当前位置:文档之家› 线粒体

线粒体

线粒体
线粒体

细胞动力工厂——线粒体

1. 线粒体的发现及命名

1980年,德国科学家Altmann首先在光学显微镜下观察到动物细胞内存在着一种颗粒状的结构,称做生命小体(bioblast)。1987年Benda重复了以上实验,并将之命名为线粒体(mitochondria)。1904年Meves在植物细胞中也发现了线粒体,从而确认线粒体是普遍存在于真核生物所有细胞中的一种重要细胞器。

2. 线粒体的形态结构和功能

2.1 线粒体的形态、大小、数量和分布

线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.5~1.0 μm,在长度上变化很大, 一般为1.5~3μm,长的可达10μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria)。

一般动物细胞内线粒体的数目由数百到数千个不等,肝细胞内约有1700个左右。植物细胞的线粒体数量一般较动物细胞的少。线粒体的数目还与细胞的生理功能和生理状态有关,在新陈代谢旺盛的细胞中线粒体居多,如人和哺乳动物的心肌、小肠、肝脏等细胞中线粒体很丰富;运动员的肌细胞线粒体比不常运动的人的多。

线粒体在细胞内的分布一般是不均匀的,往往在细胞代谢旺盛和需能的地方分布较多,因为这些区域需要较多的ATP。例如肠上皮细胞中的线粒体呈两极性分布,集中于顶部和基部;肌细胞的线粒体沿肌原纤维规则排列;精子细胞的线粒体集中在鞭毛中区。线粒体的这种分布显然更利于能量的传递和利用。

2.2 线粒体的结构

线粒体是由两层单位膜套叠而成的封闭囊状结构。主要由外膜、内膜、膜间隙和基质4部分组成。外膜平滑,内膜向内折叠形成嵴,两层膜之间即为膜间隙,线粒体中央是基质。

线粒体外膜光滑而有弹性,含40%的脂类和60%的蛋白质,厚度约为6 nm。具有孔蛋白构成的亲水通道,直径约为2-3nm。相对分子量为10×103以下的小分子物质均可通过小孔进入膜间隙。

线粒体内膜位于外膜内侧,是膜间隙和基质的分界线,厚约6-8nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过,大分子和离子通过内膜需要特殊的转

运系统。这种“不透性”在ATP生成的过程中起重要作用。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积,这对线粒体进行高速的生化反应是极为重要的。嵴的形状和数量与细胞种类及生理状况密切相关,需能多的细胞不但线粒体多,嵴的数量也多。嵴的形状

基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂" (power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。

膜间隙是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。

基质为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNAs 、rRNA、DNA聚合酶、氨基酸活化酶等。虽然线粒体也能合成蛋白质,但是合成能力有限。线粒体1000多种蛋白质中,自身合成的仅十余种。线粒体的核糖体蛋白、氨酰tRNA 合成酶、许多结构蛋白,都是核基因编码,在细胞质中合成后,定向转运到线粒体的,因此称线粒体为半自主细胞器。

2.3 线粒体的功能

2.3.1 氧化磷酸化

线粒体的主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量。线粒体是糖类、脂肪酸和氨基酸最终氧化释能的场所。线粒体内有两个主要部分参与能量的制造:电子传递链(呼吸链)和三磷酸腺苷酶(简称ATP酶)。糖类和脂肪等营养物质在细胞质中经过降解作用产生丙酮酸和脂肪酸,这些物质进入线粒体基质中,再经过一系列分解代谢形成乙酰CoA,即可进一步参加三羧酸循环。三羧酸循环中脱下的氢经过线粒体内膜上的电子传递链最终传递给氧,在此过程中释放的能量,通过ADP的磷酸化,生产高能量的化合物ATP,供给机体各种活动的需要。氧化磷酸化是细胞获得能量的主要途径。

2.3.2 其它功能

线粒体除了它最主要的功能氧化磷酸化之外,还参与到了许多其它的细胞活动中,如细胞中氧自由基的生成,细胞程序性死亡,细胞的信号转导,细胞内多种离子的跨膜转运及电

解质稳态的调控。

2.3.3瑞典研究发现线粒体功能控制机制

线粒体通常被称为“细胞的发电机”,线粒体内部的核糖体蛋白能够将食物中的能量转化成新的蛋白质,从而被人体加以吸收利用。

研究人员在新一期国际学术期刊《细胞新陈代谢》上发表论文说,通过老鼠实验发现,一种名为MTERF4的蛋白质非常关键,它与另一种名为NSUN4的蛋白质组合成一个复合体后,能控制线粒体核糖体的形成与功能。而在缺少MTERF4蛋白质的情况下,线粒体内的核糖体将无法形成,也无从产生核糖体蛋白,这导致老鼠肌体的能量制造能力下降。

项目研究负责人拉尔松教授说,有多种遗传疾病和老年病与线粒体功能衰退相关,因此彻底了解线粒体发挥作用的机理对治疗这些疾病有十分重要的意义。

3. 线粒体与疾病

线粒体是细胞内最容易受损的一个敏感的细胞器,它可以显示细胞受损伤的程度。许多研究工作表明,线粒体与人的疾病、衰老和细胞凋亡有关,线粒体的异常会影响整个细胞的正常功能,从而导致病变。这一类疾病成为“线粒体疾病”。

线粒体病是遗传缺损引起线粒体代谢酶缺陷,使ATP合成障碍、能量来源不足导致的一组异质性病变。Luft等(1962)首先报道一例线粒体肌病,生化严重证实为氧化磷酸化脱偶联引起。Anderson(1981)测定人类线粒体DNA(mtDNA)全长序列,Holt(1988)首次作线粒体病患者发现mtDNA缺失,证实mtDNA突变是人类疾病的重要病因,建立了有别于孟德尔遗传的线粒体遗传的新概念。根据线粒体病变部位不同可分为:①线粒体肌病:线粒体病变侵犯骨骼肌为主,主要症状是肌肉无力、肌肉萎缩以及运动不耐受;②线粒体脑肌病:病变同时侵犯骨骼肌和中枢神经系统,一般包括以上所述的肌病症状,同时伴有一至多项神经系统症状。

