当前位置:文档之家› 螺旋桨设计计算说明书

螺旋桨设计计算说明书

螺旋桨设计计算说明书
螺旋桨设计计算说明书

某沿海单桨散货船螺旋桨设计计算说明书

1.已知船体的主要参数

船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 CB = 0.658 桨轴中心距基线高度 Zp = 3.00 米

由模型试验提供的船体有效马力曲线数据如下:

航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045

2.主机参数

型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98

3.相关推进因子

伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0

船身效率 0777.111=--=

w

t

H η

4.可以达到最大航速的计算

采用MAU 四叶桨图谱进行计算。取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力:

PD = R s S P ηη9.0=0.9×5400×0.98×1.0=4762.8hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:

项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5

42.337 35.177 29.604 25.193 Bp

6.507 5.931

5.441 5.019 MAU 4-40

δ

76 70 64 61 P/D 0.62 0.65 0.69 0.71 ηO 0.56 0.583 0.605 0.625 P TE =P D ·ηH ·ηO

hp 2874.41

2992.46

3105.39

3208.04

MAU 4-55

δ

74 68 63 60 P/D 0.7 0.72 0.74 0.76 ηO 0.541 0.568 0.59 0.61 P TE =P D ·ηH ·ηO

hp 2776.88

2915.47

3028.39

3131.05

MAU 4-70

δ

74 67 62 59 P/D 0.71 0.73 0.76 0.78 ηO

0.521 0.546 0.57 0.588 P TE =P D ·ηH ·ηO

hp

2674.23

2802.55

2925.74

3018.13

据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如图1所示。(见所附坐标纸)

从PTE —f(V)曲线与船体满载有效马力曲线之交点,可获得不同盘面比所对应的设计航速及螺旋桨最佳要素P/D 、D 及ηO 如下表所列。

5.空泡校核

按柏利尔空泡限界线中商船上限线,计算不发生空泡之最小展开面积比。

桨轴沉深 hf =T -Zp=7.2-3.00=4.2m

p 0-p v = pa + γhs -pv = 10300+1025×4.2-174

MAU Vmax P/D δ D

ηO

4-40 15.1 0.69 63.5

4.19 0.61 4-55 1

5.0 0.74 63 4.13 0.59 4-70

14.8 0.755

62.5

4.04

0.56

= 14461kgf/m 2

计算温度t = 15°C ,Pv = 174kgf/ m 2 , PD = 4762.8hp, ρ= 104.63kgfs 2/m 4

序号 项目 单位

数值

MAU4-40 MAU4-55

MAU4-70 1 Vmax Kn 15.1 15 14.8 2 VA=0.5144Vmax(1-w) m/s 5.6 5.56 5.49 3 (0.7πND/60)2 (m/s)2 641.43 623.19 596.33 4 V 20.7R=V 2A+32 (m/s)2 672.79 654.14

626.46 5 ζ=(p 0- p v ) / 2

1

ρV 0.7R 2 0.41 0.42

0.44 6 Τc 0.165 0.167

0.173 7 T=PD ·ηO ·75/VA kgf 38908.12 37883.32 36442.96 8 A P =T /

2

1

ρV 0.7R 2·η c m 2 6.70 6.63 6.43 9 A E =A P / (1.067-0.229P/D)

m 2 7.37 7.39 7.19 10

A E /A O =A E /4

1

πD 2

0.534

0.551

0.561

按上述结果作图2(见所附坐标纸),可求得不发生空泡的最小盘面比以及对应的最佳螺旋桨要素

AE / A O = 0.55 P/D= 0.74 D=4.13m ηo=0.59 Vmax= 15.0kn

6.强度校核

按1983年<<规范>>校核t0.25R 及t0.6r,应不小于按下式计算之值: t=

X

K Y

-, ZbN N A Y e 1=, X=A 2GA d N 2D 3/1010Zb

计算功率Ne=5400×0.98=5292hp

AD = AE / A O =0.55 , P/D= 0.74 , ?=8ε,G=7.6gf/cm 3 ,N=165rpm

b0.66R =0.226D ·AE / A O/0.1Z=0.226×4.13×0.55÷0.4=1.2834m b0.25R=0.7212b0.66R = 0.9256

