当前位置:文档之家› 2016_2017学年高中数学第三章导数应用3.1.2函数的极值学案含解析

2016_2017学年高中数学第三章导数应用3.1.2函数的极值学案含解析

2016_2017学年高中数学第三章导数应用3.1.2函数的极值学案含解析
2016_2017学年高中数学第三章导数应用3.1.2函数的极值学案含解析

3.1.2 函数的极值

1.理解极大值,极小值的概念.(难点)

2.掌握求极值的步骤.(重点)

3.会利用导数求函数的极值.(重点)

[基础·初探]

教材整理极值点与极值

阅读教材P59“练习”以下至P61“例3”以上部分,完成下列问题.

1.极大值点与极大值

如图3-1-6,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于或等于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.

图3-1-6

2.极小值点与极小值

如图3-1-7,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于或等于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.

图3-1-7

3.极值的判断方法

如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值;如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.

4.求函数y=f(x)极值的步骤

(1)求出导数f′(x).

(2)解方程f′(x)=0.

(3)对于方程f ′(x )=0的每一个解x 0,分析f ′(x )在x 0左、右两侧的符号(即f (x )的单调性),确定极值点:

①若f ′(x )在x 0两侧的符号“左正右负”,则x 0为极大值点; ②若f ′(x )在x 0两侧的符号“左负右正”,则x 0为极小值点; ③若f ′(x )在x 0两侧的符号相同,则x 0不是极值点.

判断(正确的打“√”,错误的打“×”)

(1)函数f (x )=x 3

+ax 2

-x +1必有两个极值.( ) (2)在可导函数的极值点处,切线与x 轴平行或重合.( ) (3)函数f (x )=1

x

有极值.( )

【答案】 (1)√ (2)√ (3)×

[质疑·手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:

疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:

[小组合作型]

(1)f (x )=x 2

-2x -1; (2)f (x )=x 44-2

3x 3

+x 2

2-6;

(3)f (x )=|x |.

【自主解答】 (1)f ′(x )=2x -2,令f ′(x )=0,解得x =1. 因为当x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,

所以函数在x =1处有极小值, 且y 极小值=-2.

(2)f ′(x )=x 3

-2x 2

+x =x (x 2

-2x +1)=x (x -1)2

. 令f ′(x )=0,解得x 1=0,x 2=1.

所以当x 变化时,f ′(x ),f (x )的变化情况如下表:

所以当极小值(3)f (x )=|x |=???

?

?x ,x ≥0,-x ,x <0.

显然函数f (x )=|x |在x =0处不可导, 当x >0时,f ′(x )=x ′=1>0,

函数f (x )=|x |在(0,+∞)内单调递增; 当x <0时,f ′(x )=(-x )′=-1<0, 函数f (x )=|x |在(-∞,0)内单调递减. 故当x =0时,函数取得极小值, 且y 极小值=0.

1.讨论函数的性质要注意定义域优先的原则.

2.极值点与导数的关系

(1)可导函数的极值点一定是导数值为0的点,导数值为0的点不一定是极值点. 点x 0是可导函数f (x )在区间(a ,b )内的极值点的充要条件: ①f ′(x 0)=0;

②点x 0两侧f ′(x )的符号不同.

(2)不可导的点可能是极值点(如本例(3)中x =0点),也可能不是极值点(如y =x ,在

x =0处不可导,在x =0处也取不到极值),所以函数的极值点可能是f ′(x )=0的根,也

可能是不可导点.

[再练一题]

1.已知函数f (x )=x 2

-2ln x ,则f (x )的极小值是__________. 【解析】 ∵f ′(x )=2x -2

x

且函数定义域为(0,+∞),

令f ′(x )=0,得x =1或x =-1(舍去), 当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,

∴当x =1时,函数有极小值,极小值为f (1)=1. 【答案】 1

已知f (x )=x 3+ax 2

+bx +c 在x =1与x =-3时都取得极值.

(1)求a ,b 的值;

(2)若f (-1)=3

2

,求f (x )的单调区间和极值.

