当前位置:文档之家› Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds

Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds

Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds
Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic Clouds

a r X i v :a s t r o -p h /9905030v 1 5 M a y 1999To appear in Astronomical Journal

Infrared Photometry of Red Supergiants in Young Clusters in the Magellanic

Clouds

Stefan C.Keller

Research School of Astronomy and Astrophysics,The Australian National University,Weston

Creek P.O.,ACT 2611,Australia.

ABSTRACT

We present broad-band infrared photometry for 52late-type supergiants in the

young Magellanic Clouds clusters NGC 330,NGC 1818,NGC 2004and NGC 2100.

Standard models are seen to di?er in the temperature they predict for the red

supergiant population on the order of 300K.It appears that these di?erences most

probably due to the calibration of the mixing-length parameter,αP ,in the outermost

layers of the stellar envelope.Due to the apparent model dependent nature of αP we

do not quantitatively compare αP between models.Qualitatively,we ?nd that αP

decreases with increased stellar mass within standard models.We do not ?nd evidence

for a metallicity dependence of αP .

Subject headings:galaxies:Magellanic Clouds -stars:late-type -infrared:stars 1.Introduction

The young clusters NGC 330in the SMC and NGC 1818,NGC 2004and NGC 2100have been the focus of several previous studies aimed at understanding the evolution of intermediate mass stars in a low metallicity environment.These clusters are standout targets for such studies given their relative richness.They present a signi?cant sample of stars in evolved blue and red supergiant phases.

A thorough examination of the evolution of intermediate mass stars requires a matching of all pertinent features of the observed CMD.The location of the red supergiant population on the CMD is a fundamental input into any such study.We have obtained HST/WFPC2photometry in the visible and far-UV for these four clusters (Keller et al 1999c).With this data we will closely examine the compatibility between our observations and the predictions of standard evolutionary models in a future paper.It is the goal of the present work to obtain accurate temperatures and luminosities for the red supergiant (RSG)population through an examination of their IR colours.

Previous IR studies within these clusters have been limited.A sample of the outlying RSGs from NGC330,2004and2100were observed by McGregor&Hyland(1984).A similar sample was also taken by Carney et al.(1985)in NGC330.These studies drew upon the derived temperatures and luminosities of these RSGs as evidence for a low metal abundance in NGC330.Subsequent discussion has relied upon these IR colours and the B?V colours of Robertson(1974).

The observed properties of the RSG population has featured prominently in many of the subsequent discussions of the evolutionary implications of the populations of these clusters.Many of these discussions have to some extent been superseded with the introduction of new opacities and updated input physics.The?rst detailed approach to constraining the stellar evolutionary models for intermediate mass stars was made by Stothers and Chin(1992)in their study of NGC 330.They set out to constrain the criterion for convection and semi convection and the degree of convective core overshoot.They found that only with the implementation of the Ledoux criterion could RSGs be produced at low metallicities.They used the luminosity di?erence between the blue and RSGs to rule out signi?cant amounts of convective core overshoot(d/Hp<0.2).In the study of NGC330by Chiosi et al(1995)it was shown that with new opacities and input physics it was possible to produce blue supergiants with the Schwarzschild criterion at low metallicity.Their models were unable to match both the MS turno?and the RSG luminosities simultaneously;they took this to indicate that there was a substantial age spread within the cluster.In the study by Caloi and Cassatella(1995)of NGC2004attention was drawn to the fact that the RSGs appeared underluminous relative to the upper MS.This result,it was acknowledged,was not de?nitive and required the acquisition of more accurate temperatures for the cluster RSGs.

The RSGs of the present study provide a useful calibration point for the degree of convection in stellar envelopes.The standard treatment is within the mixing-length theory(see for example Bohm-Vitense1958).This contains the average eddy mixing length parameter,αP,which is varied to achieve a match between observed e?ective temperatures and those predicted by stellar models.The precise value ofαP is di?erent from model to model;however it is typically treated as a constant over a wide range of masses,luminosities and metallicities.Amongst low mass stars there are no signs of a dependence ofαP on stellar mass.The study of Stothers and Chin(1995) of galactic red giants and red supergiants in the mass range of5-13M⊙has shown that there

is a signi?cant decrease inαP with increased mass.They sought to extend this analysis to the lower metallicity regime available within NGC330to investigate the trend ofαP with metallicity (Stothers and Chin1996).This study was inconclusive in this regard due to the uncertainty introduced by the degree of reddening to the cluster which has been a source of much debate.We claim that current determination of the reddening to NGC330is more convergent than discussed in Stothers and Chin(1996).We qualitatively discuss some of the implications for trends ofαP with metallicity and stellar mass;however,a quantitative study ofαP is beyond the scope of the current work and as we shall see may not be possible with present stellar evolutionary models.