b0.6R =0.9911b0.66R = 1.2720

项 目 单 位 数 值

0.25R 0.6R 弦长b m 0.9256 1.272 K 1 634 207 K 2 250 151 K 3 1410 635 K 4

4 34 A 1=D/P(K 1-K 2D/P 0.7)+K 3D/P 0.7-K 4

2301.62 828.09 Y=A 1N e /ZbN

19938.25 5219.94 K 5 82 23 K 6 34 12 K 7 41 65 K 8

380 330 A 2=D/P(K 5+K 6ε)+K 7ε+K 8 1186.38 1010.81 材料系数K (铝镍合金)

1.179 1.179

X=A 2GA d N 2D 3/1010Zb

0.257 0.159

)(X K Y t -=

mm 147.05 71.55 MAU 标准桨叶厚度t ′

mm 158 90 校核结果

满足要求

满足要求

实取桨叶厚度

mm

160

92

实取桨叶厚度按t1.0R=0.0035D=14.46mm 与t0.25R=160mm 连直线决定:

t0.2R = 169.7mm t0.3R =150.3mm t0.4R = 130.9mm t0.5R =111.5mm t0.6R = 92.1mm t0.7R = 72.7mm t0.8R = 53.3mm t0.9R = 33.9mm

7.螺距修正

根据尾轴直径大小,决定毂径比dh/D=0.18,此值与MAU 桨标准毂径比相同,故对此项螺距无需修正。

由于实际桨叶厚度大于MAU 桨标准厚度,故需因厚度差异进行螺距修正。

设计桨 )(b

t

0.7R =0.0727/(0.9964×1.2834)=0.05685

标准桨 )(b

t

0.7R = 0.0171×4.13/(0.9964×0.31075×4.13)=0.05522

1-s = NP V A =NP V 866

.30)-1(?ω=0.721×15×30.866/165/3.0526=0.6628

△)(b t 0.7R =〔)(b t 0.7R 设-)(b t 0.7R 标×51.055.0〕×0.75=-0.0000055

△)(D P t =-2)(D P 0(1-s) △)(b t

0.7R =-2×0.74×0.6628×(-0.0000055)=0.000005395

修正后的螺距比: D P =)(D P 0+△)(D P

t =0.74+0.000005395=0.74

8.重量及惯性矩计算

每叶片重量=(1/3×1.613952÷10×2.065+0.166×0.02×2.065)×7600=896.39kgf 4个叶片重量=4×896.39=3585.56kgf 桨毂重量=2835.8kgf

整个螺旋桨重量=3585.56+2835.8=6421.36kgf

每叶片体积惯性矩=1/3×2.065÷10×1.951+0.166×0.02×2.065×0.19×2.065×0.19×2.065=0.135m 5

每叶片质量惯性矩=7600/9.8×0.135=104.7kgf ·m ·s 2 4个叶片质量惯性矩=4×104.7=418.8 kgf ·m ·s 2 桨毂转动惯性矩=34.3 kgf ·m ·s 2

整个螺旋桨的惯性矩=418.8+34.3=453.1 kgf ·m ·s 2 =45310kgf ·cm ·s 2

9.敞水特性曲线

由于校核后所得盘面比AE / A O = 0.55,所以无需由MAU4-40,MAU4-55,P/D=0.74 的敞水特性曲线内插得到MAU4-55,P/D= 0.74 的敞水特性曲线,可以直接从课本附录中MAU4-55KT,KQ-J 图查得数据,其数据如下:

设计桨的敞水特性数据表

J 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 10KQ 0.37 0.34 0.32 0.28 0.25 0.21 0.16 0.12 KT 0.32 0.3 0.27 0.24 0.2 0.15 0.11 0.05

10.螺旋桨计算总结

螺旋桨直径 4.13m 螺距比 0.74 型式 MAU 叶数 Z=4 盘面比 0.55 纵倾角 ?=8ε 螺旋桨效率 0.59 设计航速 15.0kn 毂径比 dh/D=0.18 旋向 右旋 材料 铝镍青铜 重量 6421.36kg

惯性矩 45310kgf ·cm ·s 2

(1) (2) (3)

(4) (5) (6) (7) (8) (9) (10) r/R 面积系 数Ka 弦长╳最大 厚度 b ╳t

切面

面 积(m 2) S=Kab t

辛式

系数 SM (4)╳(5) r r 2 (6)╳(7) (6)╳(8)

0.2 0.674 0.854×0.1677 0.097 1 0.097 0.413 0.171 0.040 0.016 0.3 0.674 0.097×0.1483 0.099 4 0.396 0.620 0.384 0.247 0.153 0.4 0.674 1.118×0.1289 0.097 2 0.194 0.826 0.682 0.160 0.133 0.5 0.6745 1.21×0.1094 0.089 4 0.356 1.032 1.066 0.368 0.381 0.6 0.6745 1.271×0.09 0.077 2 0.154 1.239 1.535 0.191 0.237 0.7 0.677 1.279×0.071 0.061 4 0.244 1.446 2.089 0.355 0.514 0.8 0.683 1.193×0.051 0.042 2 0.084 1.652 2.729 0.137 0.227 0.9 0.695 0.945×0.032 0.021 4 0.082 1.859 3.454 0.156 0.290 1 0.7 0×0.0124 0 1 0 2.065 4.264 0 0

∑(6)= 1.614

∑(9)= 1.656 ∑(10)=

1.951

螺旋桨设计计算说明书.

某沿海单桨散货船螺旋桨设计计算说明书 姓名: XXX 班级:XXX 学号:XXX 联系方式:XXX 日期:XXX

1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--=w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 42.34 35.18 29.60 25.19

Bp 6.51 5.93 5.44 5.02 MAU 4-40 δ75.82 70.11 64.99 60.75 P/D 0.640 0.667 0.694 0.720 ηO0.5576 0.5828 0.6055 0.6260 P TE =P D ·η H ·η O hp 2862.09 2991.44 3107.95 3213.18 MAU 4-55 δ74.35 68.27 63.57 59.33 P/D 0.686 0.713 0.741 0.770 ηO0.5414 0.5672 0.5909 0.6112 P TE =P D ·η H ·η O hp 2778.94 2911.36 3043.28 3137.21 MAU 4-70 δ73.79 67.79 63.07 58.70 P/D 0.693 0.723 0.754 0.786 ηO0.5209 0.5456 0.5643 0.5828 P TE=P D ·η H ·η O hp 2673.71 2800.49 2891.86 2991.44 据上表的计算结果可绘制PT E、δ、P/D及η O 对V的曲线,如下图所示。

毕业设计设计说明书范文

第一章塑件分析 1.1塑件结构分析 图1-1 塑件结构图 此制品是消声器上盖,现实生活中经常看到用到,是一个非常实际的产品。且生产纲领为:中批量生产,所以我们采用注射模具注射成型。 1.2 成型工艺性分析[1] 塑件材料为尼龙,因塑件用在空压机内,表面无光洁度要求。具有良好的力学性能,其抗冲击强度比一般的塑料有显著的提高,具有良好的消音效果和自润滑性能。密度1.15 g/cm3, 成型收缩率:0.4~0.7%,平均收缩率为0.55%。 第二章确定模具结构

