当前位置:文档之家› 磁性材料应用与进展

磁性材料应用与进展

磁性材料应用与进展
磁性材料应用与进展

磁性材料应用与进展

磁性材料应用与进展

庞丽丽

(萍乡学院,13级无机非金属材料1班,学号13461025)

摘要磁性材料广泛的用在我们的生活之中,特别在节约能源方面的应用。新型的纳米结构自旋电子学材料已是磁性材料领域中的传奇。

关键词磁性材料、自选电子学、永磁、软磁。

Abstract :Mag netic materials are widely used in our lives,

particularly in the applicati on of en ergy con servatio n.

Structure of new Nano-spintronics material is lege ndary in t

he field of mag netic materials.

Key words : Magnetic materials. Spin electronics. Permanent magnet. Soft mag netic.

1引言

磁性材料,通常所说的磁性材料是指强磁性物质,是古老而用途十分广泛的功能材料。而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。而通常认为,磁性材料是指由过渡元素铁、钻、镍及其合金等能够直接或间接产生磁性的物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。

20世纪80年代在(Fe/Cr/Fe)n纳米多层膜中发现了巨磁电阻效应,其物理本质是薄膜厚度小于自旋扩散长度,因此电子在输运过程中将保持自旋方向,通过外磁场可以改变

自旋方向,从而改变电阻值,这发现开拓了在电子输运过程中通过调控自旋,显示与利用自旋特性的新领域,从而产生重要的自旋电子学新学科,利用调控自旋的特性,首先制备成高灵敏度的磁盘读出磁头,使磁盘的记录

密度提高千倍,至今保持着信息存储的主流地位,其产值超过300亿美元,此外各种利用磁电阻效应的新颖传感器脱颖而出,其应用领域十分宽广。与微电子技术相结合,目前已研发成磁随

机储存器,MRAM不同类型的MRAI如STT-MRAM;MeR等可统称为自旋芯片,自旋芯片属于核心咼端芯片,是科技关键核心技术,可军民两用,具有咼达上千亿美元的巨大市场前景,有可能成为后摩尔时代的主流芯片。[1]

2磁性材料-分类[2]

磁性材料具有磁有序的强磁性物质,广义还包括可应用其磁性和磁效应的弱磁性及反铁磁性物质。磁性是物质的一种基本属性。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、永磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反应磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

2.1永磁材料

一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,矫顽力

BHC即抗退磁能力)强,磁能积(BH加蚯(即给空间提供的磁场能量)大。相对于软磁材料而言,它亦称为硬磁材料。

永磁材料有多种用途。①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。

2.2软磁材料

它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC 越小越好,但饱和磁感应强度Bs则越大越好。

软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。

2.3矩磁材料

主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。

2.4旋磁材料

具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。

2.5压磁材料

这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的

功能是作磁声或磁力能量的转换。常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。压磁材料的生产和应用远不及前面四种材料。

3磁性材料的应用

磁性材料是生产、生活、国防科学技术中广泛使用的材料。如制造电力技术中的各

种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。

3.1磁性技术在节约能源方面的应用[3]

3.1.1节能的永磁材料

降低现有磁性材料的损耗,研发更低损耗的新材料,便可以在使用磁性材

料的各种电机和电器中节约能源。例如,用永磁体代替电流在空间形成1个静

磁场(如永磁电机中的定子磁场或转子磁场,扬声器和仪器仪表中的气隙磁场等),这样,不但节省了电能,降低了温度,而且省去1部分电源及控制系统、

冷却系统。如在汽车中用永磁电机替代传统的电机,可使体积和重量减小40%?70%,效率提高50%以上,并可节省铜材和电力。将电气设备中大量使用的电磁开关、电磁阀的电磁铁换成永磁体,可节电90%以上。

在人类活动中,大量的能源消耗在克服摩擦力的做功上。利用永磁体之间的排斥力

和吸引力,做成各种磁悬浮系统,如果再将系统中的空气抽出,则摩擦力几乎按近于零。例如,利用磁悬浮原理制成新型磁轴承,其能源可降低90% 以上,转速可达每分钟几十万转。

3.1.2奇特的非晶态磁性合金

非晶态磁性合金就是磁性玻璃。这种非晶态合金材料是将熔融的金属用每秒近100

万c的超急冷方法直接喷在高速旋转的风轮上,使熔化的液态合金立即凝固成薄带,来不及结晶而形成非晶态。

非晶态合金具有铁芯损耗小、电阻率咼、频率特性好、磁感应强度咼、抗腐蚀性强等特点。在漏电保护器、电感滤波器、电力配电变压器和开关电源等方面已获得广泛应用。据估计,我国变压器的总损耗占系统发电量的10%左右,损耗每降低1 %,每年可节约上百亿度电,其节能效果十分显著。