4.线粒体的DNA

4.1结构

线粒体DNA(mtDNA)呈双链环状,一个线粒体中可有1个或几个DNA分子。mtDNA 可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。mtDNA虽

能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16S),22种tRNA,13种多肽(每种约含50个氨基酸残基)。组成线粒体各部分的蛋白质,绝大多数都是由核DNA编码并在细胞质核糖体上合成后再运送到线粒体各自的功能位点上。正因如此,线粒体的遗传系统仍然要依赖于细胞核的遗传系统,由此,线粒体是半自主性细胞器。

4.2线粒体DNA异常引发的疾病

线粒体病是由线粒体DNA异常所致(例如缺失,重复,突变)。肌肉,心脏和大脑等需要高能量的组织特别容易发生线粒体病,但是听觉,胰腺和肝脏也有风险。组织受累的类型和特殊的染色体DNA变化相关,例如慢性进行性外眼肌麻痹,它的变体有多系统Kearns-Sayre综合征(慢性进行性外眼肌麻痹,心传导阻滞,色素性视网膜炎,中枢神经系统变性),Pearson综合征(含铁幼红细胞性贫血,胰腺功能不足以及出生后几个月内开始,常导致婴儿死亡的进行性肝病),Leber遗传性视神经病(程度不同但常是严重的双侧视力丧失,常见于十几岁少年,由线粒体DNA的点突变引起),MERRF(肌阵挛性癫痫,粗糙红纤维,痴呆,共济失调,肌病)和MELAS(线粒体性脑肌病,乳酸酸中毒,卒中样发作)。线粒体病可见于许多常见病中(例如帕金森病病人基底神经节细胞中大的线粒体缺失,各种肌病,随年龄增长而不断累积的线粒体DNA缺失)。

4. 小结

线粒体是真核细胞中普遍存在的细胞器,它是细胞的能量工厂,能高效地将能量转换成细胞进行各种生命活动的直接能源——ATP。此外线粒体是细胞核外唯一含有遗传物质DNA和遗传体系的细胞器,但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。

线粒体的主要功能是进行氧化磷酸化。氧化磷酸化是在内膜上进行的一个形成ATP的过程。这个过程能够产生大量的ATP,为细胞和机体生长和各种活动提供能量支持。

线粒体的分离

线粒体的分离

————————————————————————————————作者:————————————————————————————————日期:

实验三线粒体的分离、超活染色与观察 一、实验目的 1、学习差速离心法分离动、植物线粒体技术。 2、观察动、植物活细胞内线粒体的形态、数量与分布。 3、学习细胞器的超活染色技术。 二、实验原理 利用沉降系数不同的颗粒,在一定介质中沉降速度的差异,采取分级差速离心的方法,将线粒体从细胞悬液中逐级分离出来。离心用的悬浮介质通常用缓冲的蔗糖溶液,它比较接近细胞质的分散相,在一定程度上能保持细胞器的结构和酶的活性,在pH7.2的条件下,亚细胞组分不容易重新聚集,有利于分离。整个操作过程应注意使样品保持4℃,避免酶失活。 活体染色是指对生活有机体的细胞或组织能着色但又无毒害的一种染色方法。它的目的是显示生活细胞内的某些结构,而不影响细胞的生命活动和产生任何物理、化学变化以致引起细胞的死亡,可用来研究生活状态下的细胞形态、结构和生理、病理状态。体外活体染色又称超活染色,它是由活的动、植物分离出部分细胞或组织小块,以活体染料溶液浸染,染料被选择固定在活细胞的某种结构上而显色。詹纳斯绿B(Janus green B)和中性红(neutral red)两种碱性染料是活体染色剂中最重要的染料,对于线粒体的染色各有专一性。 线粒体的鉴定用詹纳斯绿活染法。詹纳斯绿B(Janus green B)是对线粒体专一的活细胞染料,毒性很小,属于碱性染料,解离后带正电,由电性吸引堆积在线粒体膜上。线粒体的细胞色素氧化酶使该染料保持在氧化状态呈现蓝绿色从而使线粒体显色,而胞质中的染料被还原成无色。 三、实验材料与方法 1、材料:人口腔上皮细胞、大鼠肝脏、玉米黄化幼苗(水稻、高粱等幼苗均可)、洋葱鳞茎内表皮细胞。 2、主要试剂和仪器:Ringer 溶液,10%、1/3000中性红溶液,1%、1/5000詹纳斯绿B 溶液;分离介质:0.25mol/L蔗糖、50mmol/L的Tris-盐酸缓冲液(pH7.4),3mmol/L EDTA,0.75mg/ml牛血清白蛋白(BSA),50mmol/L的Tris-HCl缓冲液(pH7.4),0.3mol/L 甘露醇(pH7.4)、20%次氯酸钠(NaClO)溶液、1%詹纳斯绿B染液,生理盐水,0.25mol/L蔗糖+0.01mol/L Tris-盐酸缓冲液(pH7.4),0.34mol/L蔗糖+0.01mol/L Tris-盐酸缓冲液(pH7.4),固定液,姬姆萨染液,1/15mol/L磷酸盐缓冲液(pH6.8)。温箱,冰箱,冷冻控温高速离心机(或普通高速离心机),高速离心机,显微镜,恒温水浴锅,解剖盘,玻璃匀浆器,剪刀、镊子,双面刀片,载玻片,凹面载玻片,盖玻片,漏斗,小烧杯,表面皿,吸管,牙签,吸水纸,纱布,瓷研钵,尼龙织物。 四、实验方法 (一)大鼠肝线粒体的分离 1、制备大鼠肝细胞匀浆。实验前大鼠空腹12h,击头处死,剖腹取肝,迅速用生理盐水洗净血水,用滤纸吸干。称取肝组织2g,剪碎,用预冷到0-4℃的0.25mol/L缓冲蔗糖溶液洗涤数次。然后在0-4℃条件下,按每克肝加9ml冷的0.25mol/L缓冲蔗糖溶液将肝组