2.1模具结构的确定 塑料模具的种类很多,大体上分为:二板模,三板模,热流道模。 二板模缺点是浇口痕迹明显,产生相应的流道废料,不适合高效生产。本模具选择二板模其优点是二板模结构简单,制作容易,成本低,成型周期短。 支撑板 分型面 定模侧 动模侧 图2.1 典型的二板模结构 模架为非标准件 定模座板: 400*200*25mm 定模板: 315*200*40mm 动模板: 315*200*32mm 支承板: 315*200*25mm 推秆固定板:205*200*15mm 推板: 205*200*20mm 模脚: 50*200*60mm 动模座板 400*200*25mm 2.2确定型腔数目 2.2.1塑件体积的计算 a. 塑件体积的计算 体积为:

V a = S a ×L a =(37×35-8×25)×10-(33×36-10.5×25) ×8 =12.60cm 3 b.计算塑件的重量 根据《塑料模具设计手册》查得密度ρ取1.12g/cm 3 所以,塑件单件的重量为:m=ρV =12.60?1.12 =14.11g 浇注系统的体积为:主流道+分流道+浇口=(6280+376.8*2+12*2)/1000 ≈7.05 cm 3 粗略计算浇注系统的重量:7.05*1.12=7.90g ≈8.0g(含有冷料穴料重) 总重量:14.11*2+8.0=36.22g 2.2.2 模具型腔数目的确定 模具型腔的数目决定了塑件的生产效率和模具的成本,确定模具型腔的方法也有许多种,大多数公司采用“按经济性确定型腔的数目”。根据总成型加工费用最小的原则,并忽略准备时间和试生产原料的费用,仅考虑模具费用和成型加工费,则模具费用为 21C nC Xm += 式中Xm ——模具费用,元; 1C ——每一个型腔的模具费用,元 2C ——与型腔数无关的费用,元。 成型加工费用为 n Y N X t j 60= 式中j X ——成型加工费用,元 N ——需要生产塑件的总数; t Y ——每小时注射成型的加工费,元/h ;n ——成型周期,min 。 总的成型加工费用为n Y N C nC X X X t j m 6021++=+= 为了使成型加工费用最小,令 0=dn dX ,则 n=2 上式为按经济性确定型腔数目为2。考虑到模具成型零件和抽芯结构的设计,模具

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式

机翼升力计算公式滑翔比与升阻比螺旋桨拉力计算公式(静态拉力估算) 2009-04-16 08:02 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比

升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算) 你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数()=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×=公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×=125公斤 注:仅供参考

螺旋桨课程设计

螺旋桨图谱课程设计天津大学仁爱学院 姓名:陈旭东 学号:6010207038 专业:船舶与海洋工程 班级:2班 日期:2013.6.30

螺旋桨图谱课程设计 一.已知船体的主要参数 船 型:双机双桨多用途船 总 长: L=150.00m 设计水线长: WL L =144.00m 垂线 间长: PP L =141.00m 型 深: H=11.00m 设计 吃水: T=5.50m 型 宽: B=22.00m 方形 系数: B C =0.84 菱形 系数: P C =0.849 横剖面系数: M C =0.69 排水 量: ?=14000.00t 尾轴距基线距离: P Z =2.00m 二.主机参数 额定功率: MCR=1714h 额定转速: n=775r/min 齿轮箱减速比: i=5 旋向: 右旋 齿轮箱效率: G η=0.97 三.推进因子的确定 伴流分数 ω=0.248 ;推力减额分数 ; t=0.196 相对旋转效率 R η=1.00 ;船身效率 ;H η=11t ω --=1.0691 四.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备为10% ,轴系效率S η=0.97 ,螺旋桨转速N=n/i=155r/min 螺旋桨敞水收到马力:D P = 1714 * 0.9 * S η*R η*G η =1714 * 0.9 * 0.97*1.00*0.97 =1451.43 (hp) 根据MAU4-40、MAU4-55、MAU4-70的P B δ-图谱列表计算如下:

项目 单位 数值 假定航速V kn 11 12 13 A V =(1-ω)V kn 8.27 9.02 9.78 0.5 2.5/P D A B NP V = 30.024 24.166 19.742 P B 5.479 4.916 4.443 MAU4-40 δ 65.4 59.732 54.377 P/D 0.692 0.728 0.764 0η 0.613 0.632 0.66 TE P =2D P ×H η×0η hp 1902.4 1961.38 2048.28 MAU4-55 δ 64 58.2 53.535 P/D 0.738 0.778 0.80 0η 0.588 0.614 0.642 TE P =2D P ×H η×0η hp 1824.83 1905.61 1992.41 MAU4-70 δ 63.3 57.4 52.8 P/D 0.751 0.796 0.842 0η 0.565 0.582 0.607 TE P =2D P ×H η×0η hp 1753.45 1806.21 1883.79 根据上表中的计算结果可以绘制TE P 、δ、P/D 及0η对V 的曲线,如图1所示。

08毕业设计计算说明书范本

08毕业设计计算说明书范本

本科生毕业设计 伊嘉公路汤旺河至青山段 两阶段初步设计 系部名称:土木工程系 专业班级:土木工程(道桥方向)09-* 学生姓名:***** 指导教师:**** 职称:**** 哈尔滨石油学院 二O一三年五月

Abstract The design for the IKA highway Tangwanghe to castle building two preliminary design section of highway,the highway is full-length6985.963m,bidirectional double driveway,design speed of 60km/h,The wide of roadbed is 10 meters,the maximum longitudinal slope of6%。All set up a total of four corners,ten grade change point。 In this design,the main design of the project include:road grade determination、route planning and selection,graphic design,longitudinal design,cross-sectional design,roadbed and pavement drainage design,cement concrete pavement structure layer design,culvert design and with some of the content of the tables and drawings。The design is a combination of topographic map and the surrounding environment,according to the highway engineering design standard,code for design of highway routeon the road to carry out a comprehensive design。And the guidance of the teacher and students with the help of the design inadequacies,revise and perfect。 Key words:the two stage highway;longitudinal section;cross-sectional;pavement

螺旋桨扭角的设计依据是什么

螺旋桨扭角的设计依据是什么 螺旋桨 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨公式

螺旋桨公式 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

船舶快速性螺旋桨设计

课程设计成果说明书 题目:散货船螺旋桨设计 学生姓名:杨再晖 学号:101306119 学院:东海科学技术学院 班级:C10船舶1班 指导教师:应业炬 浙江海洋学院教务处 2013年 6月 21日

浙江海洋学院课程设计成绩评定表 2012 —2013 学年第 2 学期 学院东海科学技术学院班级 C10船舶1班专业船舶与海洋工程

摘要 螺旋桨是船舶的重要组成部分之一,没有它,船舶就无法快速的前行,是造船行业必备的推进部位。螺旋桨设计是船舶设计过程中有关船舶快速性性能设计的重要组成部分,它的设计精度将直接影响船的推进效率。 在船舶线型初步设计完成后,通过有效马力的估算或船模阻力试验,得出该船的有效马力曲线。在此基础上,设计一个效率最佳的螺旋桨,既能达到预定的航速,又要使消耗的主机功率小;或者当主机已选定,设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨,本次课程设计属于第二种。 影响螺旋桨性能的因素有很多,主要有螺旋桨的直径,螺距比,盘面比,桨叶轮廓形状等因素。本次课程设计是用船体的主要参数、主机与螺旋桨螺旋桨参数、设计工况算出以上数据,设计一个螺旋桨,并用CAD软件画出螺旋桨的外形。 关键词:螺旋桨设计;图谱;AUTOCAD

