中添加适当的微量合金元素,并进行显微组织和结构设计,引人固溶强化、沉淀强化或弥散强化等机制,可以达到细化晶粒,调整镁合金组织,提高和改善合金性能的目的。如SN、SB和PB等元素在镁中有较大的极限固溶度,而且.随着温度的卜降,固溶度减小并生成弥散沉淀相。根据沉淀强化原理,这些元素能够提高镁合金度的强度:而有的表面活性元素.可以减小粗大相的形成,起到细化晶粒的作用,甚至可以生成弥散相阻碍晶界的滑移 Zr元素在镁合金中就是一种最有效的晶粒细化剂、 3 大挤压比热挤压(L)100) 镁合金组织性能受塑性变形影响很大,因此可以通过塑性加工过程控制或改善镁合金坯料的组织性能,例如镁合金挤压棒材的性能右严重的各向异性,需采用热挤压方法消除各向异性,通过采用不同的挤压温度、改变挤压比、挤压速度可以获得不同组织性能的镁合

6063铝合金铸锭的生产工艺及详细流程

6063铝合金铸锭的生产工艺及详细流程 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、 0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、 Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si 组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和M g2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)- Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示: 在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶 于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低, 如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg 2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温 度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强 度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂 生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温 度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如 果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的 固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩 的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响, 由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加 工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得 到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般 选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于 型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在 1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易 得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅 总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有 1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入 基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有 多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂

金属材料的强化方法和位错的关系

陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。另外,位错对晶体的扩散和相变等过程也有较大影响。 首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。 其次,滑移赋予了金属材料的延性。如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。 第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。如板条状马氏体钢( F12钢)等。 第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。 第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。 金属的强化 strengthening of metals 通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。一种手段对提高某一强度指标可能是有效的,而对另一强度指标

铝及铝合金晶粒细化剂-中国有色金属标准质量信息网

铝及铝合金晶粒细化用合金线材 第1部分:铝-钛-硼合金线材 (审定稿)编制说明 1 工作简况 1.1 任务来源 随着铝材的广泛应用。尤其是在高新技术领域的应用,对在后续深加工工艺中的组织提出了严格的要求,而控制其组织和性能的关键之一是熔铸出细小均匀的铸态晶粒组织,可明显改善铝型材性能,减少铸锭裂纹。要获得这种组织。必须通过不同的手段处理熔体,包括液态时加入各种处理剂或借助外来能量(如机械振动、电磁搅拌、超声波处理等)使α—Al基体细化.而晶粒细化是增加材料强度、改善塑性的重要手段之一,也是改善铝材质量的重要途径。在工业生产条件下,添加处理剂的方式是最简便而又有效的方法。 最初研制的晶粒细化剂是把K 2TiF 6 、KBF 4 等直接加到熔体中,与熔融铝发生反应,形 成TiAl 3或TiB 2 粒子而产生细化作用的。由于产生的细化效果不均匀,无法预测晶粒细化 的响应程度,目前已被淘汰。为了克服铝及其合金中直接加入盐类化合物的缺点,人们研究并采用了A1—Ti—B中间合金细化剂。铝钛硼熔体处理剂曾风靡一时,得到不少厂家的青睐。 国标委综合[200×]×××号文件及中国有色金属工业协会中色协综字[200×]×××号文件,下达了编制《铝及铝合金晶粒细化剂》第一部分:铝钛硼合金线材国家标准的任务,并确定了新星化工冶金材料(深圳)有限公司为编写单位。 1.2 起草单位 新星化工冶金材料(深圳)有限公司于1992年7月在广东省深圳市罗湖区莲塘成立,2004年因公司发展需求,在光明新区公明镇高新科技园建立了全新的厂区;新星化工是一家以专业生产铝材处理剂、铝钛硼合金等高科技产品的中美合资企业。工厂占地面积有5万多平方米,主要产品有有色金属复合材料、新型合金材料及铝材处理剂。 1.3主要过程和内容 本标准由中国有色金属工业标准计量质量研究所任主办部门,由新星化工冶金材料(深圳)有限公司任起草单位。 新星化工冶金材料(深圳)有限公司自接受起草任务后,收集生产统计、品管检验数据、市场需求及客户要求等信息。初步确定了《铝及铝合金晶粒细化剂》国家标准起草所