3.1.3磁性节能器件

磁水器在锅炉和热交换系统中的使用,不但提高了热效应,节约了能源,而且还减少了管道和设备的除垢工作。如果采用磁力除垢器或磁水器均可节约能源并提高维护保养水平。我国某油田用磁水器处理石油,使石油除蜡降粘,热洗周期由12天增加到140天,单井年节电达1.4万度,年节约天然气1.8万m3年增产原油180吨,多获利2万元。

3.1.4绿色节能磁冰箱

利用“绝热去磁”(给1种磁性材料施加磁场时发热,去掉磁场时冷却)全新原理工作的磁冰箱,其致冷工作效率为常规气体致冷机的2倍?4倍,能耗低,可节电50%。由于使用固体工质,故而体积小、重量轻,又无压缩机,很少有零件磨损和挤压现象。即使有运动部件,其转速也十分缓慢,故而省电、便于维护、寿命长、无振动噪音,没有氟里昂对环境的污染,可保护臭氧层,因此被称为绿色冰箱。

3.1.5其它节能实例

电子镇流器只需传统式镇流器的70%的电功率便能令萤光灯发出同样的光度。由于使用较小的磁性电感器,不需要启动器,可节能30%,具有快速、重量轻、噪音低的特点,效率高达65%?85%。

不用水和色浆的磁性染色工艺就是利用磁力和分散染料升华作用的1种连续染色法,可用于染素色和图案印花。它无需使用水、溶剂和印花纸,且能耗大大减小。

没有火患的安全灶——电磁炉,是1种新型“冷加热”电气灶具。这是通过高频交变磁场与铁锅(或不锈钢锅)相互作用来加热的,其热效率高,节省电力。目前在我国已经实用化、商品化。

利用磁场制作的水泥,具有松散,不结块的特点。由于磁场的作用使水泥旋转,只要在水泥中添加1种可与水泥吸附在一起的铁磁材料,使之具有韧性和弹性。因无转动部件,磨损极小,耗能少。磁性水泥混凝土的形状和大小不受限制,具有良好的持久性,在水中和海洋工程方面,可用于磁性定位;在危险地区可作成磁性地段,便于检测;在路面上作磁性标记以引导盲人步行,使汽车通行无阻。

4研究发展[4]

磁性材料是国民经济的重要支柱与基础,应用十分广泛,而且近年来磁性材料的发展十分迅速,特别是新型磁性材料的不断出现,对现代工业技术进步起着巨大的推动作用,因此,它已经成为世界各国科学家们争相探索和研究的热点领域之一,在今后的几年中,磁性材料的研究和发展将主要集中在以下几个方面:

1、虽然基础和应用基础研究工作比较繁杂和辛苦,短期内不易见到效益,而且还有一定的风险性,但是只有加强基础和应用基础研究,增加研究的投入,才能为今后磁性材料的研究和发展打下坚实的基础。

2、改造和完善现有的磁性材料,提高其磁性能,优化制备工艺,降低生产成本发展新型的磁性材料,特别是纳米磁性材料。

3、纳米磁性材料是纳米材料中最早进入工业化生产的功能材料,应用广泛,性能优异,特别是在信息存储、处理与传输中占据重要地位,其基础研究和应用开发正方兴未艾。

4、加强研究、生产、应用三方面的结合,不断开拓磁性材料新的应用领域并促使其发展。

5展望

自旋电子学器件涉及到电子的自旋极化,极化自旋注入到半导体材料,

极化自旋的输运与控制以及极化自旋的检测,是磁与半导体的有机结合,自旋电子学已成为一门颇受青睐的新学科。

磁性材料是古老而年青的重要功能材料.磁性材料的应用已渗透到国民经

济、国防工程等各个领域中。磁性材料发展的总趋势将由3d趔渡族合金、化合物向3d 一4f,4d,5f .. ?多元合金、化合物物方向发展;由无机向有机方向发展;由三维向低维方向发展。纳米磁性材料将成为重要的性功能材料,

自旋电子学将成为纳(米)电子学要分支。[5]

磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。磁性液体已进入实

用阶段。某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。

参考资料

[1]都有为,磁性材料进展概览《功能材料》,2014(10):1-4

[2]胡双锋黄尚宇周玲吕书林期刊论文磁学的发展与重要磁性材料的应用-稀有金属材料与工

程-200736 ( z3)