线粒体

而科学家们发现,用溴化乙锭除去线粒体DNA(mtDNA)诱导成纤维细胞凋亡,表明线粒体在细胞凋亡中起作用[3]。现在认为,细胞凋亡有胞核和胞质两条途径,随着对细胞凋亡研究的深入,人们对线粒与体细胞凋亡的关系有了新的认识细胞凋亡与细胞坏死区别细胞凋亡是细胞受基因调控的一种自然死亡过程,同细胞生长分化一样是生命活动中重要的细胞学事件。细胞凋亡与坏死不同,是一种细胞遵循自身程序结束其生命的主动的细胞学过程,对机体清除衰老或受损细胞具有重要意义[4]。细胞凋亡与坏死在形态特征上有明显的区别,凋亡细胞表现为染色质固缩,常聚集于核周边,呈境界分明的颗粒块状或新月形小体;细胞浆浓缩,密度增高;细胞核裂解为碎片,而线粒体形态结构保持完整(凋亡细胞细胞膜和线粒体的动态变化)。坏死是一种由多种刺激所引起的非特异性细胞死亡。(细胞凋亡时线粒体是怎样的形态变化,存在还是不存在)用、严重缺氧、高温、某些病毒感染及多种化学毒物损伤都可造成细胞坏死。坏死时,细胞膜、核膜常破损,线粒体肿胀,染色质呈絮状凝集[5]。根据细胞凋亡和坏死的形态特点,一般认为在细胞坏死早期就会出现细胞膜通透性及线粒体跨膜电位的改变,而在细胞凋亡时这些改变的发生则要晚[6] 线粒体介导的细胞凋亡尽管细胞凋亡的特征性结构改变主要在细胞核,但目前已明确线粒体是程序化死亡信号转导途径中起关键调节作用的细胞器。在细胞凋亡的早期,线粒体会发生两个主要变化:一方面,线粒体外膜对蛋白质的通透性增高,以便可溶性的膜间蛋白(什么膜间蛋白)从线粒体释放出来:另一方面,线粒体内膜的跨膜潜能降。(跨膜潜能是什么)。当线粒体膜内外的电势差减少(为什么内外膜电势差减少)时,线粒体膜电位降低,可引起线粒体膜内外一系列的生化改变,如释放具有调控能量代谢和细胞凋亡双重功能的caspase活化物细胞色素C,线粒体膜通透性改变、Bcl-2家族及caspase活化等,引起细胞凋亡的级联反应,最终导致细胞凋亡[8]。同时研究也表明,Bc1-2家族蛋白在细胞凋亡过程中起着“主开关”作用,而Bcl-2家族蛋白的主要作用位点就在线粒体膜上,它们与其他凋亡蛋白协同作用,破坏或改变线粒体在结构和功能上的稳定性。Bcl-2通过稳定线粒体内外膜与离子通道或与凋亡蛋白酶激活因子1(Apaf-1)结合而抑制凋亡:Bcl-xL通过形成离子通道,抑制细胞色素

实验四 线粒体的分离与观察

实验八线粒体的分离与观察 实验目的 用差速离心法分离动、植物细胞线粒体。 实验原理 线粒体(mitochondria)是真核细胞特有的,使能量转换的重要细胞器。细胞中的能源物质——脂肪、糖、部分氨基酸在此进行最终的氧化,并通过耦联磷酸化生成ATP,供给细胞生理活动之需。对线粒体结构与功能的研究通常是在离体的线粒体上进行的。 制备线粒体采用组织匀浆在悬浮介质中进行差速离心的方法。在一给定的离心场中(对于所使用的离心机,就是选用一定的转速),球形颗粒的沉降速度取决于它的密度、半径和悬浮介质的粘度。在一均匀悬浮介质中离心一定时间内,组织匀浆中的各种细胞器及其它内含物由于沉降速度不同将停留在高低不同的位置。依次增加离心力和离心时间,就能够使这些颗粒按其大小、轻重分批沉降在离心管底部,从而分批收集。细胞器中最先沉淀的是细胞核,其次是线粒体,其它更轻的细胞器和大分子可依次再分离。 悬浮介质通常用缓冲的蔗糖溶液,它比较接近细胞质的分散相,在一定程度上能保持细胞器的结构和酶的活性,在pH7.2的条件下,亚细胞组分不容易重新聚集,有利于分离。整个操作过程应注意使样品保持4℃,避免酶失活。 线粒体的鉴定用詹纳斯绿活染法。詹纳斯绿B(Janus green B)是对线粒体专一的活细胞染料,毒性很小,属于碱性染料,解离后带正电,由电性吸引堆积在线粒体膜上。线粒体的细胞色素氧化酶使该染料保持在氧化状态呈现蓝绿色从而使线粒体显色,而胞质中的染料被还原成无色。 I.鸡肝线粒体的分离 实验用品 一、材料 鸡肝脏 二、试剂 1. 生理盐水 2.1%詹纳斯绿B染液,用生理盐水配制。 3. 0. 25 mol/L蔗糖+0.01mol/L Tris-盐酸缓冲液(ph7.4):

