当前位置:文档之家› 基于ABAQUS的碳纤维复合材料板热冲压成形仿真

基于ABAQUS的碳纤维复合材料板热冲压成形仿真

基于ABAQUS的碳纤维复合材料板热冲压成形仿真
基于ABAQUS的碳纤维复合材料板热冲压成形仿真

ABAQUS中Fortran子程序调用方法

第一种方法: / o/ J5 @6 U/ ^- o$ 1. 建立工作目录/ ]" 2. 将Abaqus安装目录\6.4-pr11\site下的aba_param_dp.inc或aba_param_sp.inc拷贝到工作目录,并改名为aba_param.inc; # ~/ |0 I0 E6 {, @4 X3 q: W3. 将编译的fortran程序拷贝到工作目录; 4. 将.obj文件拷贝到工作目录; 5. 建立好输入文件.inp; 6. 运行abaqusjob=inp_name user=fortran name即可。 第二种方法: 在Job模块里,创建工作,在EditJob对话框中选择General选项卡,在Usersubroutine file中点击Select 按钮,从弹出对话框中选择你要调用的子程序文件(后缀为.for或.f)。 , D8 i7 d/r c6 @" | 以下是网上摘录的资料,供参考:. |$ t/ }$W7 Y6 m4 h6 D6 j 用户进行二次开发时,要在命令行窗口执行下面的命令: 4 O. R+ ^,@( ? abaqus job=job_name user=sub_name ABAQUS会把用户的源程序编译成obj文件,然后临时生成一个静态库standardU.lib和动态库standardU.dll,还有其它一些临时文件,而它的主程序(如standard.exe和explicit.exe等)则没有任何改变,由此看来ABAQUS是通过加载上述2个库文件来实现对用户程序的连接,而一旦运行结束则删除所有的临时文件。这种运行机制与ANSYS、LS-DYNA、marc等都不同。 : j6 g' R-o( {0 [* N2 J3 X这些生成的临时文件要到文件夹C:\Documentsand Settings\Administrator\Local Settings\Temp\中才能找到,这也是6楼所说的藏了一些工作吧,大家不妨试一下。 1子程序格式(程序后缀是.f; .f90; .for;.obj??) 答:我试过,.for格是应该是不可以的,至少6.2和6.3版本应该是不行,其他的没用过,没有发言权。在Abaqus中,运行abaqusj=jobname user=username时,默认的用户子程序后缀名是.for(.f,.f90应该都不行的,手册上也有讲过),只有在username.for文件没有找到的情况下,才会去搜索username.obj,如果两者都没有,就会报错误信息。 如果username包括扩展名for或obj,那么就根据各自的扩展名ABAQUS会自动选择进行操作。 2CAE中如何调用?Command下如何调用? 答:CAE中在creat job的jobmanager中的general中可以指定子程序; Command下用命令:abaqus j=jobnameuser=userfilename (无后缀); 3若有多个子程序同时存在,如何处理 答:将其写在一个文件中即可,然后用一个总的子程序调用(具体参见手册) 4我对VF不是很熟,是否可以用VC,C++编写子程序? A: 若要在vf中调试,那么应该根据需要把SITE文件夹中的ABA_PARAM_DP.INC(双精度)或ABA_PARAM_SP.INC(单精度)拷到相应的位置,并改名为ABA_PARAM.INC即可。 据说6.4的将可以,6.3的你可以尝试着将VC,C++程序编译为obj文件,没试过。在你的工作目录下应该已经存在ufield.obj和uvarm.obj这两个文件(这两个文件应该是你分别单独调试ufield.FOR和uvarm.FOR时自动编译生成的,你可以将他们删掉试试看),但是由于你的FOR文件中已经有了UV ARM 和UFIELD这两个subroutine,显然会造成重复定义,请查实。 用户子程序的使用 假设你的输入文件为:a.inp b.for 那么在ABAQUS Command 中的命令应该是这样的: abaqusjob=a user=b

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

Abaqus针对复合材料优势

四Abaqus在复合材料领域的优势 4.1 复合材料介绍 4.1.1 复合材料的应用 复合材料有许多特性: 1、制造工艺简单 2、比强度高,比刚度大 3、具有灵活的可设计性 4、耐腐蚀,对疲劳不敏感 5、热稳定性能、高温性能好 由于复合材料的上述优点,在航空航天、汽车、船舶等领域,都有广泛的应用。复合材料的大量应用对分析技术提出新的挑战。