[3]余声明磁性技术在现代能源中的应用中国西部磁性材料论坛,2002:1-4

[4]毕见强,孙康宁,尹衍升磁性材料的研究和发展趋势《山东大学学报:工学

版》,2003, 33(3):225-228

[5]都有为。磁性材料进展与展望中国仪器仪表学会仪表材料学会理事会暨功能材料若干领域研发态

势专题学术研讨会,2002

磁性材料及其应用研究

万方数据

乘客乘车的凭证和票价结算的磁性卡等。 图1磁性材料 2.1永磁材料 一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。对这类材料的要求是剩余磁感应强度Br高,抗退磁能力强,磁能积(BH)大。相对于软磁材料而言,它亦称为硬磁材料。永磁材料有合金、铁氧体和金属间化合物三类。①合金类:包括铸造、烧结和可加工合金。铸造合金的主要品种有:AINi(Co)、FeCr(Co)、FeCrMo、FeAIC、FeCo(V)(W);烧结合金有:Re--Co(Re代表稀土元素)、Re—Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnALC、CuNiFe和A1MnAg等,后两种中BHC较低者亦称半永磁材料。②铁氧体类:主要成分为MO?6Fe203,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。③金属间化合物类:主要以MnBi为代表。根据使用的需要,永磁材料可有不同的结构和形态。有些材料还有各向同性和各向异性之别。 2.2软磁材料 它的功能主要是导磁、电磁能量的转换与传输。因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。软磁材料大体上可分为四类。①合金薄带或薄片:FeNi(Mo)、FeSi、FeAI等。 ②非晶态合金薄带:Fe基、C0基、FeNi基或FeNiCo基等配以适当的si、B、P和其他掺杂元素,又称磁性玻璃。③磁介质(铁粉芯):FeNi(Mo)、FeSiAI、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型一一MO?Fe203(M代表NiZn、MnZn、MgZ.、Lil/2Fel/2Zn、CaZrt等),磁铅石型一一Ba3Me2F也40141(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2.3矩磁材料和磁记录材料 主要用作信息记录、无接点开关、逻辑操作和信息放大。这种材料的特点是磁滞回线呈矩形。旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器、衰减器、相移器、词制器、开关、限幅器及延迟线等,还有尚在发展。 3磁性材料的应用及行业发展 3.1磁性材料的应用 我们知道,硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基,粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r—Fe203或Cr02细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带一368~并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。 应用于计算机磁性存储设备和作为乘客乘车的凭证和票价结算的磁性卡所用的磁性材科及作用原理,同磁带所用的磁性材料及作用原理基本相同,只是用处不同而已。在磁性卡上有一窄条磁带,当你乘地铁从甲站到乙站时,在甲站向仪器中投入从甲站到乙站的票钱(硬币),之后投出一张磁性卡,在投出这张磁性卡的过程中已录上了到乙站下车的磁记录,拿这张磁性卡乘车到乙站后投入到仪器中,门开,出站。如果没在乙站下车,而是在比乙站远的丙站下车,投入的硬币不够,出站门不开。要拿磁性卡补票后才能出站。在乙站或丙站投入磁性卡的过程,就是磁记录经过磁头变成电信号的过程。再用电信号控制站门开关。电机的铁芯所用的磁性材料一般用硬磁铁氧体,这些材料的特点是磁化后不易退磁。对磁通的阻力小。磁性材料的用途广泛,磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。 3.2磁性材料的行业发展 中国地大物博,金属和稀有元素矿藏非常丰富,有着丰富而天然的原材料资源优势,磁性材料产业所需的各种原材料几乎国内都能满足。磁性材料行业,离不开稀土。因为稀土成本占磁材原料成本的30%,而中国是稀土的故乡,世界上80%的稀土储量在中国,因此中国稀土的资源优势,决定了磁性材料行业的中国优势。 2006年中国出口各类磁体23万吨,出口金额仅8.6亿美元;进口各类磁体6.9万吨,而进口金额达5.7亿美元。2007年1—8月中国电磁铁;永磁铁等;电磁或永磁工件夹具等进口数量为57,031,992.00千克,用汇513,161,987.00美元;出口数量为193,840,035.00千克,创汇809,909,620.00美元。 中国磁性材料工业在产量方面已经初具规模,发展速度很快,但与日本等磁性材料工业发达的国家相比,无论是管理水平、制造工艺、产品质量及产品档次都存在一定差距。中低档产品占据了较大的国际市场,但在高档产品上还缺乏竞争力。随着高清晰度电视等消费类电子产品的日益普及,汽车、通信业的发展,对高档磁性材料的需求越来越多。中国的磁性材料企业应该抓住这个有利的时机,开发高档磁性材料产品,占领国际市场。 “十一五”时期,是中国磁性材料工业大发展时期,世界磁性材料产业中心已经转移到中国。预计中国铝镍钴磁钢产量为3,000吨(全球产量7,840吨),铁氧体永磁产量195,000吨(全球产量676,000吨),稀土钕铁硼磁体9,400吨(全球14,400吨),软磁铁氧体产量98,800吨(全球431,000吨)。到2010年中国各类磁体的产量均稳居世界之首,占全球的份额还将继续增大。到2020年,中国磁性材料的产量将占全球一半以上,成为世界磁性材料产业中心。 参考文献 [1]胡双锋,黄尚宇,周玲,吕书林.磁学的发展及重要磁性材料的应[J].稀有全属材料与工程。2007.(9). [23余声明.智能磁性材料及其应用EJ].磁性材料度嚣件,2004,(5).[3]宋振纶,李卫.钕铁硼永詹材科表面防护技术:特点?应用?同题 [J].磁性材料及器件,2008,(1).万方数据