【精彩点拨】 (1)求导函数f ′(x ),则由x =1和x =-2

3是f ′(x )=0的两根及根与

系数的关系求出a ,b .

(2)由f (-1)=3

2求出c ,再列表求解.

【自主解答】 (1)f ′(x )=3x 2

+2ax +b ,

令f ′(x )=0,由题设知x =1与x =-2

3为f ′(x )=0的解.

∴?????1-23=-23a ,1×? ????-23=b 3,∴a =-12,b =-2.

(2)由(1)知f (x )=x 3

-12x 2-2x +c ,

由f (-1)=-1-12+2+c =3

2,得c =1,

∴f (x )=x 3

-12x 2-2x +1,

∴f ′(x )=3x 2

-x -2.

当x 变化时,f ′(x ),f (x )的变化情况如下表:

∴f (x )的递增区间为? ????-∞,-

3和(1,+∞),递减区间为? ????-3

,1. 当x =-23时,f (x )有极大值为f ? ????-23=49

27;

当x =1时,f (x )有极小值为f (1)=-1

2

.

已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点: (1)根据极值点处导数值为0和极值两个条件列方程组,利用待定系数法求解; (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.

[再练一题]

2.已知函数f (x )=13x 3-12(m +3)x 2

+(m +6)x (x ∈R ,m 为常数),在区间

(1,+∞)内有

两个极值点,求实数m 的取值范围.

【解】 f ′(x )=x 2

-(m +3)x +m +6. 因为函数f (x )在(1,+∞)内有两个极值点,

所以导数f ′(x )=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点, 如图所示.

所以?????Δ=(m +3)

2

-4(m +6)>0,

f ′(1)=1-(m +3)+m +6>0,

m +32>1,

解得m >3,故实数m 的取值范围是(3,+∞).

[探究共研型]

探究1 【提示】 不一定,如f (x )=x 3

,f ′(0)=0,但x =0不是f (x )=x 3

的极值点.所以,

当f ′(x 0)=0时,要判断x =x 0是否为f (x )的极值点,还要看f ′(x )在x 0两侧的符号是否相反.

探究2 函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图3-1-8所示,则函数f (x )在开区间(a ,b )内有几个极小值点?

图3-1-8

【提示】 一个.x 1,x 2,x 3是极值点,其中x 2是极小值点,x 1,x 3是极大值点. 探究3 函数y =f (x )在给定区间(a ,b )内一定有极值点吗?

【提示】 不一定,若函数y =f (x )在区间(a ,b )内是单调函数,就没有极值点.

已知函数f (x )=x 3

-3x +a (a 为实数),若方程f (x )=0有三个不同实根,求实

数a 的取值范围.

【精彩点拨】 求出函数的极值,要使f (x )=0有三个不同实根,则应有极大值大于0,极小值小于0,由此可得a 的取值范围.

【自主解答】 令f ′(x )=3x 2

-3=3(x +1)(x -1)=0, 解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-11时,f ′(x )>0.

所以当x =-1时,f (x )有极大值f (-1)=2+a ; 当x =1时,f (x )有极小值f (1)=-2+a . 因为方程f (x )=0有三个不同实根,

所以y =f (x )的图像与x 轴有三个交点,如图.

由已知应有?

????2+a >0,-2+a <0,

解得-2

方程f (x )=0的根就是函数y =f (x )的零点,是函数图像与x 轴交点的横坐标,研究方程的根的问题可以转化为函数图像与x 轴交点的问题.我们可以根据函数图像在坐标轴中的

位置不同,结合极值的大小确定参数的范围.

[再练一题]

3.设a 为实数,函数f (x )=x 3

-x 2

-x +a . (1)求f (x )的极值;

(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 【解】 (1)f ′(x )=3x 2

-2x -1. 令f ′(x )=0,则x =-1

3

或x =1.

当x 变化时,f ′(x ),f (x )的变化情况如下表:

所以f (x )的极大值是f ? ????-3=27

+a ,极小值是f (1)=a -1.