4.1.2 复合材料的结构 复合材料是一种至少由两种材料混合而成的宏观材料,其中的一种材料被称作基体,其它的材料称作纤维。其中纤维可以包含很多不同的 形式:离散的宏观粒子,任意方向的短纤维,规则排列的纤维和织物。 4.1.3 典型的复合材料 1)单向纤维层合板----冲击分析

2)编织复合材料---- 挤压分析 3)蜂窝夹心复合材料----不可见冲击损伤分析

基体和纤维的存在形式以及材料属性对于复合材料的力学行为有 着很大的影响。改变纤维和基体的属性目的就是在于生成一种复合材料具有如下性质: 1)低成本:原型,大规模生产,零件合并,维修,技术成熟。 2)期望的重量:轻重量,比重分配合理。 3)改进的强度和刚度:高强度/高刚度比。 4)改进的表面属性:良好的耐腐蚀性,表面抛光性好。 5)期望的热属性:较低的热传导性,热膨胀系数较低。 6)独特的电属性:具有较高的绝缘强度,无磁性。 7)空间适应性:大部件,特殊的几何构型。 4.1.4 复合材料的有限元模拟 根据不同的分析目的,可以采用不同的复合材料模拟技术: 1)微观模拟:将纤维和基体都分别模拟为可变形连续体。 2)宏观模拟:将复合材料模拟为一个正交各向异性体或是完全各向

ABAQUS子程序

Home 浅谈ABAQUS用户子程序 李青清华大学工程力学系 摘要本文首先概要介绍了ABAQUS的用户子程序和应用程序,然后从参数,功能两方面详细论述了DLOAD, UEXTERNALDB, URDFIL三个用户子程序和GETENVVAR,POSFIL,DBFILE三个应用程序,并详细介绍了ABAQUS的结果文件(.FIL)存储格式。 关键字ABAQUS,用户子程序,应用程序,结果文件 一、前言: ABAQUS为用户提供了强大而又灵活的用户子程序接口(USER SUBROUTINE)和应用程序接口(UTILITY ROUTINE)。ABAQUS 6.2.5一共有42个用户子程序接口,13个应用程序接口,用户可以定义包括边界条件、荷载条件、接触条件、材料特性以及利用用户子程序和其它应用软件进行数据交换等等。这些用户子程序接口使用户解决一些问题时有很大的灵活性,同时大大的扩充了ABAQUS的功能。例如:如果荷载条件是时间的函数,这在ABAQUS/CAE 和INPUT 文件中是难以实现的,但在用户子程序DLOAD中就很容易实现。 二.在ABAQUS中使用用户子程序 ABAQUS的用户子程序是根据ABAQUS提供的相应接口,按照FORTRAN语法用户自己编写的代码。在一个算例中,用户可以用到多个用户子程序,但必须把它们放在一个以.FOR为扩展名的文件中。运行带有用户子程序的算例时有两种方法,一是在CAE中运行,在EDIT JOB菜单的GENERAL子菜单的USER SUBROUTINE FILE对话框中选择用户子程序所在的文件即可;另外是在ABABQUS COMMAND用运行,语法如下: ABAQUS JOB=[JOB] USER?[.FOR]?C 用户在编写用户子程序时,要注意以下几点: 1.用户子程序不能嵌套。即任何用户子程序都不能调用任何其他用户子程

abaqus复合材料薄壁圆筒建模流程

1,建立模型Part Module :类型三维,solid,旋转;按尺寸绘图,done,设置旋转角此处为360度。 2,建立参考面,将圆筒分成两半 3,Assembly Module :类型Independent 分区partition截面 4,Mesh module : 点击remove空二,选择cells消隐分区 X Select entities to remove: Cells Undo 撒种子时,需要分几层就在边缘上撒多少个种子,在每条边上尽量都撒相同数量的种子, 生成结构网格,生成的网格才比较规整。 (注意,此处的mesh,对象为assembly,而不是part) 生成网格后,Mesh: Create Mesh Part Module I- Mesh * Model:j Model-1 abject: * Awembly Part「 4,Job Module : Create Job,例如job-007-01,运行生成job-007-01.inp 文件,保存成007-01.cae 文件。 5,File: New打开新窗口