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

石墨烯、四氧化三铁、金合成与应用

本科生毕业论文(或设计)(申请学士学位) 论文题目四氧化三铁/石墨烯/金的合成与应用 作者姓名 所学专业名称应用化学 指导教师 2012年 5 月27日

学生:(签字)学号: 论文答辩日期:2012 年 6 月 2 日 指导教师:(签字)

目录 摘要 (1) Abstract (1) 1 引言 (2) 1.1 Fe3O4/石墨烯/Au催化剂的研究现状和意义 (3) 1.2 本文主要工作 (3) 2 实验 (3) 2.1 实验试剂与仪器 (3) 2.1.1 实验试剂 (3) 2.1.2 实验仪器 (3) 2.2 样品的制备 (3) 2.2.1 氧化石墨烯的制备 (3) 2.2.2 Fe3O4/石墨烯复合材料的制备 (4) 2.2.3 Fe3O4/石墨烯/Au复合物的制备 (5) 2.3 催化偶联反应性能研究 (5) 3 结果与讨论 (5) 3.1 扫描电镜(SEM)分析 (5) 3.2 X射线粉末衍射(XRD)分析 (8) 3.3 Fe3O4/石墨烯/Au的红外光谱分析 (10) 4小结 (10) 参考文献 (11) 致谢 (11)

四氧化三铁/石墨烯/金的合成与应用 摘要:采用水热法制备四氧化三铁(Fe3O4)/石墨烯(Graphene)复合物,再以其为载体负载贵金属金(Au)纳米颗粒,合成可磁性分离的Fe3O4/Graphene/Au(0)。制得的样品用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、红外光谱仪(IR)等表征。实验结果证明了Fe3O4/Graphene/Au(0)在空气氛围下可高效催化溴苯与苯硼酸的Suzuki偶联反应。 关键词:Fe3O4/石墨烯/ Au(0);催化;偶联反应;磁性分离 The preparation and application of Fe3O4/Graphene /Au(0) Abstract: Using Hydrothermal synthesis method is to prepare Fe3O4/Graphene, which was then used as carrier to immobilize gold nanoparticles to synthesize the magnetic catalyst Fe3O4/Graphene/Au(0). These samples were characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectrometer(IR). The experimental results show that Fe3O4/Graphene/Au(0) can effectively catalyze Suzuki coupling reaction between bromobenzene and phenylboronic acid in air atmosphere. Keywords: Fe3O4/Graphene/ Au(0);magnetic catalyst;suzuki coupling reaction;