核与线粒体分离提取方案

线虫细胞核和线粒体提取 N2同步化后,转移至培养皿,每皿大约4000条,2 day后到了mid-late L4,day5,day10,day15收集线虫(也有文献选择1、6、12、17day)。初步计划收集10个皿线虫。 1.细胞核分离 细胞核蛋白提取查阅的文献上都没提及是用哪个厂家的试剂盒,只简单说了自己采用的方法,也不是很具体。查到一份Protocol采用蔗糖分离法提取细胞核,此方法开始是用于肝组织(Widnell and Tata 1964),后来被用于动物软组织(Rickwood et al. 1997),后来成功用于肌细胞和培养的细胞。 方法如下: 1.在10cm细胞培养皿中培养的细胞系,直到它们达到90%汇合 2.分离当天,吸出培养基,然后用冰冷的PBS清洗细胞。吸出PBS。 3.将培养皿放在冰上,用1 mL PBS将细胞从板上刮掉。转移将细胞加入到冰上的1.5mL离心管中。 4.以10000rpm短暂离心5-10秒。 5.吸掉上清液,并将沉淀物重悬在9个填充细胞体积均质培养基中 6.用Potter-Elvehjem匀浆器将悬浮液均质化,冰上匀6次 7.用棉布过滤匀浆 8.在4℃下以600g离心滤液10分钟。丢弃上清液。用步骤5中一半体积的均匀培养基重悬沉淀。4℃ 600g 离心10分钟。丢弃上清液。 10.将9体积的高渗蔗糖缓冲液加入沉淀。在Potter-Elvehjem匀浆器(5或6冲程)或Dounce均化器在冰上。 11.在4℃下以60,000g-80,000g离心匀浆80分钟。 12.翻转管子去除蔗糖。从管壁擦去剩余的蔗糖,注意不要擦掉细胞核。 核在这个阶段保留其膜。要卸下膜,请执行步骤13。 13.为了除去核膜,将来自步骤12的沉淀重悬含有0.5%Triton X-100的匀浆介质。在4℃下以600g离心10分钟。重复该过程。最后,如果需要,用均质介质洗涤沉淀以除去剩余的TritonX-100。 14.将沉淀物重悬在选择的介质中用于随后的分析。 分离的细胞核可以尝试裂蛋白,再用BCA法检测蛋白浓度。 2.线粒体提取 查阅了文献,线粒体蛋白提取采用的是Qproteome Mitochondria Isolation Kit (Qiagen 37612),流程如下: 1.将新鲜切除的组织放在冰上,取出适当的大小样品。用1ml 0.9%(w / v)氯化钠溶液洗涤样品。 2.将样品切成约2毫米3片,放入2毫升反应液中管,并加入500μl含蛋白酶抑制剂的裂解液。 3.使用TissueRuptor转子定子使样品均质化,均质器设最低速度转10s。 4.吸取1.5ml含有蛋白酶抑制剂的裂解缓冲液加入管中并孵育在4℃摇床上10分钟。 5.在4℃下以1000xg离心匀浆10分钟。 6.小心地清除上清液 7.将细胞沉淀重悬于1.5ml冰冷的破碎缓冲液中使用1毫升枪头吹打。细胞使用钝头针头和注射器进行破

线粒体DNA的结构和功能特征

第一节 线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因 (16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome  Encoded by Encoded by  Mitochondrial nuclear

genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex Ⅳ Cytochrome c oxidase complex Ⅴ ATP synthase complex Components of protein synthesis apparatus tRNA components rRNA components Ribosomal proteins Other mitochondrial proteins 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits 2 subunits 24 22 tRNAs 2 rRNAs None None >80 subunits >41 subunits 4subunits 10 subunits 10 subunits 14 subunits ~80 None None ~80 All, e.g. mitochondrial enzymes and proteins 和7个呼吸链脱氢酶亚单位的基因)。位于D环区的HSP(heavy strand promoter)和LSP(light strand promoter)是线粒体基因组转录的两个主要启动子(图6-1)。 mtDNA是裸露的,不与组蛋白结合,存在于线粒体基质内或黏附于线粒体内膜。在一个线粒体内往往有一至数个mtDNA(图6-2)。mtDNA的自我复制也是以半保留复制方式进行。复制先从重链开始,形成一个约680个碱基的7sDNA,称D环。在对鼠细胞研究中发现,大多数的mtDNA均为D环的结构,只有一小部分mtDNA从D环开始合成完整的新生链。轻链的复制要晚于重链,等重链合成过OL之后才开始合成。研究发现mtDNA 的复制可以越过静止期或间期,甚至可以分布在细胞整个周期。mtDNA 的自我转录很似原核生物,即产生一个多顺反子,其中包括多个mRNA和散布于其中的tRNA,剪切位置往往发生在tRNA处,从而使不同的mRNA和tRNA被分离和释放。

线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________) 作者:齐科研相蕾陈静宋玉国霍正浩杨泽 【关键词】线粒体DNA 基因突变疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。 1 线粒体DNA的遗传学特征 线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。 1.1 母系遗传 Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。 1.2 异质性和突变负荷 核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