6,File: Import : Model 选择job-007-01.inp 打开 7,Mesh Module: Tools: Surface manager: create: by angle 定义surface 集合 Tools: Set manager: create: Element: by angle 定义Element 集合 用以下三个命令操作,选择恰当的面。 丄i Select the Entity Closest to the Screen, ---- Select From Exterior En tities '包i 一 J Select From Interior Entities (左键点击第二个图标不放拖出即可) 注:定义Element集合时,可以从外到内,定以一层后,在display中--- -:把定义的那层remove掉再定义下面一层。 8,Mesh: Edit :Mesh : Mesh Offset (create solid layers): Surfaces (选择相应的面):Total thickness定义厚度,生成cohesive单元,把其之前定义的几层surface,都生成cohesive单丿元。 9,Mesh: Element type :对cohesive 单元,Family 选择Cohesive,对其他单元,Family 选择3D Stress;对于静态运算,Element Library选择Standard,对于动态(显式)运算,Element Library 选择Explicit。 10,Property: Create Material: jiti (材料名字):Mechanical : Elastic: Type: Isotropic =tdrt Matetial 邑 M<)terial-jiti Description; NLrnnb?r of field v-arid4)l?:0 ' Moduli tme scale [forvi&ctwlKlicrty^ Long-term No compr-eision 3 Nc Datia Voungi'i P鈕1刖n1* 1 4D0C Create Material: xianwei (材料名字):Mechanical : Elastic : Type : Isotropic

abaqus简单umat子程序

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT, 1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED, 2 CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT, 3 PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) include 'aba_param.inc' CHARACTER*8 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 3 DFGRD0(3,3),DFGRD1(3,3) C UMAT FOR ISOTROPIC ELASTICITY C CANNOT BE USE D FOR PLAN E STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C ---------------------------------------------------------------- C IF (NDI.NE.3) THEN WRITE (*,*) 'THIS UMAT MAY ONLY BE USED FOR ELEMENTS 1 WITH THREE DIRECT STRESS COMPONENTS' CALL XIT ENDIF open(400,file='D:\test.txt') C ELASTIC PROPERTIES EMOD=PROPS(1) ENU=PROPS(2) EBULK3=EMOD/(1-2*ENU) EG2=EMOD/(1+ENU) EG=EG2/2 EG3=3*EG ELAM=(EBULK3-EG2)/3 write(400,*) 'temp=',temp C ELASTIC STIFFNESS C DO K1=1, NDI DO K2=1, NDI DDSDDE(K2, K1)=ELAM END DO DDSDDE(K1, K1)=EG2+ELAM

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈

服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。 图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除 (如图19.1.1-1中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 1.1 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 1.2 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。其中基于traction-separation 描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性

降低软化阶段。 注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive 单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive 的力学性能时,实际就是要确定上述本构模型的具体形状:包括刚度、极限强度、以及临界断裂能量释放率,或者最终失效时单元的位移。常用的定义方法是给定上述参数中的前三项,也就确定了cohesive 的本构模型。Cohesive 单元可理解为一种准二维单元,可以将它看作被一个厚度隔开的两个面,这两个面分别和其他实体单元连接。Cohesive 单元只考虑面外的力,包括法向的正应力以及XZ ,YZ 两个方向的剪应力。 下文对cohesive 单元的参数进行阐述,并介绍参数的选择方法。 图2. 双线性本构模型 1.2.1 Cohesive 单元的刚度 基于traction-separation 模型的界面单元的刚度可以通过一个简单杆的变形公式来理解 PL AE δ= (1) 其中L 为杆长,E 为弹性刚度,A 为初始截面积,P 为载荷。公式(1)又可以写成 S K δ= (2) 其中S P A =为名义应力,K E L =为材料的刚度。 为了更好的理解K ,我们把K E L =写成: 1E E L E L K L L ===' (3)

ABAQUS用户子程序

当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS 调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1.F为用户定义的是每个积分点所作用的荷载的大小; 2.KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值;3.TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值;4.NOEL,NPT为积分点所在单元的编号和积分点的编号; 5.COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER*80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)*PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)**2*PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)**3*PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)**4*PLOAD END IF RETURN END UMAT 子程序具有强大的功能,使用UMAT 子程序: (1) 可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