(2)函数f (x )=x 3

-x 2

-x +a =(x -1)2

(x +1)+a -1,

由此可知,x 取足够大的正数时,有f (x )>0,

x 取足够小的负数时,有f (x )<0,

所以曲线y =f (x )与x 轴至少有一个交点.

由(1)知f (x )极大值=f ? ????-13=5

27

+a ,

f (x )极小值=f (1)=a -1.

∵曲线y =f (x )与x 轴仅有一个交点, ∴f (x )极大值<0或f (x )极小值>0, 即5

27+a <0或a -1>0, ∴a <-5

27

或a >1,

∴当a ∈?

????-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点. [构建·体系]

函数的极值与导数

—??

?—极值—????—极大值—f ′(x )左正右负

—极小值—f ′(x )左负右正—极值点—

f ′(x )=0

1.函数f (x )的定义域为R ,导函数f ′(

x )的图像如图3-1-9,则函数f (x )( )

图3-1-9

A.无极大值点,有四个极小值点

B.有三个极大值点,两个极小值点

C.有两个极大值点,两个极小值点

D.有四个极大值点,无极小值点

【解析】 有极值点的定义可知答案应选C. 【答案】 C

2.函数y =x 3

-3x 2

-9x (-2<x <2)有( ) A.极大值5,极小值-27 B.极大值5,极小值-11 C.极大值5,无极小值 D.极小值-27,无极大值

【解析】 由y ′=3x 2

-6x -9=0,得x =-1或x =3. 当x <-1或x >3时,y ′>0;由-1<x <3时,y ′<0, ∴当x =-1时,函数有极大值5;3?(-2,2),故无极小值. 【答案】 C

3.(2016·四川高考)已知a 为函数f (x )=x 3

-12x 的极小值点,则a =( ) A.-4 B.-2 C.4

D.2

【解析】 由题意得f ′(x )=3x 2

-12,令f ′(x )=0得x =±2,∴当x <-2或x >2时,

f ′(x )>0;当-2

减函数,在(2,+∞)上为增函数.

∴f(x)在x=2处取得极小值,∴a=2.

【答案】 D

4.设a∈R,若函数y=e x+ax(x∈R)有大于零的极值点,则a的取值范围为________. 【解析】∵y=e x+ax,

∴y′=e x+a,令y′=e x+a=0,则e x=-a,

即x=ln(-a),又∵x>0,∴-a>1,即a<-1.

【答案】a<-1

5.求函数y=x4-4x3+5的极值.

【解】y′=4x3-12x2=4x2(x-3).

令y′=4x2(x-3)=0,得x1=0,x2=3.

当x变化时,y′,y的变化情况如下表:

故当x=极小值

我还有这些不足:

(1)

(2)

我的课下提升方案:

(1)

(2)

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_417

习题课导数的应用 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) f′(x)的正负f(x)的单调性 f′(x)>0单调递________ f′(x)<0单调递________ 知识点二求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例 1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:

(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪个区间上为负,在哪个点处与x 轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是________. 类型二 构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+ f x x <0,若a =12f (12),b =-2f (-2),c =(ln 12)f (ln 1 2),则a ,b ,c 的大小关系是________. 反思与感悟 本例中根据条件构造函数g (x )=xf (x ),通过g ′(x )确定g (x )的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a =ln 33,b =ln 44,c =ln 5 5,则a ,b ,c 的大小关系是________. 命题角度2 求解不等式 例3 定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )2e x 的解集为________. 反思与感悟 根据所求结论与已知条件,构造函数g (x )=f x e x ,通过导函数判断g (x )的单 调性,利用单调性得到x 的取值范围. 跟踪训练3 设函数f (x )是定义在R 上的偶函数,f ′(x )为其导函数.当x >0时,f (x )+ x ·f ′(x )>0,且f (1)=0,则不等式x ·f (x )>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x >1,证明不等式x -1>ln x .

