当前位置:文档之家› 时间序列数据ols回归的其他问题

时间序列数据ols回归的其他问题

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

统计学第四版贾俊平人大_回归与时间序列stata

回归分析与时间序列 一、一元线性回归 11.1 (1)编辑数据集,命名为linehuigui1.dat 输入命令scatter cost product,xlabel(#10, grid) ylabel(#10, grid),得到如下散点图,可以看到,产量和生产费用是正线性相关的关系。 (2)输入命令reg cost product,得到如下图: 可得线性函数(product为自变量,cost为因变量):y=0.4206832x+124.15,即β0=124.15,β1=0.4206832 (3)对相关系数的显著性进行检验,可输入命令pwcorr cost product, sig star(.05) print(.05),得到下图:

可见,在α=0.05的显著性水平下,P=0.0000<α=0.05,故拒绝原假设,即产量和生产费用之间存在显著的正相关性。 11.2 (1)编辑数据集,命名为linehuigui2.dat 输入命令scatter fenshu time,xlabel(#4, grid) ylabel(#4, grid),得到如下散点图,可以看到,分数和复习时间是正线性相关的关系。 2)输入命令cor fenshu time计算相关系数,得下图: 可见,r=0.8621,可见分数和复习时间之间存在高度的正相关性。 11.3 (1)(2)对于线性回归方程y=10-0.5x,其中β0=10,表示回归直线的截距为10;β1=-0.5,表示x变化一单位引起y的变化为-0.5。 (3)x=6时,E(y)=10-0.5*6=7。 11.4 (1) ,判定系数 测度了回归直线对观测数据的拟合程度,即在分数的变差中,有90%可以由分数与复习时间之间的线性关系解释,或者说,在分数取值的变动中,

时间序列回归

第十三章 时间序列回归 本章讨论含有ARMA 项的单方程回归方法,这种方法对于分析时间序列数据(检验序列相关性,估计ARMA 模型,使用分布多重滞后,非平稳时间序列的单位根检验)是很重要的。 §13.1序列相关理论 时间序列回归中的一个普遍现象是:残差和它自己的滞后值有关。这种相关性违背了回归理论的标准假设:干扰项互不相关。与序列相关相联系的主要问题有: 一、一阶自回归模型 最简单且最常用的序列相关模型是一阶自回归AR(1)模型 定义如下:t t t u x y +'=β t t t u u ερ+=-1 参数ρ是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。 二、高阶自回归模型: 更为一般,带有p 阶自回归的回归,AR(p)误差由下式给出: t t t u x y +'=β t p t p t t t u u u u ερρρ++++=--- 2211 AR(p)的自回归将渐渐衰减至零,同时高于p 阶的偏自相关也是零。 §13.2 检验序列相关 在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),Eviews 提供了几种方法来检验当前序列相关。 1.Dubin-Waston 统计量 D-W 统计量用于检验一阶序列相关。 2.相关图和Q-统计量 计算相关图和Q-统计量的细节见第七章 3.序列相关LM 检验 检验的原假设是:至给定阶数,残差不具有序列相关。 §13.3 估计含AR 项的模型 随机误差项存在序列相关说明模型定义存在严重问题。特别的,应注意使用OLS 得出的过分限制的定义。有时,在回归方程中添加不应被排除的变量会消除序列相关。 1.一阶序列相关 在EViews 中估计一AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。例如:估计一个带有AR(1)误差的简单消费函数 t t t u GDP c c CS ++=21 t t t u u ερ+=-1 应定义方程为: cs c gdp ar(1) 2.高阶序列相关 估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。如果想估计一个有1-5阶自回归的模型 t t t u GDP c c CS ++=21 t t t t u u u ερρ+++=--5511 应输入: cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5) 3.存在序列相关的非线性模型 EViews 可以估计带有AR 误差项的非线性回归模型。例如: 估计如下的带有附加AR(2)误差的非线性方程 t c t t u GDP c CS ++=21

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

数据分析-时间序列的趋势分析

数据分析-时间序列的趋势分析 无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。 环比:反应的是数据连续变化的趋势,将本期的数据与上一周期的数据进行对比。最常见的是这个月的数据与上个月数据的比较,计算环比增长率,因为数据都是与之前最近一个周期的数据比较,所以是用于观察数据持续变化的情况。 买二送一,再赠送一个概念——定基比(其实是百度百科里附带的):将所有的数据都与某个基准线的数据进行对比。通常这个基准线是公司或者产品发展的一个里程碑或者重要数据点,将之后的数据与这个基准线进行比较,从而反映公司在跨越这个重要的是基点后的发展状况。 同比和环比的应用环境