Abaqus材料用户子程序UMAT基础知识与手册例子完整解释

1、为何需要使用用户材料子程序(User-Defined Material, UMAT )? 很简单,当ABAQUS 没有提供我们需要的材料模型时。所以,在决定自己定义一种新的材料模型之前,最好对ABAQUS 已经提供的模型心中有数,并且尽量使用现有的模型,因为这些模型已经经过详细的验证,并被广泛接受。 UMAT 子程序具有强大的功能,使用UMAT 子程序: (1)可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩充程序功能。 (2) 几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予ABAQU S 中的任何单元。 (3) 必须在UMAT 中提供材料本构模型的雅可比(Jacobian )矩阵,即应力增量对应变增量的变化率。 (4) 可以和用户子程序“USDFLD ”联合使用,通过“USDFLD ”重新定义单元每一物质点上传递到UMAT 中场变量的数值。 2、需要哪些基础知识? 先看一下ABAQUS 手册(ABAQUS Analysis User's Manual )里的一段话: Warning: The use of this option generally requires considerable expertise(一定的专业知识). The user is cautioned that the implementation (实现) of any realistic constitutive (基本) model requires extensive (广泛的) development and testing. Initial testing on a single eleme nt model with prescribed traction loading (指定拉伸载荷) is strongly recommended. 但这并不意味着非力学专业,或者力学基础知识不很丰富者就只能望洋兴叹,因为我们的任务不是开发一套完整的有限元软件,而只是提供一个描述材料力学性能的本构方程(Constitutive equation )而已。当然,最基本的一些概念和知识还是要具备的,比如: 应力(stress),应变(strain )及其分量; volumetric part 和deviatoric part ;模量(modul us )、泊松比(Poisson’s ratio)、拉梅常数(Lame constant);矩阵的加减乘除甚至求逆;还有一些高等数学知识如积分、微分等。 3、UMAT 的基本任务? 我们知道,有限元计算(增量方法)的基本问题是: 已知第n 步的结果(应力,应变等)n σ,n ε,然后给出一个应变增量1+n d ε,计算新的应力1+n σ。UMAT 要完成这一计算,并要计算Jacobian 矩阵DDSDDE(I,J) =εσΔ?Δ?/。σΔ是应力增量矩阵(张量或许更合适),εΔ是应变增量矩阵。DDSDDE(I,J) 定义了第J 个应变分量的微小变化对

ABAQUS用户子程序

ABAQUS用户子程序 转自https://www.doczj.com/doc/a72654194.html, 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1. F为用户定义的是每个积分点所作用的荷载的大小; 2. KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值; 3. TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值; 4. NOEL,NPT为积分点所在单元的编号和积分点的编号; 5. COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)2PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)3PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)4PLOAD

复合材料ABAQUS分析 精讲版

复合材料Abaqus仿真分析——精讲版 本文以一个非常简单的复合材料层合板为例,应用Abaqus/CAE对其进行线性静态分析。一块边长为254mm的方形两层层合板,两层厚度均为2.54mm,第一层铺层角45°,第二层铺层角-45°;板的四边完全固支,板的上表面受到689.4kpa的压强。各单层的材料相同,材料属性如下: E1=276GPa,E2=6.9GPa,E3=5.2GPa,γ12=0.25,G12=3.4GPa,G13=3.4GPa,G23=3.4G。 定义模型的几何形状 创建一个具有平面壳体单元基本特征的三维变形体,在草图环境绘制板的几何形状如下图:

定义材料属性和局部材料方向 Create coordinate system

定义局部坐标系,对于像本例这样的简单几何体,本可以不用另外建立局部坐标系,但笔者还是在本例中用了局部坐标系,主要是考虑到以后再复杂问题中会经常用到这一方法。 创建铺层 或者使用菜单栏

此处使用全局坐标系

使用用户自定义坐标系 Rotation angle depends on the coordinate system defined by user. Par example, if x-axe in the user defined system is parallel to the direction of fiber; we should replace the angles by 0 and 90. 使用全局坐标系和局部坐标系的区别在下面这一步可以查看 如果使用全局坐标系,会有方向指示,如果使用用户自定义坐标系,在层中没有方向指示可以通过’工具——查询’来检查铺层(Tool ---- Q uery----ply stack plot) Case 1 全局坐标系

ABAQUS子程序UMAT的应用

A B A Q U S子程序U M A T 的应用 This model paper was revised by the Standardization Office on December 10, 2020