目录 1、已知船体的主要参数 (1) 2、主机与螺旋桨参数 (1) 3、设计工况 (1) 4、按船型及经验公式确定推进因子 (2) 5、可以达到最大航速的计算 (2) 6、桨叶空泡校核,确定螺旋桨主要参数 (4) 7、桨叶强度校核 (6) 8、螺距修正 (8) 9、重量及惯性矩计算 (8) 10、绘制螺旋桨水动力性能曲线 (9) 11、系柱特性与航行特性计算并绘制航行特性曲线图 (10) 12、航行特性计算时取3挡转速按下表进行: (11) 13、螺旋桨计算总结 (13) 14、感想 (14) 15、参考资料 (14)

土木工程毕业设计范文,图纸计算书、建筑说明书外文翻译、开题报告书

- - -. 毕业设计(论文) 开题报告 题目XX雅筑地产中天锦庭6号住宅楼设计 专业土木工程 班级 学生 指导教师教授 讲师

一、毕业设计(论文)课题来源、类型 本论文课题来源于XX雅筑地产中天锦庭6号住宅楼设计,本设计来自工程实际,结构类型为钢筋混凝土剪力墙结构。该建筑分十三层,耐火等级为一级,主体结构为二级耐久年限,抗震设防为八级。二、选题的目的及意义 随着我国经济发展和城市化进程,人们对住宅的需求量逐渐增多,住宅物业管理日益为人们所关注。住宅小区已经成为人们安家置业的首选,几十万到几百万的小区住宅比比皆是。尤其近几年,高层小高层已然成为现代开发商与消费者选择的主流。这是由高层和小高层的特点所决定的,高层建筑可节约城市用地,缩短公用设施和市政管网的开发周期。人们花的钱越多,不但对住宅的本身的美观质量要求越来越高,同时对物业小区的服务和管理也要求越来越高,比如对小区的绿化,保安,停车场,维修甚至对各项投诉的要求小区管理者做的好。信息时代的今天,住宅小区的硬件设施也必须跟得上时代的步伐,对现代化住宅小区建设的要求越来越高。小区楼的艺术美更要符合现代人的需求,此外还必须有较高的实用性、经济性。住宅小区的居住环境安全与否,是小区居民极其关心的问题,要创建一个安全的居住环境不仅要有科学的小区管理制度,而且在很大程度上也依赖于小区规划的安全性,这其中涉及到居民的生理、心理安全和社会安全等因素。在住宅小区的规划设计中应充分考虑居民的有效防X行为,通过控制小区和组团入口、明确划分空间领域等措施来提高小区的安全防卫能力。一是在小区和组团的入口处设置明显标志,使住宅小区具有较强的领域性和归属性。二是注重院落空间的强化,使居民之间既有充分了解和相互熟悉的机会,又可以使住户视线能够触及到住宅入口,便于对陌生人进行观察、监视。三是注重小区交通网络的合理组织。在小区主干道的规划设计上要做到“顺而不穿,通而不畅”,减少交通环境的混乱交杂,提高安全系数,在小区级道路的规划上尽量作曲形设计,限制车辆穿行的速度,达到安全与降低噪音的目的。同时,规划时应尽量减少组团的出入口,一般设置两个即可,以便有效控制外来行人任意穿行,从而起到安全防卫的作用。我这次选择的是高层住宅楼的设计,目的就是为了设计一栋满足居住需求和美观要求的住宅楼。并且也可以通过这次的毕业设计,把以前学习的专业课的知识运用到实践中,以及对它们更加深入的学习和系统化的总结。在这个过程中需要查阅、搜集许多的资料,将提高我运用图书馆的资料文献和互联网上大量信息的能力。office办公软件的综合运用使我的电脑基本功有了很大的提高。从建筑设计到结构的计算设计都是由自己单独完成,这就培养了我们独立解决设计中的问题以及娴熟使用auto CAD和PKPM系列软件的能力。综合性地运用几年内所学知识去分析、解决一个问题,在作毕业设计的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