线粒体

线粒体——世界的幕后统治者 线粒体是细胞内微小的细胞器,以ATP的形式生产我们几乎所有的能量。平均每个细胞里有300-400个线粒体,整个人体里有1亿亿个。本质上所有的复杂细胞里都有线粒体。线粒体看上去像细菌,这外观并非伪装:它们从前是自由生活的细菌,后来大约在20亿年前适应了寄生在大细胞里的生活。它们还保留了基因组的一个碎片,作为曾经独立存在的印记。它们与宿主细胞之间纠结的关系织成了生命所有的经纬,从能量、性和繁殖,到细胞自杀、衰老和死亡。 线粒体是一个欲盖弥彰的秘密。许多人都出于各式各样的原因听说过它。报纸和一些教科书简单地把它描述成生命的“发电厂”——活细胞里微小的发电机,生产我们赖以生存的几乎全部能量。一个细胞内部有几百或几千个线粒体,它们利用氧来燃烧食物。线粒体是如此微小,以至于一粒沙里可以轻易地容纳10亿个。线粒体的进化给生命装上了涡轮发动机,蓄势待发,随时可以启动。所有动物体内都有线粒体,包括最懒惰的在内。连不能移动的植物和藻类也要利用线粒体,在光合作用中放大太阳能那无声的轰鸣。 有些人更熟悉“线粒体夏娃”这个词,按照推测,她是所有当代人最晚近的共同祖先——如果我们沿母系血统追踪遗传特征,从女儿到母亲再到外祖母,直至上溯到远古的迷雾中。线粒体夏娃是所有母亲的母亲,她被认为大约生活在17万年前的非洲,又称“非洲夏娃”。我们之所以能通过这样的方式追踪遗传上的祖先,是因为所有线粒体都保有小小的一份自己的基因,这些基因仅通过卵子传递给下一代,不通过精子传递。这意味着,线粒体基因起着母系姓氏的作用,使我们可以沿母系血统追溯祖先,就像有些家族努力沿父系血统把家世追溯到征服者威廉、诺亚乃至穆罕默德。近来,这其中的某些观念受到挑战,但大体上的理论仍然成立。当然,这项技术不仅可以使我们知道谁是我们的祖先,也可帮助澄清谁不是我们的祖先。根据线粒体分析,尼安德特人并未与现代智人杂交,而是在欧洲的边缘被排挤到灭绝。 线粒体还因为它们在法医学上的运用而成为新闻热点。通过线粒体分析可以确定人或尸体的真实身份,有几个著名的案子运用了这一点。末代沙皇尼古拉二世的身份,就是通过将其线粒体与亲属的进行比较而得到确认。第一次世界大战末期,一个17岁女孩从柏林的一条河里被救起,她自称是沙皇失踪的女儿安娜斯塔西娅,随后她被送往一家精神病院接受治疗。经过70年的纷争,她的说法终于在她于1984年去世后被线粒体分析否认。更近一些的事例是,世贸中心劫后那些无法辨认的遇难者遗骸是由线粒体基因识别的。将“正版”萨达姆·侯赛因与他的众多替身之一区分开来,也是靠这种技术。线粒体基因之所以如此有用,部分是因为它们大量存在。每个线粒体含有5至10份基因副本,一个细胞里通常有数以百计的线粒体,也就有成千上万份同样的基因,而细胞核(细胞的控制中心)里的基因只有2份副本存在。因此,完全无法提取任何线粒体基因的情况是很少见的。一旦线粒体基因被提取出现,基于我们与母亲和母系亲属拥有相同线粒体基因的事实,通常就可以确认或否定设想中的亲属关系。 有一个理论叫做“衰老的线粒体理论”,说的是衰老和许多与此有关的疾病是由在正常细胞呼吸中从线粒体里泄漏出来的活跃分子——自由基导致的。线粒体并不能完全“防火花”,它们在利用氧燃烧食物时,自由基的火花会逃逸出来,损害邻近的结构,包括线粒体基因本身,以及远处的细胞核基因。我们细胞里的基因每天要受到1万至10万次自由基攻击,实际上每秒就有一次。大部分这类损伤很快就会得到修复,不会造成别的麻烦,但偶尔有些攻击会导致无法逆转的变异——基因序列发生持久的改变——这些变异会在一生中累积起来。受破坏更严重的细胞会死亡,稳定的细胞损耗是衰老和退行性疾病的基础。许多令人痛苦的遗传疾病也与自由基攻击线粒体基因产生的变异有关。这些疾病通常有着奇异的遗传模式,其严重性在各世代中会有所不同,但总的来说它们都会随着衰老而趋于恶化。线粒体疾病通常影响

线粒体病理知识

线粒体(Mitochondria)的超微结构与超微病理 前言 *1894年Altmann首先在动物细胞中发现,命名为生物芽体, *1897年Benda命名为线粒体。 *除细菌、蓝绿藻和服乳动物成熟红细胞以外,所有的真核细胞都有线粒体 *线粒体是细胞中能量供给场所。 一、线粒体的形态结构及功能 1、形态与分布 线粒体的形态是不断变化的,一般大多数是呈圆形或卵圆形,有时也出现细长的线状,其 横径比较一致,一般为05-1um,长径变化较大,可达2-5um,在骨骼肌细胞中,有时可达 8-10um。 线粒体的分布随细胞的不同而异,其分布特点与细胞的功能密切相关,一般来说,在生理 活动旺盛的细胞比不旺盛的细胞数目多动物细胞比植物多,如肝细胞中有2000个左右,精子细胞中有25个左右。 2、线粒体的超微结构 线粒体是由双层膜包围的封闭囊状细胞器,共包括四部分:外膜、内膜、外腔和内腔。 线粒体的内膜和外膜之间为外室,内膜向内形成许多折叠,称线粒体嵴,嵴是线粒体识别 的重要标志。线粒体嵴间为内室,其内充满基质,成中等电子密度,基质内有高电子密度 的基质颗粒, ①外膜:线粒体的外膜厚6um左右,表面光滑,与内膜不相连,其内有许多由运转蛋白在 脂质双分子层中形成的大的水性通道,分子量小于5000的物质可以通过。外膜表面有许多酶系,其中单胺氧化酶是外膜的标志酶。 ②内膜:线粒体的内膜结构比较复杂,厚约5-7um。具有高度的选择通透性,只允许相对 分子量小于150的不带电的分子,如水分子、氧分子、CO2及甘油等通过。 内膜向内腔凹陷形成许多嵴,增加了内膜的表面积,嵴的形状有两种:板层状嵴和管泡状嵴:板层状嵴大多为弯曲的小管,切面成小泡状或管状,绝大多数细胞的线粒体嵴为板层状。管泡状嵴位于少数分泌甾类激素的内分泌细胞中,如肾上腺皮质细胞、黄体细胞核睾 丸间质细胞。 线粒体嵴的长短、数量及排列方式随细胞的种类和生理病理状态而异。 线粒体经超声波处理,用磷钨酸负染,可见线粒体嵴的基质面上附着许多紧密排列的基粒,基粒由头片、短柄和基片组成,头片是直径为8-10nm的小球,为ATP合成酶。 线粒体的内膜上有许多与电子传递呼吸链有关的酶,其中琥珀酸脱氢酶和细胞色素氧化酶 为其标志酶。 ③外腔:内外膜之间的空隙。 ④内腔:内膜之间的囊腔,其内充满无定形的细颗粒状的基质,线粒体中参与三羧酸循环、脂肪酸氧化、氨基酸分解和蛋白质合成等有关的酶类都存在于基质中。基质中有双链DNA