目录

摘要 ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。 本文主要研究了ABAQUS用户子程序UMAT的开发方法,采用FORTRAN语言编制了各向同性硬化材料模型的接口程序,研究该类材料的弹塑性本构关系极其实现方法。 本文紧紧围绕UMAT的二次开发技术,首先对其接口原理做了详细介绍,然后针 对非线性有限元增量理论中的常刚度法和切线刚度法的算法理论做了深入的剖析,推导出了常刚度法和切线刚度法的算法理论的具体表达式,然后分别编制了两种算法的UMAT程序,最后建立了一个具体的验算模型,通过与ABAQUS自带弹塑性本构关系的计算结果相比较,验证两者的正确性。 本文还对常刚度法和切线刚度法得算法效率做了对比,得出了在非线性程度较高 时切线刚度法效率高于常刚度法的结论。 关键字: ABAQUS、UMAT、有限元、材料非线性、FORTRAN、切线刚度 ABSTRACT ABAQUS software powerful, especially to simulate complex non-linear problem, which includes a wide range of material constitutive model and failure criteria, and has a good open, providing a number of user subroutine interface that allows users to code form to expand the functions of the main program.

ABAQUS及Ansys概述

ABAQUS软件公司和产品应用介绍 一、ABAQUS软件公司的发展历程 1972年,ABAQUS的首要创始人David Hibbitt在布朗大学完成了Ph.D.论文,论文的一部分为基于有限元方法的计算力学内容。这期间,他和他的导师创建了一个公司,产品为他们开发的有限元软件MARC。此后,ABAQUS的另外一个创始人Paul Sorensen也加入了MARC,但之后回到布朗大学继续攻读Ph.D学位。ABAQUS的另外一个创始人Dr. Bengt Karlsson曾经是Control Data公司的分析工程师,由于工作的关系,他逐步对当时各种有限元程序加以熟悉并产生浓厚兴趣。1976年,他从欧洲来到美国和Hibbitt一同在MARC工作。 作为MARC的总工程师,Hibbitt越发意识到工业界对有限元软件有一种强烈的需求,将会成为工程师的日常工具,逐步取代传统的实验做法,但这要求对现有的程序进行大幅度修改,使之能够处理更大规模的模型,计算的可靠性和精度更高。他建议导师重写MARC的内核来适应工业领域的要求,但是他的导师当时不愿意进行这样的一笔投资。1977年,Hibbitt离开MARC开始从头编写ABAQUS。Karlsson很快加入了他。之后,已经从布朗大学博士毕业正在通用汽车公司工作的Sorensen也加入了他们的行列。Hibbitt, Karlsson & Sorensen, Inc., (HKS) 公司于1978年2月1日正式成立。三个力学专家开始了一个强大工程分析工具的发展历程。 HKS的第一个客户是Westinghouse Hanford公司,它在华盛顿州从事核反应堆方面的开发工作。Westinghouse Hanford需要进行复杂的分析,包括核燃料棒的接触、蠕变和松弛等问题。ABAQUS可以进行温度相关的蠕变、塑性以及接触建模体现了其优势,很快ABAQUS在核工业领域小有名气。 ABAQUS早期的应用还包括石油、军工等其它领域。随着软件功能的不断强大,汽车公司在80年代中期开始采用ABAQUS作为复杂工程模拟的工具。此后ABAQUS的研发一直是和重要工业客户一起合作进行的,这些客户碰到的力学难题,双方会一起参与来设法解决,同时不断丰富ABAQUS本身的功能。今天,ABAQUS已经被应用于各个工业领域作为核心产品的研发工具,对它求解能力的强大性和灵活性的赞誉不绝于耳。 2002年底HKS公司改名为ABAQUS公司,全部业务都是进行ABAQUS软件的开发与维护。近年来公司始终保持两位数增长,2007年增长17%,2008年增长18%。目前ABAQUS全球有800名雇员,在北美、欧洲、亚太地区有40个分公司或代表处。在总部的400多名雇员中有200多人具有工程或计算机的博士学位,70多人具有硕士学位。被公认为世界上最大且最优秀的非线性固体力学研究团体。 二、ABAQUS软件的发展历程 ABAQUS最早的产品为ABAQUS/Standard。ABAQUS/Standard是一个通用