爬楼车毕业设计说明书

前言 近年来随着计算机技术蓬勃发展,计算和数据传送速度大幅度提高。以此硬件为基础,许多智能算法得以在短时间内实现,智能机器人正变得越来越聪明。随着现实生活中对机器人技术应用的发展,使得机器人成为战胜自然和虚拟障碍的必需品。在很多危险场所,如战场、核生化灾害地、恐怖爆炸地等需要愈来愈多的移动机器人搭载机械手等设备代替人去执行任务。众所周知机器人自主爬楼梯是移动机器人完成危险环境探查、侦察、救灾等任务需要具备的基本智能行为之一。 目前,主要有腿式、履带式、轮式爬楼车移动机器人,腿式的如四足和六足机器人,尽管这些机器人能够爬楼梯和穿越障碍,但由于腿部的运动,它们不能在平坦的表面上平滑运动;履带式移动机器人以其强大的地形适应性而倍受青睐,其所受的摩擦力均匀分布在履带上,而轮式小车的摩擦力只是集中在轮胎与地面的接触面上,就抓地力而言它们是一样的,但在小车转弯或者爬坡时,履带式小车所受的摩擦力分布不会像轮式小车那样发生剧变,所以就表现出更好的操控性,但是转弯时,履带的磨损、履带开模难度大等都成为其应用的瓶颈;轮式移动机器人克服了履带式的这些缺点,在满足一定地形适应性的前提下,可以充分发挥移动机器人移动灵活、控制简单等优点。一般来说,轮式移动机器人对地形的适应性大小与轮子的数量成正比,但随着轮子数量的增加,又带来了机器人体积庞大、重量重等缺点。爬楼轮式行驶系统均采用各轮独立驱动,自主工作的方式,同时各轮均采用弹性悬挂方式,故工作起来方便灵巧,同心性和转向性均较好。刚性轮具有较高的机械可靠性,较好的转向性和环境适应性,但其行驶稳定性和耐磨损性均较差。充气轮虽然具有较好的行驶稳定性和越障能力,但其环境适应能力差,故不能应用到爬楼车中。金属弹性轮的爬坡性能、耐磨损性、环境适应性以及机械可靠性、越障能力均较好,但其转向性能较差。椭圆轮、半球轮和无毂轮的爬坡和越障性能及耐磨损性能均较好,但其行驶稳定性较差,机械可靠性最低。综合各方面的优缺点,轮式机器人是比较合理的。 该爬楼车辆包括:传动系统、行驶系统和转向系统三大系统。本课题着重进行行驶

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

某沿海单桨散货船螺旋桨设计计算说明书

某沿海单桨散货船螺旋桨 设计计算说明书 刘磊磊 2008101320 2011年7月

某沿海单桨散货船螺旋桨设计计算说明书 1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--= w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn Bp=NP D 0.5/V A 2.5 Bp MAU 4-40 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-55 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-70 δ P/D ηO P TE =P D ·ηH ·ηO hp 据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

房建毕业设计说明书

房建毕业设计说明书 【篇一:毕业设计说明书】 本科毕业设计说明书(论文) 页第i页共i 目录 1 绪 论 ....................................................................................................... (1) 1.1 课题概 述 ....................................................................................................... . (1) 1.2 主要内容及方 法 ....................................................................................................... . (1) 2鲁班软件的建 模 ....................................................................................................... . (3) 2.1工程属性设 置 ....................................................................................................... .. (3) 2.2建立轴 网 ....................................................................................................... . (3) 2.3布置 柱 ....................................................................................................... .. (3) 2.4布置 墙 ....................................................................................................... .. (4) 2.5布置 梁 ....................................................................................................... .. (4) 2.6布置钢 筋 ....................................................................................................... . (4)

螺旋桨拉力计算

机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比 升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算)