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

关于磁性材料及其应用的探讨

关于磁性材料及其应用的探讨 发表时间:2019-08-15T14:05:45.490Z 来源:《工程管理前沿》2019年第9期作者:程俊峰[导读] 对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 宁波招宝磁业有限公司 315000 【摘要】磁性材料的用途多种多样,目前越来越多的学者对其进行了研究,本文对磁性材料的相关应用进行探讨,以促进磁性材料的不断发展。 【关键词】磁性材料;应用;探讨 1引言 磁性材料的种类多种多样,例如磁性纳米材料、磁性气凝胶材料、磁性吸附材料等,不同的材料其用途各不相同,可以被应用与不同的领域。目前,磁性材料已经成为研究热点,根据其优势越来越多的被应用于各个行业中,本文介绍了几种磁性材料以及其应用。2磁性纳米材料 与大多现有生物医用纳米材料不同,以纳米氧化铁为代表的医用磁性纳米颗粒既可介导外场产生局域磁场、热效应、力学效应,又兼顾了本征的类酶催化活性。同时,纳米氧化铁是当前为数不多的已被美国食品药品监督管理局(FDA)批准可用于临床的无机纳米材料. 因此,将多功能集成于一体的磁性纳米颗粒在磁共振造影成像(MRI)、磁感应热疗、细胞命运调控、生物催化等生物医学相关领域展现出巨大的应用前景. 在生物影像方面,超顺磁性氧化铁纳米颗粒增强的磁共振 T 2 成像已应用于多种疾病的诊断;在肿瘤精准治疗方面,集成影像与热疗为一体的磁性氧化铁诊疗一体化纳米平台材料也展现了巨大潜力;在生物催化方面,磁性氧化铁纳米材料由于具有类生物酶的催化特性,且稳定性高、经济以及可规模化制备等特点,已经成为当前的研究热点之一。然而,磁性纳米材料在取得良好进展的同时,也面临着更重要的挑战. 比如,传统超顺磁氧化铁纳米颗粒作为磁共振T 2 造影剂,在临床应用上存在易与低信号区产生混淆,且图像分辨率仍有待提高的问题,作为磁热疗剂,其低的磁热效率也一直是临床靶向磁热疗应用的障碍. 令人欣慰的是,随着磁性纳米材料合成技术的不断发展,新型的磁性纳米材料不断涌现,不仅有效改善了以往存在的科学问题,而且也进一步扩展了其在生物医学领域的应用面. 如利用准顺磁氧化铁作为T 1 造影剂已被成功开发,高磁-热效率的纳米热疗剂也逐步进入人们视野,在脑神经调控、生物体器官冷冻复苏、细胞命运调控以及肿瘤诊疗一体化等方面也取得了长足进展。目前,磁性纳米材料在生物医学应用的多个领域都展现出其独特的优势,特别是在高效介导外场产生的生物效应及其应用上取得了重要进展。 3磁性气凝胶材料 气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材料。气凝胶最初由 Kistle制得,他采用超临界干燥技术成功制备了二氧化硅气凝胶,因此将气凝胶定义为湿凝胶通过超临界干燥所获得的材料。随着气凝胶材料的不断发展,具有特殊功能的气凝胶也越来越受到人们的关注。磁性气凝胶是一种具有磁响应性能的气凝胶材料,它同时兼具气凝胶的特性和磁响应性能,在吸附、催化和生物医学等领域的应用都有独特的优势。磁性气凝胶主要采用将磁功能化的材料分散在溶液中,经过凝胶化、老化和超临界干燥等步骤制得,通常的方法是将磁性纳米颗粒物理分散或化学接枝到气凝胶基质中,如在常规气凝胶上负载磁性纳米材料,以赋予其磁性能。