线粒体的提取与纯化

mt DNA的分离及纯化 按戴建华等报道的方法,就具体情况稍加改进,步骤如下(除特别说明,均在4℃下完成):1.1 取新鲜肝组织,放在缓冲液A(0.25M 蔗糖,0.01M Tris·Hcl,0.001M Na2-EDTA,pH8.0)中漂洗2~3次,尽可能去除表面血污、结缔组织及脂肪组织后剪碎。按组织重﹕缓冲液A=1﹕5~10加入缓冲液A,用玻璃匀浆器冰浴匀浆。 1.2 1000 g?min-1离心15min;取上清液;15000 g?min-1离心20min,弃上清,沉淀用缓冲液B (0.25M 蔗糖,0.05M Tris·Hcl,0.007M Mg Cl2,p H7.5)洗涤,按0.5m L?g-1肝的比例加入缓冲液B 悬浮沉淀后加入DNase I 至终浓度为100 μg?m L-1,30℃下作用30min。 1.3 冰浴冷却,加入2倍体积的DNase I反应终止液(0.25M蔗糖,0.1M Na2-EDTA,pH8.0)。15000g?min-1离心20min。沉淀用DNaseI反应终止液洗涤一次,重复离心。 1.4 按0.5 m L?g-1肝加入缓冲液C(0.1M Nacl,0.05M Tris·Hcl,0.01M Na2-EDTA,p H8.5)悬浮沉淀,加入SDS至终浓度为1%~1.5%,吸打混匀后37℃保温15min。 1.5 用等体积的苯酚,苯酚/氯仿(1:1),氯仿/异戊醇(24:1)各抽提一次。取水相,加0.2 倍体积1M Na Ac和2倍体积的预冷无水乙醇,混匀后放在4℃冰箱中过夜。 1.6 15000g?min-1离心30min后去上清;沉淀用70%乙醇洗涤2次,干燥,TE(0.01M Tris·Hcl, 0.001M Na2-EDTA,pH8.0)溶解。 1.7 加入预处理的RNase I 至终浓度为50μg?m L-1,37℃保温1h。4℃保存待用。

线粒体的结构与功能.

线粒体的结构与功能 生命科学与食品工程系,050601030, 易永洁 摘要:线粒体是细胞质中重要的细胞器之一,普遍存在于真核细胞中。它是生物氧化和能量转换的主要场所,以氧化磷酸化(OXPHOS)方式将食物内蕴藏的能量转变为可被机体直接利用的ATP高能磷酸键。细胞生命活动所需能量的80%来源于线粒体,因此线粒体在细胞的生长代谢和人类的遗传中都有重要的作用。 关键词:线粒体;;结构;功能;遗传病;mtDNA 自1890年Altaman首次发现线粒体以来,生物学家就一直以极大的热情给予关注,到目前为止,其结构和功能方面的研究已经越来越深入明了。 1线粒体的结构 1.1外膜(out membrane) 含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。 1.2内膜(inner membrane) 含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。 线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。 内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状、②管状,但多呈板层状。 1.3膜间隙(intermembrane space) 是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。 1.4基质(matrix) 为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。

线粒体结构与功能

线粒体 (mitochondria) 线粒体的研究历史 1890: R.Altman(亚特曼)在动物细胞中首次发现线粒体,命名为生命小体(bioblast)。 1897: Von Benda 命名为线粒体(Mitochondrion) 1900:L.Michaelis(米凯利斯) 用詹姆斯绿B对线粒体进行活体染色,发现线粒体存在大量的细胞色素氧 化酶系。 1913:Engelhardt(恩格尔哈特)证明细胞内ATP磷酸化与细胞内氧消耗相偶联。 1943-1950:Kennedy等证明糖最终氧化场所在线粒体。1952-1953:Palade(帕拉登)等用电镜观察线粒体的形 态结构。 1976:Hatefi等纯化呼吸链四个独立的复合体。

1961-1980:Mitchell(米切尔)氧化磷酸化的化学渗透 假说。 1963年:Nass首次发现线粒体存在DNA。 Contents 线粒体的形态结构 线粒体的化学组成及酶的定位 线粒体的功能 线粒体的半自主性 线粒体的生物发生(自学) 第一节线粒体的形态结构 一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5~1.0μm,长1.5~3.0μm。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5μm; 胰腺外分泌细胞线粒体长10~20μm,人成纤维细胞线粒体长40μm。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量 依细胞类型而异,动物细胞一般数百到数千个。

利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 飞翔鸟类胸肌细胞:线粒体数目比不飞翔鸟多; 运动员肌细胞:线粒体数目比不常运动人的多。 (三)分布 分布: 不均,细胞代谢旺盛的需能部位比较集中。 肌细胞: 线粒体沿肌原纤维规则排列; 精子细胞: 线粒体集中在鞭毛中区; 分泌细胞:线粒体聚集在分泌物合成的区域; 肾细胞:线粒体靠近微血管,呈平行或栅状列。 线粒体的分布多集中在细胞的需能部位,有利 于细胞需能部位的能量供应。 二、线粒体的亚微结构 (一) 外膜Outer membrane 包围在线粒体外表面的一层单位膜,厚6-7nm,平整、光滑,封闭成囊。 外膜含运输蛋白(通道蛋白),形态上为排列 整齐的筒状小体,中央有孔,孔径1-3nm,允许分 子量1KD以内的物质自由通过,构成外膜的亲水通道。