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内

时间序列分析方法第章谱分析完整版

时间序列分析方法第章 谱分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章 谱分析 Spectral Analysis 到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为: 我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τ Y 的协方差具有什么样的启示。这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。 在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为: 上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞ -}{t Y 性质时所发挥的重要程度如何。如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。 § 母体谱 我们首先介绍母体谱,然后讨论它的性质。 6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为: 这里z 表示复变量。将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱: 注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。 利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为: 注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数

时间序列的平稳化处理方法

15.1.2 时间序列数据的平稳化处理 打开相应的数据文件或者建立一个数据文件后,可以在SPSS Statistics数据编辑器窗口中对时间序列数据进行平稳化。 1)在菜单栏中选择"转换"|"创建时间序列"命令,打开如图15-3所示的"创建时间序列"对话框。 2)选择变量。从源变量列表中选择需要进行平稳化处理的变量,然后单击按钮将选中的变量选入"变量->新名称"列表中。进入"变量->新名称"列表中的变量显示为"新变量名称=平稳函数(原变量名称顺序)"。 3)进行相应的设置。在"名称和函数"中可以对平稳处理后生成的新变量重命名并选择平稳化处理的方法,设置完毕后单击"更改"按钮就完成了新变量的命名和平稳化处理方法的选择。 SPSS提供了8种平稳处理的方法,各选项及其功能如表15-1所示。 表15-1 "函数"下拉列表框中的选项及功能 方法功能 差值指对非季度数据进行差分处理。其中,一阶差分即数据前一项减去后一项得到的值,因此一阶差分会损失第一个数据。同理,n阶差分会损失前n个数据。

在“顺序”文本框中输入差分的阶数。差分是时间序列非平稳数据平稳处理的最常用的方法, 特别是在ARIMA模型中 季节差分指对季节数据进行差分处理。其中,一阶差分指该 年份的第n季度的数据与下一年份第n季度的数据做 差。由于每年有四个季节,因此m阶差分就会损失m个数据 中心移动平均指以当期值为中心取指定跨度内的均值,在“跨度”文本框中指定取均值的范围。该方法比较 适用于正态分布的数据 先前移动平均指取当期值以前指定跨度内的均值,在“跨度”文本框中指定取均值的范围 运行中位数指以当期值为中心取指定跨度内的中位数,在“跨度”文本框中指定取中位数的范围。其中,该方法与 中心移动平均方法可互为替代 累计求和表示以原数据的累计求和值代替当期值 滞后表示以原始数据滞后值代替当期值,在“顺序”文本框中指定滞后阶数 提前表示以原始数据提前值代替当期值,在“顺序”文本框中指定提前阶数 平滑表示对原数据进行T4253H方法的平滑处理。该方 法首先对原数据依次进行跨度为4、2、5、3的中心移动平均处理,然后以Hanning为权重再做移动 平均处理,得到一个平滑时间序列 设置完毕后,单击"确定"按钮,就可以在SPSS Statistics数据视图和查看器窗口得到平稳处理的结果。

时间序列中回归模型的诊断检验

时间序列中回归模型的诊断检验 【摘要】:时间序列是指被观测到的依时间次序排列的数据序列。从经济、金融到工程技术,从天文、地理到气象,从医学到生物,几乎在各个领域中都涉及到时间序列。对时间序列数据进行统计分析及推断,被称为时间序列分析。近几十年来,金融时间序列分析得到了人们广泛的关注。Engle在1982年对英国的通货膨胀率数据进行分析时提出一种统计建模思想:时间序列自回归模型误差的条件方差不一定是常数,可以随时间的变化而不同。基于这个思想,Engle首次提出了条件异方差模型,即人们熟知的ARCH(p)模型。由于Engle出色的开创性工作,金融时间序列条件异方差模型很快在学术界和实际应用中得到了极大的关注。许多专家学者根据实际中经济、金融数据的各种特征,提出了各种各样的条件异方差模型,并研究各种参数或非参数估计方法。但是,提出的模型是否合理?或者说,观测数据是否真的来自这一模型?人们往往不太关心。这个问题实际上是所谓的模型检验问题。对于著名的Box-Jenkins时间序列建模三步曲:模型的建立、模型的参数估计和模型的检验,理论上他们具有同等重要的地位。但是,正如专著Li所述,人们关注更多的是前面两步工作,而第三步(即模型的检验)常常得不到应有的重视。对于近二十年来受到广泛关注的条件异方差模型,模型检验问题同样没有得到应有的关注,相关的研究寥寥无几。对传统的回归模型,文献中主要有两大类模型检验方法:局部光滑方法和整体光滑方法。局部光滑方法涉及用非参数