因磁功能化的纳米材料和气凝胶基质的不同,磁性气凝胶的结构和性能也会变化,这为制备具有特殊功能的气凝胶提供了条件,具有很广的研究前景。磁性气凝胶可分为无机磁性气凝胶和有机磁性气凝胶两类:无机磁性气凝胶的基质主要是 SiO2 和 TiO2 等气凝胶,主要研究磁性颗粒与气凝胶基体的相互作用机理以及对材料结构和性能的影响。而有机磁性气凝胶的基质主要是石墨烯气凝胶和碳气凝胶等柔性气凝胶,它们主要应用于吸附、催化和医药载体等领域,且具有磁分离效果好、催化效率高和可回收利用的特点。在水处理中,磁性气凝胶材料能在保持其自身结构完整的前提下有效吸附污染物,并且能够通过在外部加载磁场的作用下实现快速分离与回收,是一种新型的环保吸附剂。由于具有高比表面积、高孔隙率以及磁性能,磁性气凝胶在催化效率和磁响应性能上有巨大的优势,也可以作为高效催化剂使用。此外,磁性气凝胶材料还在生物医药和电极材料等领域有优异的性能和广泛的应用,是一种研究与应用潜力巨大的新型材料。 4磁性吸附材料 工业发展一方面促进了科技的发展,给人们生活创造了各种便利,但另一方面由于涉及各种化学反应和材质,生产过后带来的环境垃圾以及废水的排放和处理也是一大难题。废水的排放会导致新的环境安全问题,国家对排放进行了限制,专家们也致力于研究出新的方式来处理废水,那么磁性吸附就是新兴的一种方式。 磁性材料在外加磁场的条件下就可以加速重金属离子与液体的分离,因此确保吸附材料具有稳定的磁性,就需要通过一番实验制得。实验发现制得的磁性氧化石墨烯取得了良好的吸附效果,比如实验将 FeCl 3 ·6H 2 O 作为前驱体制备出 Fe 3 O 4 修饰的三元磁性氧化石墨烯AMGO 很好的对 Cr(VI) 进行了吸附。还有 Cu 2+ 、Pb 2+ 、Ni 2+ 、Hg 2+ 、Cd 2+ 、As 3+ 、As 5+ 、Cr 6+ 等重金属离子存在于水和土壤中给环境带来了很大的污染,简单的物理和化学方法不能高效的除去这些重金属离子,那么研究出完备的吸附法就可以解除燃眉之急。 我们都知道水体中各种成分都是可以共存的,如果采用化学反应之类的除去重金属离子,会对原来的水体造成化学污染,而且浪费了资源,过滤和回收都是需要耗费很大的代价的。在这个基础下,水中的任何物质之间都是有可能发生反应从而影响重金属离子的去除的,为了避免这个弊端,需要保证吸附材料具有稳定的磁性,同样还要保证自身的稳定性。合成物就是一种稳定存在的方式,Fe 表面含有很强络合重金属离子能力的丰富的官能团,被相关人员拿来做研究,经实验发现在此基础下具有一定的吸附量,而且吸附量深受 PH 的影响,为了达到高效的吸附量需要对相关影响因素进行控制和调整。 在不同的 pH 下还有在不同金属离子的存在下,所具备的吸附效果也是不同的。在 pH 为 5.3 的情况下 GO/Fe 3 O 4 对 Cu(II)的最大吸附容量是 18.26 mg/g,但是在 FA 存在时最大吸附容量可以达到19.09 mg/g。除此之外对重金属离子的吸附性还和吸附顺序有关,所以对于不同的重金属离子的吸附量也是不同的。如何制备出更加强效的稳定性的材料就需要通过各种离子的尝试。运用化学反应将实验收获的具有吸附能力的离子制备成稳定的合成物,在加上磁性条件的情况下加强吸附效果。比如将 Fe 3+ 和 Fe 2+ 与 GO 上的羧基形成配合物制得的磁性氧化石墨烯就对许多重金属离子有明显的吸附成效。因此专家和研究人员把目光和研究方向投向具有磁性的吸附材料上,经过尝试和摸索,确实得到比较完备的实验报告和收获,相信在未来会制备出更加高效的吸附材料。