组织线粒体提取

从动物组织中粗提线粒体 一、实验目的: 从动物组织中分离线粒体,以便线粒体功能分析实验。 二、实验准备 Lysis buffer、匀浆器、离心管、解剖器具 三、实验步骤: 1.实验前一天小鼠禁食过夜。线粒体提取前所有溶液要冰上预冷。 2.解剖小鼠(~30g),快速取出肝脏,去除胆囊,放入50ml预冷的IBc烧杯中; 3.预冷的IBc洗去多余的血液。洗4-5次至IBc澄清。 4.冰上将肝脏剪碎 5.倒掉清洗的IBc,加入新的5mlIBc,将上清转移至玻璃匀浆器 6.以1,600 rpm冰上匀浆3-4次,组织与缓冲液比例1:5-1:10间 7.匀浆液转移至50ml离心管,600g,离心10min 4 ℃ 8.小心将上清转移至新的离心管600g,离心10min 4 ℃ 9.小心将上清转移至新的离心管7000g,离心10min 4 ℃ 10.倒掉上清,加入5ml预冷的IBc,洗一次,不要用枪头重悬 11.7000g,离心10min 4 ℃ 12.去除上清,重悬底部的含有线粒体的颗粒。用玻璃棒搅松底部的沉淀,不加IBc,用弃去上清的少量缓冲液重悬。用1ml移液管重悬避免出现气泡。 13.转移至14ml离心管,置于冰上。线粒体在1-3小时内用于实验,得到比较好的活性。 14.Bradford法测定线粒体浓度。 四、试剂配方 Buffer for cell and mouse liver mitochondria isolation (IBc):100 ml 10 ml 0.1M Tris–MOPS 1 ml 0.1M EGTA/Tris 20 ml 1M sucrose 100 ml ddH2O,pH 7.4 储液: 1 M sucrose: 342.3 g sucrose 1L ddH2O Mix, 20 ml分装-20 C保存. 0.1MTris/MOPS: 12.1 g Tris; 500ml ddH2O,MOPS 调pH 7.4,ddH2O 体积至1L保存于4 C. 0.1 M EGTA/Tris: 38.1 g EGTA; 500 ml ddH2O,Tris调pH 7.4 总体积至1L ,保存于4 C. 五、注意事项 1. 开始前将离心管预冷5min,所有步骤包括匀浆在4度冰上进行,降低磷脂酶和蛋白酶活性; 2.最后重悬时,用玻璃棒搅松底部的沉淀。不加IBc,用弃去上清的少量缓冲液重悬,线

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

线粒体功能障碍和人体疾病的研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚 学号:201207730 指导教师:谢放 完成日期:2014-7-16

线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为: (1)外膜与内质网或细胞骨架连接形成网络;(2)内外膜间随机分布横跨两端,宽20nm 的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子通道蛋白;内膜中有电子传递链(呼吸链)复合物I~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-ducing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP转换蛋白(ANT)和线粒体膜转运孔(mitochondrialper-meabletransition pore,MPTP)存在于接触点;三羧酸循环(TCA cycle)酶系、存储钙离子的致密颗粒及线粒体基因组则包含于基质中。【1】与核基因组(nDNA)不同,mtDNA 结构简单,仅含16 569 个碱基,编码2 种rRNA、22 种tRNA和13种参与呼吸链形成的多肽。通常裸露且不含内含子,既缺乏组蛋白保护和完善的自我修复系统,又靠近内膜呼吸链,极易受环境影响,突变频率比nDNA 高10~20 倍。 1.2线粒体功能作为糖、脂肪、氨基酸最终氧化释能的场所,线粒体的主要功能是进行氧化磷酸化、合成ATP,为生命活动提供直接能量。除此以外,它还扮演着多种角色,其中之一是充当“钙库”,参与细胞内钙离子的信号传导。

线粒体提取

线粒体提取 缓冲液A(100 mM Tricine-KOH (pH 7.4), 300 mM sucrose, 10 mM KCl, 1 mM MgCl2, 1 mM potassium-EDTA, 0.1% BSA, 5 mM DTT and protease inhibitors: 1 mM PMSF, 10 g/ml pepstatin A)。 缓冲液B(pH 7.4, 无DTT ,余下同分离缓冲液A)。 1、将拟南芥叶片10g,置于研钵中,剪碎。 2、加25ml分离缓冲液A,冰上充分研磨。 3、匀浆液经4层纱布过滤。滤液取20ul用于细胞色素c活性测定,记为(1)。 4、于2,600g 离心15 min(Beckman J2-HS),弃沉淀。上清取20ul用于细胞色素c活性 测定,记为(2)。 5、上清液进一步在12,000g 离心15 min,此时得到线粒体粗提样。 6、弃上清,将沉淀轻柔地悬浮于2 ml分离缓冲液B中。从中取20ul用于细胞色素c活性测定,记为(3)。 7、铺制蔗糖密度梯度于38ml超离管中,介质由上到下依次包括6 ml / 0.6 M sucrose, 6 ml / 0.9 M sucrose, 8 ml/ 1.2 M sucrose, 8 ml /1.45 M sucrose 和8 ml/ 1.8 M sucrose。介质均用缓冲液B配制。 8、然后将2 ml悬浮液铺于蔗糖密度梯度介质上。 9、然后以24000rpm离心90 min(SW28 Beckman rotor)。 10、超离结束后,收集1.45M/1.2M层组分于50ml离心管中,缓冲液B稀释5倍。 11、12000g离心15min,沉淀即为纯化的线粒体。 13、将沉淀重悬于500ul缓冲液B中,从中取20ul用于细胞色素c活性测定,记为(4)。 14、纯化的线粒体液氮速冻,存于-80℃。