2.Observations and Data Reduction

2.1.IR photometry

Broad band J,K photometry was obtained on the MSSSO2.3m telescope at Siding Spring Observatory on14-16December,1997using the CASPIR256×256pixel InSb array(see McGregor 1994a for more details on the instrument).Using a dithered pattern we have imaged the central 3.5′of each cluster.Nearby photometric standard stars were observed frequently interspersed with the cluster exposures.The standards HD20223and HD52467were used for the LMC clusters and HD1274for NGC330in the SMC.The standard values for these stars were taken from Carter &Meadows(1995),transformation from the Carter SAAO system to the AAO system were made using the transformations detailed in McGregor(1994b).The results presented herein are on the AAO system,which is virtually identical to the Johnson system(Jones&Hyland1980).Our results are presented in tables1-4.

If we compare our J,K photometry of NGC330with that of Carney et al.(1985)(CJF)we ?nd(J?K)=(J?K)CJF+(0.06±0.08)and K=K CJF+(0.00±0.09).We consider the uncertainty within our J and K photometry to be±0.05mag in both bands.

2.2.Optical Photometry

These clusters are spatially dense;consequently,crowding is a serious problem for those stars near the cluster centre.In previous studies it has not been possible to use the V?K colour of the red supergiants because of the uncertain e?ects of crowding.In the present study we utilise the HST/WFPC2photometry of Keller et al(1999b)of those stars within the aforementioned ?eld.Crowding is not a major concern in the WFPC2?elds.The F555W magnitudes have been converted to Johnson V by utilising the transformation of Holtzman et al(1995).For those stars in the outer extremities of the clusters we have relied upon the V photometry of Keller et al. (1999a).We consider the uncertainty of our V photometry from both sources to be±0.02mag for the objects considered in present work.

3.Reddening corrections

The adopted reddening corrections are taken from Keller et al.(1999b),namely E(B?V)=0.08 for NGC330,1818,and2004and0.24for NGC2100.Reddening ratios are taken from Bessell et al.(1998).The reddening assumed to each cluster is critical to the derived e?ective temperatures (T eff).For instance a change of?E(B?V)=0.02corresponds to a?T eff=100K.

The reddening to NGC330has been the focus of much debate,in particular the e?ect that the applied reddening has upon the derived metallicity from spectroscopic analysis of the cluster

RSGs.Abundance studies provide an estimate of the temperature of the stars under analysis. However,the precision of such determinations is not high.It is commonly the case that recourse is made to the photometric colours of the program star in order to constrain the T eff used in the analysis.In this way the T eff of the target star and hence the resultant abundances are bound to the E(B?V).

In the case of NGC330a low value of reddening(E(B?V)=0.03)was found by Carney

et al.(1985)and Robertson(1974)from the B?V colours for the blue supergiants within the https://www.doczj.com/doc/ad8625325.html,ing this value of reddening a very low metallicity of[Fe/H]=-1.3was found(Barbuy et al.(1991),Spite,Richtler and Spite(1991)and Meliani,Burbuy and Perrin(1995)).This is a factor of three less abundant than the surrounding?eld-a curious?nding.An examination of the colours of B type stars in the vicinity of the MS reveals a considerably higher value:E(B?V)=0.12 (Bessell1991)or0.09(Caloi et al.1993).Hill(1999a)uses a E(B?V)=0.09and the T eff of the present work to derive a[Fe/H]=-0.88,which is on the order of that seen in the?eld.The recent study by Gonzalez&Wallerstein(1999)?nd a similar metallicity of[Fe/H]=-0.94solely from spectroscopic determinations of e?ective temperature.The convergence of the photometric and spectroscopic temperatures provides added con?dence that value of reddening used here is su?cent.

A colour-colour diagram of the de-reddened V?K against J?K is shown in?gure1.Also shown in?gure1is the predicted locus for logg=+0.5and[Fe/H]=-0.60(Plez et al.1997).This value for metallicity is intermediate between SMC and LMC metallicities.There are no radical departures from this relation.

4.E?ective Temperatures and Luminosities for the RSG Population

The dereddened V?K colours were converted into e?ective temperatures through the tables of Bessell et al.(1998).The bolometric correction required was similarly obtained from this source.Figures2a-d show the resultant H-R diagram for the cluster red supergiants.Figure2c shows appropriate error bars derived from the photometric uncertainties discussed above.