碳_四氧化三铁纳米复合材料合成研究

碳/四氧化三铁纳米复合材料合成研究 * 马传国,逯 伟,郑海军,王亚珍,罗 炎 (桂林电子科技大学信息材料科学与工程系,广西桂林541004) 摘 要:为提高四氧化三铁纳米粒子的催化活性和稳定性,采用均匀沉淀方法制备了活性炭/四氧化三铁(A C /F e 3O 4)粒子和碳纳米管/四氧化三铁(C N T s /F e 3O 4)粒子两种复合材料,利用扫描电子显微镜(S E M)、X 射线衍射分析(X R D )以及热重分析(T G A )对复合粒子进行了表征,并测定了它们的电化学性能。研究结果表明:采用该方法制备的四氧化三铁粒子纯度高、大小均匀,粒径在40~100n m ;C N T s /F e 3O 4中的四氧化三铁粒子粒径较A C /F e 3O 4中的更小;经过超声波作用后C N T s /F e 3O 4的稳定性较好,而A C /F e 3O 4的稳定性很差;两种复合材料均能改善镧镁镍合金的放电比容量和稳定性。 关键词:碳纳米管;活性炭;四氧化三铁;纳米复合材料 中图分类号:T Q 138.11 文献标识码:A 文章编号:1006-4990(2009)04-0024-04 S t u d y o n p r e p a r a t i o n o f n a n o -s i z e dc a r b o n /f e r r o f e r r i c o x i d e c o m p o s i t e m a t e r i a l M a C h u a n g u o ,L u W e i ,Z h e n g H a i j u n ,W a n g Y a z h e n ,L u o Y a n (D e p a r t m e n t o f I n f o r m a t i o n a l M a t e r i a l S c i e n c e a n dE n g i n e e r i n g ,G u i l i nU n i v e r s i t y o f E l e c t r o n i c T e c h n o l o g y ,G u i l i n 541004,C h i n a ) A b s t r a c t :T w o k i n d s o f f e r r o f e r r i co x i d e (F e 3O 4)n a n o c o m p o s i t e s n a m e l yt h e a c t i v ec a r b o n /f e r r o f e r r i co x i d e(A C /F e 3O 4)a n d c a r b o n n a n o t u b e s /f e r r o f e r r i c o x i d e (C N T s /F e 3O 4)w e r e p r e p a r e d b y h o m o g e n o u s p r e c i p i t a t i o nm e t h o di n o r d e r t o i m p r o v e c a t a l y t i ca c t i v i t ya n ds t a b i l i t y o f F e 3O 4n a n o -p a r t i c l e s .C o m p o s i t e p a r t i c l e s w e r ec h a r a c t e r i z e d b yt h em e a n s o f s c a n n i n g e l e c t r o n i c m i c r o s c o p e (S E M ),X-r a y d i f f r a c t i o n(X R D ),a n dt h e r m o g r a v i m e t i c a n a l y s i s (T G A )a n d t h e i r e l e c -t r o c h e m i c a l p r o p e r t i e s w e r e i n v e s t i g a t e d .R e s u l t s s h o w e d t h a t t h e o b t a i n e d F e 3O 4p a r t i c l e s h a d h i g h p u r i t y a n d w e r e w e l l d i s -t r i b u t e di nt h e p a r t i c l e s i z e r a n g e o f 40~100n m .A f t e r u l t r a s o n i ct r e a t m e n t ,C N T s /F e 3O 4c o m p o s i t ew a s m o r e s t a b l e t h a n A C /F e 3O 4c o m p o s i t e .F e 3O 4p a r t i c l e s i nC N T s /F e 3O 4c o m p o s i t e w e r e s m a l l e r t h a nt h a t i nA C /F e 3O 4c o m p o s i t e .B o t hc o m -p o s i t e s h a di m p r o v e d d i s c h a r g e c a p a c i t y a n ds t a b i l i t y o f L a M g N i 4a l l o y . K e yw o r d s :c a r b o nn a n o t u b e s ;a c t i v e c a r b o n ;f e r r o f e r r i c o x i d e ;n a n o -c o m p o s i t e m a t e r i a l 纳米四氧化三铁具有优异的磁性,在磁记录、传感器、吸波、靶向定位、催化剂、电化学等许多领域都有潜在的广泛应用[1] 。在实际中,把纳米材料应用 到靶向定位、催化剂、电化学这些领域时,通常都需要将这些纳米材料负载在特定的载体材料上,如二氧化硅、硅藻土、氧化铝、活性炭(A C )、碳纳米管(C N T s )等载体,其目的是提高纳米材料的活性、效率以及稳定性等。A C 和C N T s 都具有较大的比表面积,是人们常选择的载体对象,尤其是后者。C N T s 是具有特殊电、磁、光性能的最具代表性的纳米材料,具有特殊的管状结构,比表面积更大。近几年,将C N T s 与其他纳米粒子复合制备新型功能性复合材料的研究一直是C N T s 研究领域的一个热点 且受到越来越多的关注 [2-6] 。目前,对于纳米四氧 化三铁粒子的制备与应用已有较多研究[7-13] ,但对 制备负载型的纳米四氧化三铁材料的相关研究却很 少[3]。纳米四氧化三铁的制备方法[1,14]主要有沉淀法、微乳液法、水热法及高温热分解法等,其中沉淀法主要包括共沉淀法、氧化沉淀法、还原沉淀法 等。另外,T h a p a D e e p a 等[7] 提出一种新的沉淀方法,即在80~90℃下,先将F e C l 2·4H 2O 和N H 4O H 充分反应,得到前驱体沉淀,将沉淀在室温下空气中放置一段时间,即可得到F e 3O 4。这种方法工艺简单,得到的粒子粒径较小、均匀,但由于制备前驱体的方法为直接沉淀法,使其最后得到的F e 3O 4中含有少量的F e 2O 3杂质。 为克服这一缺点,笔者探索*基金项目:广西科学基金项目(桂科青0728088);广西区教育厅科技项目(Z T 6300)。 24 无机盐工业I N O R G A N I CC H E M I C A L S I N D U S T R Y 第41卷第4期 2009年4月