导数在函数中的应用

第二课时 导数在函数中的应用 【学习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;③利用导数求函数的最值;④利用导数证明函数的单调性;⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;⑦导数与解析几何相综合的问题。 【高考要求】B 级 【自主学习】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性. 2.可导函数的极值 ⑴ 极值的概念:设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f ';

导数的应用(一)单调性与极值

导数的应用(一)单调性与极值 一. 教学内容: 导数的应用(一)单调性与极值 1. 函数的单调性 一般地,设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数,如果在某个区间内恒有0)(='x f ,则)(x f 为常数。 2. 函数的极值 一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有点,都有)()(0x f x f <,就称)(0x f 是函数)(x f 的一个极大值,记作极大值y )(0x f =;如果对0x 附近的所有的点,都有)()(0x f x f >就称)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值。极大值和极小值统称为极值。 判别)(0x f 是极大(小)值的方法是: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧)(x f '0>,那么)(0x f 是极小值。 导数为0的点不一定是极值点,例如函数3)(x x f =,0=x 处的导数是0,但非极值点。 求可导函数)(x f 的极值的步骤如下: (1)求导数)(x f ' (2)求出方程0)(='x f 的根 (3)检查0)(='x f 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取得极大值;如果左负右正,那么)(x f 在这个根处取得极小值,如果左右符号相同,那么这个根不是极值点。 【典型例题】

[例1] 确定函数762)(23+-=x x x f 在哪个区间内是增函数,哪个区间内是减函数? 解:x x x f 126)(2 -=' 令01262>-x x ,解得2>x 或0

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

高考数学第一轮复习导数及其应用【导学案】学案13

第三章 导数及其应用 学案13 导数的概念及运算 导学目标: 1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y =C (C 为 常数),y =x ,y =x 2,y =1 x ,y =x 的导数.熟记基本初等函数的导数公式(c ,x m (m 为有理 数),sin x ,cos x ,e x ,a x ,ln x ,log a x 的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b ))的导数. 自主梳理 1.函数的平均变化率 一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1- y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________________=Δy Δx 称作函 数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数 (1)定义 函数y =f (x)在点x 0处的瞬时变化率______________通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即______________________________. (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________. 导函数y =f ′(x )的值域即为__________________. 3.函数f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作____________. 4.基本初等函数的导数公式表 原函数 导函数 f (x )=C f ′(x )=______ f (x )=x α (α∈Q *) f ′(x )=______ (α∈Q *) F (x )=sin x f ′(x )=__________ F (x )=cos x f ′(x )=____________ f (x )=a x (a >0,a ≠1) f ′(x )=____________(a >0, a ≠1) f (x )=e x f ′(x )=________ f (x )=lo g a x (a >0,a ≠1,且x >0) f ′(x )=__________(a >0, a ≠1,且x >0) f (x )=ln x f ′(x )=__________ 5.导数运算法则 (1)[f (x )±g (x )]′=__________; (2)[f (x )g (x )]′=______________; (3)????f (x )g (x )′=______________ [g (x )≠0]. 6.复合函数的求导法则:设函数u =φ(x )在点x 处有导数u x ′=φ′(x ),函数y =f (u )在点x 处的对应点u 处有导数y u ′=f ′(u ),则复合函数y =f (φ(x ))在点x 处有导数,且y ′x =y ′u ·u ′x ,或写作f ′x (φ(x ))=f ′(u )φ′(x ).

导数的综合应用学案(教师版)

第3课时 导数与函数的综合问题 题型一 导数与不等式 命题点1 证明不等式 典例 (2017·贵阳模拟)已知函数f (x )=1-x -1 e x ,g (x )=x -ln x . (1)证明:g (x )≥1; (2)证明:(x -ln x )f (x )>1-1 e 2. 证明 (1)由题意得g ′(x )=x -1 x (x >0), 当01时,g ′(x )>0, 即g (x )在(0,1)上为减函数,在(1,+∞)上为增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1e x ,得f ′(x )=x -2 e x , 所以当02时,f ′(x )>0, 即f (x )在(0,2)上为减函数,在(2,+∞)上为增函数, 所以f (x )≥f (2)=1-1 e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1 e 2. 命题点2 不等式恒成立或有解问题 典例 (2018·大同模拟)已知函数f (x )=1+ln x x . (1)若函数f (x )在区间????a ,a +1 2上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥ k x +1恒成立,求实数k 的取值范围.