Recently Oliva and Origlia(1998)have examined the IR spectra of several young MC clusters, in particular they have focused on the strength of the CO(6,3)(1.62μm)band-head.They conclude that the red supergiants within these clusters must be cooler than predicted by evolutionary models in order to match the observed metallicities.They suggest that the discrepancy arises from the calibration of the mixing-length parameter,αP.However,the situation is not as discrepant as Oliva and Origlia have suggested.In their examination of NGC330they have required a?t to a metallicity of[Fe/H]=-1.3,which as discussed above,is much less than that suggested by recent determinations.In order to achieve a match between the predicted and observed IR spectrum, they require the red supergiant population to be of a temperature of3600K.Figure2a rules this out to at least a4sigma level,instead the RSG within NGC330are distinctly hotter at an

average temperature of~4100K.Indeed,equivalent width of the CO(6,3)feature within NGC330 is compatible with the predictions of standard models with[Fe/H]=-0.7similar to that favoured by recent determinations(see Oliva and Origlia(1998)?gure3).

As discussed above,the study of Caloi and Cassatella(1995)found the RSGs to be of lower luminosity than the luminous tip of the MS.The temperatures and luminosities in Caloi and Cassatella(1995)are based upon previous BV photometry and spectral classi?cations(see references therein).Caloi and Cassatella report that the most luminous blue supergiants within NGC2004have a log(L/L⊙)=4.9,whilst the most luminous RSG are at log(L/L⊙)=4.6and logT eff=3.62.Our observations indicate a mean temperature for the RSG clump some400K cooler at logT eff=3.58.The resultant di?erence in bolometric correction shifts the luminosity of the brightest RSG to log(L/L⊙)=4.83and to greater concordance with the luminosities of the blue supergiants.

4.1.The Mixing Length Parameter-αP

We show in?gure3the combined data from the four clusters,overlaid by the evolutionary tracks from Fagotto et al(1994)for[Fe/H]=-0.40and-0.70.We immediately see the separation between the lower metallicity NGC330RSG and those of the more metal rich LMC clusters. The solid segment of the evolutionary track in?gure3is the down slope of the red giant branch in which models predict the red supergiants spend~75%of their lives when cooler than log

T eff=3.8.The spread of observed e?ective temperatures at a?xed luminosity is undoubtably due,in the majority,to evolution within this portion of the H-R diagram.

It is apparent that the data from both metallicity regimes fail to lie within the region delimited by down slope of the red giant branch of the appropriate metallicity.The data is o?set to lower temperatures than expected.The LMC clusters show this clearly.Here we see an o?set of the mean temperature of the RSG clump from the centre of the predicted band of?logT eff=-0.03.

Such an o?set deserves discussion.The resulting temperature of the RSG population is dependent on a large number of physical inputs to the evolutionary model.Of importance is the treatment of opacity,in particular molecular opacity,input physics such as the presence of convective envelope undershoot,the mixing length parameterαP and the metallicity.Stothers and Chin(1995)?nd thatδlog T eff/δlogZ~-0.06.To account for the observed temperature of the observed RSG in the LMC clusters we would require a[Fe/H]~0.Such a metallicity is ruled out by a vast body of evidence.Similarly,to account for the shift we would have to have a E(B?V) 0.06less than used here.Such a modi?cation is not compatible with observations.

The calibration of the temperature of the RSG branch is achieved within a speci?c model by adjustment of theαP parameter within standard mixing length theory.Typically,a match

is sought between the model prediction of a one solar mass star and that observed for the Sun. Within the model the value forαP is generally assumed to be constant with metallicity and

mass.The resulting T eff of the RSG is also dependent on the treatment of opacity,in particular molecular opacity and input physics such as the presence of convective undershoot.αP is a free parameter with in each model hence its value is potentially a resting place for the e?ects of assumptions and uncertainties within the particular model.

To investigate the model dependence ofαP we show the models of Schaerer et al(1993) and Charbonnel et al.(1993)(hereafter the Geneva group).We see the two models di?er by up to300K in the location of the RSG region.The Geneva models o?er a better match to the observational data.Both the Geneva group and the Fagotto et al.models possess ostensibly the same input physics(sameαP,opacities etc.)and di?er only slightly in terms of the degree of convective core overshoot and envelope undershoot(Fagotto et https://www.doczj.com/doc/ad8625325.html,e a slightly higher degree of convective core overshoot and implement envelope undershoot).Given the inhomogeneities in the resulting RSG temperatures from various models it is not clear that we can discuss the observed o?set in temperature of the RSG population in terms of an absolute numerical value forαP. Hence we discussαP as a free parameter within the context of the evolutionary models of Fagotto et al(1994)and the Geneva group respectively.