abaqus复合材料

复合材料不仅仅是几种材料的混合物。它有一些普通材料所没有的特性。它在潮湿和高温环境、冲击、电化学腐蚀、雷电和电磁屏蔽环境中具有不同于普通材料的特性。 复合材料的结构形式包括层板、夹层结构、微模型、机织预制件等。 复合材料的结构和材料是相同的,并且在结构形成时可以同时确定材料的分布。它的性能与制造过程密切相关,但制造过程非常复杂。由于复合材料结构不同层的材料性能不同,复合材料结构在复杂荷载作用下的破坏模式和破坏准则也各不相同。 在ABAQUS中,复合材料的分析方法如下 1建模 其结构形式决定了其建模方法,可以采用基于连续介质的壳单元和常规壳单元。复合材料应用广泛,但复合材料的建模是一个难点。制作复杂的结构光需要一个月的时间2材料 使用“图纸类型”(图层材质)来建立材质参数。材料参数可以以工程参数的形式给出,也可以通过子选项给出材料强度数据。这种材料只使用平面应力问题。

ABAQUS可以用两种方式定义层压板:复合材料截面定义和复合材料层压板定义复合剖面定义对每个区域使用相同的图层特性。这样,我们只需要创建一个壳组合,将截面属性指定给二维(在网格中定义的常规壳元素)或三维(三维的大小应与壳中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合分析方法简介 复合覆盖定义由复合布局管理器定义,主要用于在模型的不同区域构造不同的层。因此,在定义之前应该先划分区域,并将不同的层分配给不同的区域。它可以根据常规shell的元素和属性进行定义。 传统的壳单元定义每个层的厚度并将其分配给二维模型。根据单元的厚度可以将单元划分为三维单元的厚度方向。 提示:堆栈参考坐标系(放置方向)的定义和每个堆栈坐标系(图层方向)的定义。定义正确的图层角度、图层厚度和图层顺序。ABAQUS无法分析单个层的法向变化超过

Abaqus中复合材料弹性属性的设定

一、定义材料的刚度矩阵 从弹性力学理论可以知道,各向异性材料的刚度矩阵由于有对称性,刚度系数有最初的36个减少到21个,如下图: 在实际应用中,大多数工程材料都有对称的内部结构,因此材料具有弹性对称性,这种对称性可以进一步简化上述的刚度矩阵。 1、有一个弹性对称面的材料(如结晶学中的单斜体) 例如取x-y平面为对称面,则D1112= D1113= D2212= D2213= D3312= D3313= D1223= D1323=0,刚度系数又减少8个,剩下13个。 2、有两个正交(相互垂直)弹性对称面的材料 例如进一步取x-z平面为对称面,则D1123= D2223= D3323= D1213=0,刚度系数又减少4个,剩下9个,如下图: 在Abaqus编辑材料中进行个刚度系数的设定。

3、有三个正交弹性对称面的材料 如果材料有三个相互垂直的弹性对称面,没有新的刚度系数为零,也只有9个。 4、横观各项同性材料 若经过弹性体材料一轴线,在垂直该轴线的平面内,各点的弹性性能在各方向上都相同,我们称此材料横观各向同性材料,如单向复合材料。对于这种材料最终的刚度系数只剩下D1111,D1122,D1133,D3333,D1212五项,其余各项均为零。在复合材料中,经常遇到正交各项异性和横观各项同性两种材料。 二、定义材料工程弹性常数 通过指定工程弹性常数定义线弹性正交各向异性材料是最便捷的一种方法,根据复合材料力学理论,用工程弹性常数表示的柔度矩阵表示如下:

其中,γij/Ei=γji/Ej,所以用9个独立弹性常数可以表征材料属性,即三个材料主 方向上的弹性模量E1,E2,E3,三个泊松比γ12,γ13,γ23,三个平面内的剪切弹性模量G12,G13,G23。 例如测得复合材料一组材料数据为:E1=39GPa,E2=8.4GPa,E3=5.2GPa,γ12=0.26,γ13=0.3,γ23=0.28,G12=4.2GPa,G13=3.6GPa,G23=2.4GPa (随便给出的)。在Abaqus编辑材料对话框中输入对应数据,完成正交各向异性材料的定义。 对于横观各向同性材料,E1=E2,γ13=γ23,γ31=γ32,G13=G23,弹性常数

相关主题
文本预览
相关文档 最新文档