估计方法估计其均值函数从而有可能导致维数问题。为了避免维数问题,学者们提出了各种各样的整体光滑方法用于模型检验,构造的检验不需要非参数光滑,但是对高频备择不敏感。上述两种方法各有优缺点。另外,这两种方法基本上都是针对因变量为一元情形。因此,本文提出一些新的方法来处理时间序列自回归模型的模型检验问题。需要特别指出的是,本文考虑的时间序列包括一元和多元情形,回归函数形式可以非常一般,自回归变量可以有多个后置项。本文首先研究了一元时间序列一般形式的自回归模型(包括条件异方差模型的均值模型和方差模型)的模型检验问题。通过模型的残差或标准化的残差进行加权平均,我们构造了一个得分型检验统计量。该检验具有许多优良性质,比如:在零假设模型下是渐近卡方分布的,处理起来简单;对备择假设敏感,能检测到以参数的速度收敛到原假设的备择假设模型;通过权函数的选择可以构造功效高的检验。在方向备择情形,我们研究得到了最优(功效最高)的得分型检验。当备择不是沿着某一方向而是多个可能的方向趋于原假设时,我们构造了极大极小(maximin)检验,该检验是渐近分布自由的,并具有许多优良性质。另外,对备择完全未知(即完全饱和备择)情形,我们也基于得分型检验的思想提出了一个构造万能检验(omnibustest)的可行性方案。需要指出的是,关于时间序列回归模型的诊断检验问题,本文是第一篇理论上研究检验的功效性质的文章。另外,在进行功效研究的过程中,我们得到了当模型被错误指定时参数估计(拟极大似然估计)的渐近性质。注意到得分型检验在构造过程中涉及渐近方差的插入估计

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

计量经济学--时间序列数据分析

时间序列数据的计量分析方法 1.时间序列平稳性问题及处理方案 1.1序列平稳性的定义 从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。 平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果 可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。 1.3平稳性检验方法:ADF 检验 1.3.1ADF 检验的假设: 辅助回归方程:11t t i t i t i Y Y t Y ραργβμ--==+++?+∑(是否有截距和时间趋势项 在做检验时要做选择) 原假设:H 0:p=0,存在单位根 备择假设:H 1:P<0,不存在单位根 结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P 值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。 1.3.2实例 对1978年2008年的中国GDP 数据进行ADF 检验,结果如表一。 表一 ADF 检验结果 Augmented Dickey-Fuller test statistic t-Statistic Prob.* 3.063621 1 Test critical values: 1% level -3.699871 5% level -2.976263 10% level -2.62742 从结果可以看出,ADF 的t 统计量值大于10%显著性水平上的临界值,P 值为1,接受原假设,说明所检测的GDP 数据是不平稳序列。 1.4不平稳序列的处理方法 1.4.1方法 如果所要分析的数据是不平稳序列,可以对序列进行差分使其变成平稳序列,但是这样做的后果是使新得出的数据丧失了许多原序列的特征,我们能从数据中得到的信息会变少,通常差分的次数不能超过两次。 经验表明,存量数据是二阶单整,做二次差分可以使其平稳,流量数据是一阶单整,做一次差分可以使其平稳,增量数据通常就是平稳序列。 1.4.2实例

用EVIEWS处理时间序列分析

应用时间序列分析 实验手册

目录 目录 (2) 第二章时间序列的预处理 (3) 一、平稳性检验 (3) 二、纯随机性检验 (9) 第三章平稳时间序列建模实验教程 (10) 一、模型识别 (10) 二、模型参数估计(如何判断拟合的模型以及结果写法) (14) 三、模型的显著性检验 (17) 四、模型优化 (18) 第四章非平稳时间序列的确定性分析 (19) 一、趋势分析 (19) 二、季节效应分析 (34) 三、综合分析 (38) 第五章非平稳序列的随机分析 (44) 一、差分法提取确定性信息 (44) 二、ARIMA模型 (57) 三、季节模型 (62)

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据

文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据

2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图

100 200300400 5006001960 1970198019902000 YEAR O U T P U T 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick 菜单下选择自相关图,对Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析

8时间序列回归模型——R实现

时间序列回归模型 1干预分析 1.1概念及模型 Box和Tiao引入的干预分析提供了对于干预影响时间序列的效果进行评估的一个框架,假设干预是可以通过时间序列的均值函数或者趋势而对过程施加影响,干预可以自然产生也可以人为施加的,如国家的宏观调控等。 其模型可以如下表示: 其中mt代表均值的变化,Nt是ARIMA过程。 1.2干预的分类 阶梯响应干预