Firstly,we can explore the metallicity dependence ofαP.The models of Fagotto et al.(1994) and the Geneva group are of appropriate metallicity for the LMC and SMC.These models show a di?erence in temperature of0.03dex between the centres of the respective shaded regions in ?gures3and4at a given luminosity.The data shows a similar separation,0.02±0.01dex.As the models incorporate a constant value ofαP with metallicity and predict the observed di?erence in average T eff between LMC and SMC,we conclude that there is no evidence for a dependence of αP on metallicity.Previous studies have focussed on globular clusters of considerably lower stellar mass and metallicity.Our?nding is in line with the study of Pedersen et al.(1990)but at odds with the conclusions of Salaris&Cassisi(1996).We consider the conclusion of Salaris&Cassisi to be largely an over interpretation of the available data.

On physical grouds one might expect thatαP be a function of stellar mass.The stellar envelope of a high mass star is seen to be considerably di?erent to that of a solar mass star.For example,the magnitude of micro-turbulence,indicative of bulk motions in the outer envelope,is seen to be a strong function of stellar mass.To investigate a trend with mass we have included in ?gure3and4the intermediate age cluster NGC458in the SMC which is a useful comparison to NGC330.We have used the BV photometry of Arp(1959)and Walker(1987),and the(B?V)to T eff relation of Bessell et al.We have taken the reddening to the cluster as0.03(Arp1959).The resultant e?ective temparatures are systematically hotter than the predictions of both models.

It should be noted that there is considerable uncertainty in the derived results for NGC458. Stars in common between Walker and Arp show a systematic di?erence of~0.15in(B?V).This corresponds to logT eff~0.02cooler in the case of Walker’s photometry.This improves upon the discrepancy but does not remove it.In addition,the reddening of E(B?V)=0.03is minimal; additional reddening would lead to hotter e?ective temperatures for the cool giants.Also shown is the position of the red giant population in the LMC cluster,NGC1850(from V I photometry of

Sebo and Wood1994).This data appears to be in reasonable agreement with the Fagotto et al (1994)model predictions,although it contains a large dispersion.

Our data shows that the standard evolutionary models do not adequately predict the temperatures of RSG and red giant populations in the range of5-15M⊙.In both the models of Fagotto et al(1994)and the Geneva group we see substaintial evidence for a mass dependance ofαP.The available data indicates a trend for decreasingαP with increasing stellar mass. Clari?cation of this trend will require further study at the masses associated with NGC458and NGC1850.

5.Summary

We have presented infra-red photometry in the J and K bands for a sample of red supergiants within four young clusters in the Magellanic Clouds.Such measurements provide a valuable check on predictions of stellar evolutionary models at low metallicity.We have seen that standard models of Fagotto et al(1994)and the Geneva group,both with similar input physics,di?er markedly in the temperature they predict for the RSG population.Such di?erences likely arise from the treatment of theαP parameter used in standard mixing length theory.As a free parameterαP also typically contains the e?ects of assumptions and uncertainties within a given evolutionary model.

For this reason,discussion ofαP in a quantitative manner can not be made without reference to a speci?c model.Qualitatively then,both models show evidence for a mass dependence ofαP, speci?cally thatαP decreases with increasing stellar mass.We do not see evidence for a metallicity dependence ofαP within our data.

SCK acknowledges the support of an APA scholarship.

REFERENCES

Arp,H.C.1959,AJ,64,175.

Balona,L.A.1992,MNRAS,256,425

Barbuy,B.,Spite,M.,Spite,D,&Milone,A.1991,A&A247,15.

Bessell,M.S.,Brett,J.M.,Wood,P.R.&Scholz,M.1989,A&AS,77,1.

Bessell,M.S.1991,A&A,242,L17.

Bessell,M.S.,Castelli,F.&Plez,B.A&A,1998,333,231.

Bohm-Vitense,E.1958,Z.Ap,46,108.

Caloi,V.Cassatella,A.,Castellani,V.,&Walker,A.1993,A&A,271,109.

Caloi,V.&Cassatella,A.1995,A&A,295,63.

Carney,B.W.,Janes,K.A.and Flower,P.J.1985,AJ,90,1196.

Carter,B.S.&Meadows,V.S.1995,MNRAS,276,734.

Charbonnel,C.,Meynet,G.,Maeder,A.,Schaller,G.,&Schaerer,D.1993,A&AS,101,415. Chiosi,C,Vallenari,A.,Bresan,A.,Deng,L.,&Ortolani,S.1995,A&A,293,710.

Fagotto,F.,Bressan,A.,Bertelli,G.,&Chiosi,C.A&AS,1994,105,29.