线粒体遗传病

线粒体疾病的遗传 一、线粒体的功能: ?是细胞有氧呼吸的基地和供能的场所,供应细胞生命活动95%的能量 ?线粒体的主要功能是把氧化各种底物产生的自由能转化为可被细胞直接利用的形式 ——ATP ?细胞氧化(细胞呼吸) ?无氧酵解:1分子葡萄糖→2ATP 线粒体有氧呼吸:1分子葡萄糖→36~38ATP 二、mtDNA的遗传特点: 1、具有复制半自主性。(M染色体,25号染色体) 线粒体内含有DNA分子,被称为人类第25号染色体,是细胞核以外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德尔遗传方式,又称核外遗传。 2、部分遗传密码与核DNA不同。 3、母系遗传。(不符合经典遗传定律)。 精卵结合时,受精卵中的线粒体DNA几乎全都来自于卵子,来源于精子的mtDNA 对表型无明显作用,这种双亲信息的不等量表现决定了线粒体遗传病的传递方式不符合孟德尔遗传,而是表现为母系遗传(maternal inheritance),即母亲将mtDNA传递给她的儿子和女儿,但只有女儿能将其mtDNA传递给下一代。 4、在细胞分裂间期经过复制和分离。 细胞分裂时,突变型和野生型mtDNA发生分离,随机地分配到子细胞中,使子细胞拥有不同比例的突变型mtDNA分子。 5、具有阈值效应。 在克隆和测序的研究中发现一些个体同时存在两种或两种以上类型的mtDNA,这是由于mtDNA发生突变,导致一个细胞内同时存在野生型mtDNA和突变型mtDNA,称为“杂质”(heteroplasmy)。野生型mtDNA对突变型mtDNA有保护和补偿作用,因此,mtDNA突变时并不立即产生严重后果。 突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。阈值效应的一个表现就是在某些线粒体遗传病的家系中,有些个体起初并没有临床症状,但随年龄增加由于自发突变、环境选择等原因,突变型DNA逐渐积累,线粒体的能量代谢功能持续性下降,最终出现临床症状。 6、突变率极高(比核基因大10-20倍)。 A、突变率高的原因: ?mtDNA中基因排列紧凑,任何突变都可能会影响到其基因组内的某一重要功能区域 ?mtDNA是裸露的分子,不与组蛋白结合

动物线粒体DNA提取的原理和方法

动物线粒体D NA 提取的原理和方法 *X 夏玉玲 刘彦群 鲁 成X X (西南农业大学蚕学与生物技术学院农业部蚕桑学重点实验室 重庆 400716) 摘 要 从动物线粒体的特征、线粒体的鉴定方法、提取线粒体D NA 各步骤等原理出发,比较了目前常用的几种提取线粒体D N A 的方法,提出动物线粒体D N A 提取的几点关键步骤,并提出一套优化的操作流程。 关键词 线粒体 线粒体D N A 提取方法 线粒体是存在于绝大多数真核细胞内的一种基本的重要的细胞器。它是细胞进行氧化磷酸化的场所。线粒体基因组不仅是研究D N A 结构与复制转录的良好模型,也是研究真核细胞核酸与蛋白质合成非常合适的模型系统。线粒体基因组与核基因组的同源基因结构对比也被广泛应用于核基因和核外基因的进化研究中。由于线粒体基因在真核生物具有高保守性,所以它已成为了研究物种进化的一种常用的标记,并为线粒体起源提供有价值的线索[1]。 动物线粒体D NA 具有分子量小、结构简单、母性遗传和进化速度快等特点,已广泛应用于动物群体遗传学和进化生物学等领域的研究[2]。进行动物线粒体D NA 方面意义重大,现将线粒体D N A 的提取的原理和方法介绍如下: 1 提取动物线粒体D N A 的原理 1.1 线粒体的特征 线粒体是由内外两层膜组成,外膜光滑,内膜向内回旋折叠,形成许多横隔。线粒体中含有多种氧化酶,在此进行TCA 循环、呼吸连电子传递和氧化磷酸化等产能作用,并传递和储存所产生的能量,是细胞的动力工厂和生物氧化的主要场所。线粒体的形状、大小、数目和组成,在不同生物、不同组织以及生活于不同条件下的细胞中变化很大。线粒体的外型呈多样化,绝大多数类型细胞呈圆形、卵原形,也有呈杆状的。其体积大小不等,一般直径比较一致,为0.5~1.0L m,长度为1~5L m,最长可达到7L m 。线粒体的数目与生物种类、组织、细胞类型和细胞生理功能变化有关。锥虫和有的真菌只有一个线粒体,大多数动物的肝脏细胞含有上千个线粒体,生殖细胞如卵母细胞可达到30万个线粒体,家蚕的每个后部丝腺细胞只有2~4个线粒体[13],而有的细胞根本没有线粒体;在细胞生命活动旺盛时,它的数量多,在衰老时,数量少,有时可能消失;新生细胞比衰老细胞或病变细胞的线粒体多。 线粒体的主要成分是蛋白质(占干重60~65%)和脂类(占干重35~40%)。此外还有少量的核酸(主要为D NA 和RNA)、金属离子、阴离子和维生素等。其中线粒体膜主要成分是蛋白质、脂类和一些酶,基质由各种酶、D N A 、RNA 、金属离子、阴离子和维生素等组成。mtD N A 不24蚕 学 通 讯 Ne wsletter of Sericultural Science 第22卷 第3期 2002年 9月 X X X 通讯作者 国家自然科学基金项目资助(项目编号:30170719)

相关主题
文本预览
相关文档 最新文档