你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×0.00025=31.25公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×0.00025=125公斤 展弦比: 展弦比即机翼翼展和平均几何弦之比,常用以下公式表示: λ=l/b=l^2/S 这里l为机翼展长,b为几何弦长,S为机翼面积。因此它也可以表述成 翼展(机翼的长度)的平方除以机翼面积,如圆形机翼就是直径的平方除以圆面积,用以表现机翼相对的展张程度。 从空气动力学基础理论来说!展弦比越大,诱导阻力会越小,升阻比会提高。 但同时,较大的展弦比会降低飞机的机动能力,因为较大的展弦比会使诱导阻力减小,但同时使翼面切向阻力加大。飞机维持平飞时稳定性极好,但一旦需要机动,则翼载和阻力都很大。加速性和超音速性能都很差。 相反,随着后掠角的加大,展弦比会呈现一次函数线性衰减,此时诱导阻力增加,升阻比降低,但飞机在超音速飞行时的性能明显改善,机动性也提高。 所以,对于要求长航程,稳定飞行的飞机而言,需要大展弦比设计。而战斗机多采用小展弦比设计。例如:B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比更是高达25;而小航程、高机动性飞机,如歼-8展弦比为2,Su-27展弦比为3.5,F-117展弦比为1.65。 低速飞机设计的关键一是加大升力面积二是减轻重量,通过降低翼载荷实现低速。加大翼展可获得大升力面积但从结构强度考虑将大大增加重量,而仅仅通过加大翼弦获得大升力面积

本科毕业设计(论文)编写格式规范(设计计算说明书)

本科毕业设计(论文) 编写格式规范 为统一学院本科毕业设计(论文)编写格式,根据《科学技术报告、学位论文和学术论文的编写格式》(GB/T 7713-1987)和《学位论文编写规则》(GB/T 7713.1-2006),结合学院实际,制定本规范。 第一条基本结构 本科毕业设计(论文)基本结构包括前臵部份、主体部份和结尾部份,共3部分构成。 (一)前臵部份包括:封面、题名页、摘要页(中、英文)、目录、插图和附表清单(根据需要)、缩写、符号清单、术语表(根据需要)。 (二)主体部份包括:引言(或绪论)、正文、结论。 (三)结尾部分包括:参考文献、致谢、附录(根据需要)。 第二条一般要求 (一)本科毕业(设计)论文的内容应完整、准确。 (二)本科毕业(设计)论文应采用国家正式公布实施的简化汉字和法定计量单位。论文中采用的术语、符号、代号全文必须统一,并符合规范化的要求。 — 1 —

(三)本科毕业论文必须用白色标准A4纸(210×197mm)打印。论文稿纸四周应留足空白边缘,以便装订和读者批注。每一面的上方(天头)和左侧(订口)应分别留边25mm以上,下方(地脚)和右侧(切口)应分别留边20mm以上。 第三条前臵部份 (一)封面:封面是论文的外表面,提供应有的信息,并起保护作用。封面包括论文分类号、密级、编号、题名、学位授予单位、作者姓名、申请学位级别、指导教师姓名、学科专业名称、提交时间等内容。 1.分类号:按中国图书分类法,根据论文的研究内容确定。 2.密级:按学院确定的保密等级填写,分绝密、机密和秘密三级。非涉密论文不得填写密级。 3.论文题目:应准确概括整个论文的核心内容,简明扼要,一般不超过20个字(含英文实词),必要时可加副标题。应避免使用不常用缩略词、字符、代号和公式等。 (二)题名页:题名页是论文的内封面,臵于封面之后,内容比封面更为详细,是论文进行录著的依据。 (三)摘要:包括中文摘要和英文摘要两部份。摘要是论文内容的总结概括,应简要说明论文的研究目的、基 — 2 —

航模螺旋桨基础知识

一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 此外还要考虑螺旋桨桨尖气流速度不应过大(<音速),否则可能出现激波,导致效率降低。 二、桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正 比。超轻型飞机一般采用结构简单的双叶桨。只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。

相关主题
文本预览
相关文档 最新文档