Gonzalez,G.&Wallerstein,G.1999,AJ,in press.

Keller,S.C.,Wood,P.R.,&Bessell,M.S.1999a,A&AS,134,489.

Keller,S.C.,Bessell,M.S.&DaCosta,G.S.1999b,AJ submitted.

Keller,S.C.,Bessell,M.S.&DaCosta,G.S.1999c,in prep.

Hill,V.1999,in“New Views of the Magellanic Clouds”,IAU Symp190,in press.

Hill,V.1999,A&A,345,430.

Holtzman,J.A,Burrows,J.,Casertano,S.,Hester,J.,Trauger,J.T.,Watson,A.M.&Worthey,

G.1995b,PASP,107,1065.

Jones,T.J.&Hyland,A.R.1980MNRAS,192,359.

McGregor,P.J.&Hyland,A.R.1984,ApJ,277,149.

McGregor,P.J.1994a Exp.Astron.,3,139

McGregor,P.J.1994b PASP,106,508.

Meliani,M.T.,Burbuy,B.&Perrin,M-N.1995A&A300,349.

Oliva,E&Origlia,L.1998A&A,332,46.

Pedersen,B.B.,VandenBerg,D.A.&Irwin,A.W.1990,ApJ,352,279.

Plez B.,Edvardsson,B.,Gustafsson,B.,Eriksson,K.,Jorgensen,U.G.1997,in prep. Robertson,J.1974,A&AS,15,261.

Salaris,M.&Cassisi,S.1996,A&A,305,858.

Schaerer,D.,Meynet,G.,Maeder,A.and Schaller,G.1993,A&AS,98,523. Sebo,K.M.&Wood,P.R.1994,AJ,108,932

Spite,F.,Spite,M,&Richtler,T.1991,A&A,252,557.

Stothers,R.B.&Chin,C-W.1992,ApJ,390,163.

Stothers,R.B.&Chin,C-W.1995,ApJ,440,297.

Stothers,R.B.&Chin,C-W.1996,ApJ,469,166.

Walker,M.F.1987,PASP,99,179.

Table1.NGC330

Star K J?K V(V-K)0(J-K)0BC K Log T ef f a Log(L/L⊙)b

a Estimated uncertainty±0.007

b Estimated uncertainty±0.010

Table2.NGC1818

Star K J?K V(V-K)0(J-K)0BC K Log T ef f a Log(L/L⊙)b

a Estimated uncertainty±0.007

b Estimated uncertainty±0.010

Table3.NGC2004

Star K J?K V(V-K)0(J-K)0BC K Log T ef f a Log(L/L⊙)b

a Estimated uncertainty±0.007

b Estimated uncertainty±0.010

Table4.NGC2100

Star K J?K V(V-K)0(J-K)0BC K Log T ef f a Log(L/L⊙)b

a Estimated uncertainty±0.007

b Estimated uncertainty±0.010

Fig. 1.—J-K data plotted against V-K for the red supergiants in the four clusters.The RSG of NGC330are shown by open circles,NGC1818by?lled circles,NGC2004by solid boxes and NGC 2100by crosses.The colours have been dereddened(see text for details).Approximate error bars are shown.The dashed line shows the predicted locus for logg=+0.5and[Fe/H]=-0.60(Plez et al.

1997).

Fig.2.—H-R diagrams for the giant-branch members within(a)SMC cluster NGC330,and the LMC clusters(b)NGC1818,(c)NGC2004and(d)NGC2100.Typical error bars are shown in

?gure2c.

Fig.3.—H-R diagram showing evolutionary tracks from the models of Fagotto(1994)for Z=0.004 (dashed lines)at9and5M⊙.The solid lines contain the region of the downward slope of the evolutionary path in which the RSG spend the majority of their time for Z=0.004(left)and Z=0.008 (right).The symbols described in?gure1show the RSG of the present work.Also shown at lower

luminosities is the data for NGC458(open circles)and NGC1850(small?lled circles).

Fig. 4.—H-R diagram showing evolutionary tracks from the models of the Geneva group for

Z=0.004(dashed lines)at10and4M⊙.Symbols are as in?gure3.