脉冲响应干预 1.3干预的实例分析 1.3.1模型初探 对数化航空客运里程的干预模型的估计

> data(airmiles) > acf(diff(diff(window(log(airmiles),end=c(2001,8)),12))),=48)#用window得到在911事件以前的未爱干预的时间序列子集 对暂用的模型进行诊断 >fitmode<-arima(airmiles,order=c(0,1,1),seasonal=list(order=c(0,1,0))) > tsdiag(fitmode)

从诊断图可以看出存在三个异常点,acf在12阶存在高度相关因此在季节中加入MA(1)系数。 1.3.2拟合带有干预信息的模型 函数: arimax(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA), xreg = NULL, = TRUE, = TRUE, fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), , = list(), kappa = 1e+06, io = NULL, xtransf, transfer = NULL) arimax函数扩展了arima函数,可以处理时间序列中干扰分析及异常值。假设干扰影响过程的均值,相对未受干扰的无价值函数的偏离用一些协变量的ARMA滤波器的输出这种来表示,偏差被称作传递函数。构造传递函数的协变量通过xtransf参数以矩阵或者的形式代入arimax函数。 =arimax(log(airmiles),order=c(0,1,1),seasonal=list(order=c(0,1,1), period=12),xtransf=(I911=1*(seq(airmiles)==69),

数据分析时间序列的趋势分析

数据分析时间序列的趋 势分析 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

数据分析-时间序列的趋势分析无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。

统计学中常用的数据分析方法8时间序列分析

统计学中常用的数据分析方法 时间序列分析 动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。 主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA 横型、ARIMAX模型、向呈自回归横型、ARCH族模型 时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。 时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。 时间序列预测法的应用: 系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述; 系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理; 预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值; 决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。 特点: 假定事物的过去趋势会延伸到未来; 预测所依据的数据具有不规则性; 撇开了市场发展之间的因果关系。 ①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。 时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。

回归分析时间序列分析答案.doc

回归分析时间序列分析答案 一、单项选择题 1、下面的关系中不是相关关系的是(D ) A、身高与体重之间的关系 B、工资水平与工龄之间的关系 C、农作物的单位面积产量与降雨量之间的关系 D、圆的面积与半径之间的关系 2、具有相关关系的两个变量的特点是(A ) A、一个变量的取值不能由另一个变量唯一确定 B、一个变量的取值由另一个变量唯一确定 C、一个变量的取值增大时另一个变量的取值也一定增大 D、一个变量的取值增大时另一个变量的取值肯定变小 3、下面的假定中,哪个属于相关分析中的假定(B) A、两个变量之间是非线性关系 B、两个变量都是随机变量 C、自变量是随机变量,因变量不是随机变量 D、一个变量的数值增大,另一个变量的数值也应增大 4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为(A ) A、完全相关关系 B、正线性相关关系 C、非线性相关关系 D、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C ) A、–0.86 B、0.78 C、1.25 D、0

x6、某校经济管理类的学生学习统计学的时间()与考试成绩(y)之间建立线性回归方程y x=a+b。经计算,方程为y =200—0.8x,该方程参数的计算(C) cc A a值是明显不对的 B b值是明显不对的 C a值和b值都是不对的 D a值和b值都是正确的 7、在回归分析中,描述因变量y如何依赖于自变量x和误差项ε的方程称为(B) A、回归方程 B、回归模型 C、估计回归方程 D、经验回归方程 ,,,x,,8、在回归模型y=中,ε反映的是(C ) 01 A、由于x的变化引起的y的线性变化部分 B、由于y的变化引起的x的线性变化部分 C、除x和y的线性关系之外的随机因素对y的影响 D、由于x和y的线性关系对y的影响 9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误(B) ,, A、=25–0.75x B、= –120+ 0.86x yy ,, C、=200–2.5x D、= –34–0.74x yy 10、说明回归方程拟合优度的统计量是(C ) A、相关系数 B、回归系数 C、判定系数 D、估计标准误差 211、判定系数R是说明回归方程拟合度的一个统计量,它的计算公式为(A ) SSRSSRSSESSTA、 B、 C、 D、 SSTSSESSTSSR 12、为了研究居民消费(C)与可支配收入(Y)之间的关系,有人运用回归分析的方法,得到以下方程:在该方程中0.76的含义是(B ) LnC,2.36,0.76LnY, A、可支配收入每增加1元,消费支出增加0.76元

相关主题
文本预览
相关文档 最新文档