铝合金切削表面位错密度和晶粒细化的研究

铝合金切削表面位错密度和晶粒细化的研究工件已切削表面的微观组织对工件的疲劳强度、抗腐蚀强度和抗磨损强度等性能有非常重要的影响。已切削表面微观组织相对基体组织发生明显改变,从微观组织的角度研究工件表面完整性如白层、微硬度和残余应力等对研究表面完整性与加工条件的关系意义重大。 但是目前对切削表面微观组织演变的模型以及其与工件表面性能的关系的研究还很欠缺。论文旨在研究铝合金Al6061-T6切削表面位错密度和晶粒尺寸的演变,建立基于Abaqus软件的正交切削有限元模型,耦合基于位错密度的微观组织预测模型,实现切削力、切屑形态、切削温度和位错密度与晶粒尺寸的预测。 采用正交切削实验及金相实验对有限元模型进行验证。论文的主要研究内容和结论如下:首先,基于Abaqus软件建立铝合金Al6061-T6的正交切削有限元模型。 根据铝合金自身的材料属性和加工性能,选择合理的材料模型、摩擦模型和有限元建模方法,讨论极限剪切应力、摩擦系数和热分配系数对切削力、切屑形态和切削温度的影响。选择合理的微观组织演变模型,描述切削过程中切屑和切削表面位错密度和晶粒尺寸的演变。 将基于位错密度的微观组织预测模型以用户自定义子程序的形式嵌入正交切削有限元模型中,建立“力、热、微观组织”耦合有限元模型。其次,进行铝合金Al6061-T6正交切削实验,测量切削力、切屑形态,观察切削表面和切屑的微观金相,分析切屑和切削表面微观组织的改变。 对比实验值和仿真值,通过调整极限剪切应力、摩擦系数和热分配系数以及微观组织预测模型中的各个参数,实现有限元模型的可靠性验证。结果表明:极

限剪切应力、摩擦系数直接影响切削力、切屑厚度、切削温度,切削力和切屑厚度以及切削温度均随极限剪切应力和摩擦系数的增大而增大。 通过切削力和切屑形态的实验值可以确定一定切削条件下的极限剪切应力和摩擦系数。形变场和温度场决定了切屑和切削表面位错密度和晶粒尺寸的分布规律。 最后,基于该有限元模型,分析了切削参数、刀具和温度对切削表面位错密度和晶粒尺寸分布的影响。结果表明:不同切削速度下位错密度最大的区域位于第二变形区。 切削表面位错密度接近第一变形区位错密度,并且沿着深度方向逐渐减小,晶粒尺寸呈现相似的分布规律。一定进给量下,切削表面位错密度随切削速度的增大而减小,晶粒尺寸随切削速度的增大而增大,变形层厚度随切削速度增大而减小;一定切削速度下,切削表面位错密度随进给量的增大先减小后增大,晶粒尺寸随进给量的增大先增大后减小,变形层厚度随进给量的增大先增大后减小。 较小的刀具前角可以显著增加第一变形区的塑性变形,因此切削表面位错密度随刀具前角减小而增大,晶粒尺寸随之减小,变形层厚度随刀具前角的增大而减小;刀刃圆角半径越大,对切削表面的犁削作用越明显,切削表面位错密度随刀刃圆角半径的减大而增大,晶粒尺寸随之减小,变形层随刀刃圆角半径的增大而增大。增大工件与环境的热对流系数,使得切削温度快速降低,一方面减小材料的温度软化作用,改变切削表面的塑性变形层厚度,另一方面减小晶粒的动态回复,因此切削表面位错密度随热对流系数的增大而增大,晶粒尺寸随热对流系数的增大而减小,变形层厚度随热对流系数的增大而增大。

相关主题
文本预览
相关文档 最新文档