AE插件说明大全

由于网上的插件种类繁多,且全是E文版,之前我在EMUEL上下了一个不过里面几十个每头没脑的E文插件让我很茫然,所以找了下面这个插件功能介绍给大家选择性安装! Digieffects.Aurorix.v2.8.for.Adobe.After.Effects 类别:插件 说明:AE的插件包,包括26个插件,其中有3D灯光、地震、快速万花筒、分形图像、聚灯光、飞动星云等很酷的特效。 Digieffects.Berserk.v1.8.for.Adobe.After.Effects 类别:插件 说明:AE的插件包,包括20个获奖的插件,其中有雪景、调整色块化、晶格化、水波纹、调整胶片工具、老电影等很眩目的特效。 : Digieffects.Cinelook.Broadcast.v1.6.for.Adobe.After.Effects 类别:插件 说明:AE的插件,可以把你的录像作品制作出如同电影一样的效果。 Digieffects.Delirium.v1.6.for.Adobe.After.Effects 类别:插件 说明:AE的插件,Delerium包含30多种特效,包括粒子系统和三维效果。

PRIMATTE_KEYER_V1.5.1_FOR_AE5.5_AND_6.0 类别:插件 说明:AE插件,可以轻易地从前景和背景的区域中取样,抑制颜色溢出,并能够调整mattes的透明度,来创建令人惊叹的mattes Frischluft.Flair.v1.02.for.Adobe.After.Effects 类别:插件 说明:After Effect插件,具有八个高速高质量的滤镜,包括Volumetric light和glow(闪光)等效果。 Frischluft_Lenscare_v1.1.1_For_After_Effects 类别:插件 说明:Lenscare是面向Adobe After Effects的一款插件。它包括两个独立的插件,out of focus用来模仿镜头模糊,depth of field用来创建复杂的景深效果。v1.1升级包括对多CPU的支持以及更好的内存管理。out of focus插件可以节省百分之五十的内存! RevisionFX_Twixtor_Pro_v3.04_For_After_Effects 类别:插件 说明:After Effects 插件,用来减慢、加快及改变图像序列中的帧速,支持8、16位通道处理。pro版支持使用特别的Matte来分离前景和

【飞行员必备】机场标志和标识

【飞行员必备】机场标志和标识 随着民航事业的不断发展,飞机越来越多、机场跑道越来越多、航线越来越多。机遇和挑战并存,繁忙的机场运行、复杂的机场滑行路线、不规范的机场标志等,于是...... 2008年2月4日,越南航空公司飞机执行广州-河内VN919 航班,飞机在广州白云机场地面滑行过程中误入车辆服务通道,左侧机翼撞击车辆服务通道照明灯柱而受损。2006年6月7日和6月9日,两架执行至呼和浩特航班任务的飞机在26号跑道着陆时,降落在机场未启用的新跑道上。 2008年2月29日,一架B737飞机在银川河东机场21号跑道实施VOR/DME程序进近,将尚未启用的平行滑行道当做跑道,飞机在平行滑行道上接地并滑跑494米后离地。飞机无受损,机上人员安全。 类似这样的事件时有发生,导致事件发生的原因可能是多方面的,作为飞行员,我们又如何去规避此类事件呢?秉着一起学习交流的目的,飞行GO将推出“机场标志/标识和机场助航灯光系统”系列文章,跟大家一起回顾有关机场标志标识和机场灯光系统等方面的内容。一、基本概念介绍 1飞行区指标(Aerodrome Reference Code Elements I and II)2机场基准点(Aerodrome Reference Point—ARP ) 机场必须设置一个基准点,应位于机场使用中的或规划的所

有跑道的几何中心或者主跑道中线的中点,首次设定后应保持位置不变。其坐标必须加以测量,用经纬度表示,精确到秒。3机场标高和跑道标高(Aerodrome elevation) 起飞着陆区(跑道中线)最高点的标高,还需提供跑道入口两端中点标高。 4跑道公布距离 道面系统:ASPH—Asphalt Runway 沥青CONC——Concrete Surfaced Runway 水泥 净空道(CWY)跑道头的一块长方形场地或水面,飞机在其上空起始爬升到35ft 停止道(SWY)起飞滑跑距离末端以外的一块长方形区域,适合飞机在中断起飞时能在上面停住。在正常起飞着陆时不使用,因此可选用比跑道低级一些的道面,但强度应在中断起飞承载时不致造成航空器的结构损坏。与跑道处于同一条中心线上,至少与跑道同宽;停止道表面的摩阻特性应良好。可用起飞滑跑距离(Take 0ff Runway Available) 可用起飞距离(Take Off Distance Available)可用加速停止距离(Accelerate-stop Distance Available)可用着陆距离(Landing Distance Available) 5道面承载强度pavement classification number (PCN) 为确定道面能否满足运行,我们需要用道面的PCN值与飞机相应的实际ACN值进行比较。