解 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln x x 2, 令f ′(x )=0,得x =1. 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以x =1为函数f (x )的极大值点,且是唯一极值点, 所以00, 所以g (x )为单调增函数,所以g (x )≥g (1)=2, 故k ≤2,即实数k 的取值范围是(-∞,2]. 引申探究 本例(2)中若改为:?x 0∈[1,e],使不等式f (x 0)≥k x 0+1成立,求实数k 的取值范围. 解 当x ∈[1,e]时,k ≤(x +1)(1+ln x ) x 有解, 令g (x )=(x +1)(1+ln x ) x (x ∈[1,e]),由例(2)解题知, g (x )为单调增函数,所以g (x )max =g (e)=2+2 e , 所以k ≤2+2 e ,即实数k 的取值范围是????-∞,2+2e . 思维升华 (1)利用导数证明不等式的方法 证明f (x )

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

《导数的应用》教学设计

导数 一、考纲要求 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 3.会利用导数解决某些实际问题. 二、知识梳理 1.函数的单调性与导数 在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减.如果,那么函数y=f(x)在这个区间上是常数函数. 问题探究:若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件? 2.函数的极值与导数 (1)函数的极小值 若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值,且f′(a)=0,而且在点x=a附近的左侧,右侧,则a点叫做函数的极小值点,f(a)叫做函数的极小值. (2)函数的极大值 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值,且f′(b)=0,而且在点x=b附近的左侧,右侧,则b点叫做函数的极大值点,f(b)叫做函数的极大值,和统称为极值. 3.函数的最值与导数 函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值. 三,考点探究 考点一:函数的单调性与导数 【例1】设函数f(x)=x3—3x2-9x-1.求函数f(x)的单调区间.

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

高中数学第三章导数及其应用习题课导数的应用学案苏教版选修1_1

高中数学第三章导数及其应用习题课导数的应用学案苏教版 选修1_1 学习目标 1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用. 知识点一函数的单调性与其导数的关系 定义在区间(a,b)内的函数y=f(x) 知识点二 解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧________,右侧________,那么f(x0)是极大值. (2)如果在x0附近的左侧________,右侧________,那么f(x0)是极小值. 知识点三函数y=f(x)在[a,b]上最大值与最小值的求法 1.求函数y=f(x)在(a,b)内的极值. 2.将函数y=f(x)的________与端点处的函数值________比较,其中________的一个是最大值,________的一个是最小值. 类型一数形结合思想的应用 例1 已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是________. 反思与感悟解决函数极值与函数、导函数图象的关系时,应注意:(1)对于导函数的图象,重点考查导函数的值在哪个区间上为正,在哪

个区间上为负,在哪个点处与x轴相交,在交点附近导函数值是怎样变化的. (2)对于函数的图象,函数重点考查递增区间和递减区间,进而确定极值点. 跟踪训练1 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是________.类型二构造函数求解 命题角度1 比较函数值的大小 例2 已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+<0,若a=f(),b=-f(-),c=(ln )f(ln ),则a,b,c的大小关系是________. 反思与感悟本例中根据条件构造函数g(x)=xf(x),通过g′(x)确定g(x)的单调性,进而确定函数值的大小,此类题目的关键是构造出恰当的函数. 跟踪训练2 设a=,b=,c=,则a,b,c的大小关系是________.命题角度2 求解不等式 例 3 定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)2ex的解集为________.反思与感悟根据所求结论与已知条件,构造函数g(x)=,通过导函数判断g(x)的单调性,利用单调性得到x的取值范围. 跟踪训练3 设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,f(x)+x·f′(x)>0,且f(1)=0,则不等式x·f(x)>0的解集为________. 命题角度3 利用导数证明不等式 例4 已知x>1,证明不等式x-1>ln x.

相关主题
文本预览
相关文档 最新文档