AE十大插件介绍

AE十大插件介绍 一、55MM 55MM的基本功能是用来复制电影工业中所使用的电影摄像机上的玻璃滤镜的光 学特性。 这意味着你用DV拍摄的视频也可以拥有这们通常所缺乏的那种光泽和深度感。转场和渐变看起来会比通常的视频效果显得更富有质感。 Polarising(偏振)滤镜非常出色。 它可以将一个有着薄薄雾气的白色天空转变为非常真实的蓝色。 滤镜虽无法像真实偏振那样删除玻璃上的反光, 但是它可以实现的效果已经非常接近真实了。 这些滤镜可以用各种方法进行*作,而且决不会降低画面的质量, 同时渲染的时间也是相对较少的。 二、MAGIC BULLET 唯一一款可以精确模拟真实电影胶片效果的AE插件 真正的电影胶片是非常锐丽而且清晰的,当出现运动的地方就会模糊, Magic Bullet是唯一一款可以在DV影片上精确模拟这种效果的产品。 它的强大功能来自于去除瑕疵的处理过程, 它可以去掉视频影像中的锯齿边界而不会出现模糊。 其他的技术只是简单的减少细节,或者降低分辨率来达到类似的效果。 但是Magic Bullet却可以保留所有应该锐丽的区域,而只模糊掉不必要的区域。最后的效果是极好的,堪称可能实现的最好的仿电影效果。 这个滤镜非常适于电视广播的应用, 但是也可以被用来将DV处理为35mm胶片。

这个插件包中包括了模拟的Promist滤镜和诸如光学溶解等电影工作室的处理方法, 不过需要渲染的时间也是非常漫长的。 三、AURORA SKY AE 创建写实主义的天空 模拟的天空在非常多的项目中都会用到。 刚开始时插件的选项有些让人无从下手, 但大量的预设效果会帮助你很快的找到方向。 生成的效果虽然还达不到照片的真实度,但也相差不远了。 也许这个插件给你的第一印象是觉得它只适合动画或特效, 其实你也可以用它来替换不适合的天空—— 这个3D效果看起来太象photoshop了, 所以使用的时候一定要小心噢! 这个插件的渲染速度很慢, 有时候你可以只渲染一个静帧,然后用它来做背景! 四、SWIM 真实的水面波纹效果 想模仿真实的海洋或湖泊,你也许需要类似Psunami 这样的高端滤镜。 或者你只是想创建真实的波纹效果,Swim就是对标准水效果的一个重大改进。它的关键功能之一是创建循环的视频片断, 每一个像素都会回到最初的位置,而运动过程决不雷同,

AE插件详解Trapcode-Lux

Lux 插件效果:制作点光源与聚光灯的自身显现 Point Lights点光源设置 继承AE点光源的三个属性:位置,颜色,灯光强度 Point Light Model点灯光显示类型 ---Off关闭,不显示点光源 ---Natural灯光衰减采用距离平方(1/R2),更为仿真 ---Radius定义一个半径像一个体积球 ---Radius+Source体积球中间叠加一个小的体积球 ---Source仅仅一个小的体积球 Light’s Intensity显示强度是否受灯光自身强度影响,默认勾选,如需统一多盏灯光的显示强度可以取消勾选Intensity显示灯光强度,不会影响AE自带灯光的灯光强度Softness[%]柔化,有点像加了模糊插件,但是Alpha更为清晰 Radius选择Radius/Radius+Source类型时生效,控制球型大小 Individual Radius选择Radius/Radius+Source类型时生效, ---None所有灯光拥有同样的球型半径,球型受三维影响 ---Intensity(mult)灯光大小受灯光自身强度影响,不管Light's Intensity是否勾选 ---Shadow Darkness(mult)灯光大小受灯光Shadow Darkness属性影响 ---Shadow Diffusion(add)灯光大小受灯光Shadow Diffusion属性影响 Source Intensity控制内部小球强度 Source Radius控制内部小球大小 Spot Lights聚光灯源设置 Spot Light Model聚光灯显示类型 ---Off关闭,不显示聚光灯源 ---Natural灯光衰减采用距离平方(1/R2),更为仿真 ---Distance灯光衰减采用距离(1/R) ---Constant灯光强度固定,无衰减

AE插件大全以及部分汉化插件

Red Giant系列官网https://www.doczj.com/doc/ad8625325.html,/红巨星系列插件注册码 0、Trapcode_Suite_Win_Full_11_原版+注册机(Form更新至2.0) 1、Red.Giant.Trapcode.合集.V4.0中英文安装版32位Particular_预置(英汉双语) Form_预置(英汉双语) 2、Red.Giant.Trapcode.合集.For.AECS5中英文安装版64位也适用于AECS5.5 3、魔法子弹调色系列Red Giant Magic Bullet Suite 11 英文原版+注册机+汉化+安装教程下载 Magic Bullet Suite 11破解版安装图解 Magic Bullet Suite 11调色系列包括以下九个插件(其中Grinder用于MAC):

4、调色插件Magic_Bullet_Looks_AE_1.4.3_32bit英文版+汉化(baxianhua) MBLooks.预置(安装时直接复制粘贴即可) Magic_Bullet_Looks_PPro_1.4.3_64bit英文版+汉化(baxianhua) 5、调色师Magic.Bullet.Colorista.II.注册版+汉化(32位+64位)详细说明 6、调色插件MBMojo.32位(1.1).64位(1.2)+汉化(AE.PR.VEGAS) 7、AE降噪极品.Magic.Bullet.Denoiser.1.0.1.32bit64bit原版加汉化 8、AE视频转换Magic.Bullet.InstantHD.3264bit 9、AEPR场插件MB.Frames.(32位1.02版).(64位1.1版) 10、Red_Giant_Keying_Suite_11包括:Primatte Keyer 5.0 、Key Correct 1.2.1 和Warp 1.1.1 Keying_Suite_11.0_安装注册图文教程 11、Red.Giant.KeyCorrectWinFull.ChsPackV2.0.(32.64bit)AE抠像校正原版加汉化汉化说明 12、极品抠像插件_Primatte_Keyer_Pro_4.0_中英文安装版32位 13、Red.giant.Warp.1.1.3264bit.AEPR(三维变形反射投影) Red_Giant_Warp_1.0_中英文版(三维变形反射投影)32位 14、灯光工厂Red.Giant.Knoll.Light.Factory.2.52.英文原版(带汉化)新增100组预设ffx后缀lfp后缀 灯光工厂Knoll.Light.Factory.Win.Full.(2.5版+2.7版) 2.5版本用于32位,2.7版本用于64位 15、3D助手Red.Giant.PlaneSpace.v1.4.3264bit+汉化(曹润)汉化说明 16、天空大海滤镜.Red.Giant.Psunami.v1.4(3264bit)+32bit汉化 17、AE烟雾水火.RedGiant.Image.Lounge.1.4.5.(3264bit) 18、卡通.水墨.油画Red.Giant.ToonIt.v2.1.3264bit.注册版 AE卡通、水墨、油画Red_Giant_Toon_It_AE(带汉化1.1.1版)32位 19、极品文字特效插件.Red.Giant.Text.Anarchy.2.4.(32.64bit)(AEPR) 极品文字特效插件_Red_Giant_Text_Anarchy_V2.35中英文版32位 20、AE屏幕视觉Red.Giant.Holomatrix.1.2.(3264bit) 21、Reflector.1.5.0.PC反射倒影(32位) 22、Magic.Bullet.Steady.for.AE.1.1.1(稳定降噪) 23、Red.Giant.Film.Fix.v1.0.for.AE【修复老旧影片插件】 DigiEffects系列官网https://www.doczj.com/doc/ad8625325.html,/DE系列注册破解方法 1、DE.Delirium.1.8(原版加汉化)32位 DE-DeliriumV2-64bit原版

AE插件大全

Adobe After Effects目前可用插件的比较周全的名单,要是全部装的话估计AE一到loading plug-ins就要宕机了,anyway,只当是个参考列表罢了... DigiEeeects Aurorix 2: 3dlighting 2(3D灯光,带色浮雕,酷) agedfilm 2(老电影2,酷) bulgix 2(程序自带) chaoticonoise 2(RGB杂色) chaoticrainbow 2(与上一个同) colorspotlights 2(RGB色散灯光,酷) earthquake 2(地震,酷) electrofield 2(二维彩虹扩散) flitter 2(与程序自带Scatter同) fractalnoise 2(RGB杂色) infinitywarp 2(快速万花筒,酷) infinityzone 2(分形图像,酷) interferix 2(万花筒) interpheron 2(万花筒) lightzoom 2(光线缩放,酷) noiseblender 2(RGB杂色) soapfilm 2(RGB杂色)

spotlights 2(聚灯光,酷) strangenedbulae 2(飞动星云,差,渲染慢) tilos 2(差于程序自带) turbuletflow 2(波动,差于程序自带) videolook 2(模拟电视机像素块,好) warpoid 2(波动) whirlix 2(差于程序自带) woodmaker 2(RGB杂色) DigiEffects berserk: blizzard(雪景,酷) bumpmasker(不可用常死机) contourist(调整色块化,好) crystallizer(晶格化) cyclowarp(水波纹,差于程序自带) edgex(带色阀值

文本预览
相关文档 最新文档