磁性材料的研究现状与应用

磁性材料的研究现状与应用 磁性材料是功能材料的重要分支,利用磁性材料制成的磁性元器件具有转换、传递、处理信息、存储能量、节约能源等功能,广泛地应用于能源、电信、自动控制、通讯、家用电器、生物、医疗卫生、轻工、选矿、物理探矿、军工等领域,尤其在信息技术领域已成为不可缺少的组成部分。 磁性材料大体上分为两类:其一为铁磁有序的金属磁性材料;其二绝大多数为亚铁磁有序、具有半导体导电性质的非金属磁性材料。磁性材料的发展过程大致可分为三个阶段:50年代以前主要研究金属磁性材料;50到80年代为铁氧体的黄金时代,除电力工业外,各领域中铁氧体占绝对优势;90年代以来,纳米磁性材料崛起。磁性材料由3d过渡族金属与合金的研究扩展到3d-(4f,4d,5d,5f)合金与化合物的研究与应用。同时,磁性功能材料也得到了显著的进展。 一、磁性的描述 磁及磁现象的根源是电流,或者说磁及磁现象的微观机制是电荷的运动形成原子磁矩造成的,而且,所有的物质都是磁性体,只是由于构成物质的原子结构不同,而显示出的磁学性能不同。有铁磁性、亚铁磁性、反铁磁性、顺磁性、抗磁性以及无磁性等。描述材料的磁性的物理量有磁化强度M、磁化率χ、磁感应强度B、磁导率μ。 根据物质磁化率的符号和大小,可以把物质的磁性大致分为五类:抗磁体、顺磁体、铁磁体、亚铁磁体和反铁磁体。影响材料性质的有磁化强度随温度的变化。即在不同温度下,磁化强度不同的性质。铁磁材料的自发磁化在居里温度Tc处发生相变,Tc以下为铁磁性,而Tc以上铁磁性消失。同样亚铁磁性材料也具有类似的特性。另外一个必须注意的因素便是磁各向异性,即磁学特性随材料的晶体学方向不同而不同的性质,典型特征便是在不同方向施加磁场会测得不同的磁滞回线。 磁性材料的基本特征可以分为两大类: (1)完全由物质本身(成分组分比)决定的特性。主要有饱和磁化强度Ms和磁感应强度Bs; (2)由物质决定,但随其晶体组织结构变化的特性。主要有磁导率、矫顽力Hc和矩形比Br/Bs,以及磁各向异性。 由此,利用和开发磁性材料就需要有分析技术和加工工艺两个方面的进展。从历史上而言,按材料加工技术进展区分,大体可有以下几个阶段: (1)熔炼铸造技术,获得铁及其合金等软磁和永磁材料。 (2)粉末冶金,开发绝缘性磁性材料、陶瓷材料和稀土永磁材料。 (3)真空镀膜,开发了镀膜磁性材料及非晶磁性材料,制成磁纪录介质及微磁学器件。 (4)单原子层控制技术,制备了定向晶体学取向型、巨磁电阻多层膜、人工超晶格等有特殊用途的磁性材料。 而磁性材料的开发和利用,也就是采取以上这几种技术工艺方法来加强所需要的性能,抑制不利于所需性能的因素。 二、软磁材料和永磁材料 软磁材料,也是高磁导率材料,是应用中占比例最大的传统磁性材料,多用于磁芯。是指由较低的外部磁场强度就可获得很大的磁化强度及高密度磁通量的材料,对这种材料的基本要求是: (1)初始磁导率μi和最大磁导率μm要高,以提高功能效率; (2)剩余磁通密度Br要低,饱和磁感应强度Ms要高,以节省资源并迅速响应外磁场; (3)矫顽力Hc要小,以提高高频性能; (4)铁损要低以提高功能效率;

磁性材料论文

磁性材料论文 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

摘要磁性材料最开始在中国被发现并应用于中国四大发明中的指南针上,随后历经多年的发展,磁性材料已经广泛的应用在我们的生活之中,也与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。本文综述了对磁性材料的认识,磁性材料的分类与相关概况,磁性材料的基本特性,磁性材料的机理与生产工艺,实际应用以及发展前景等。 Abtract:Magnetic materials in the beginning in China was found and applied in the four great inventions of the compass, and after many years of development, magnetic materials have been widely used in our life, and with the information, automation, mechanical and electrical integration, national defense, national economy is closely related to all aspects of. This paper summarizes the magnetic material understanding, magnetic materials classification and related survey, the basic characteristic of the magnetic material, the mechanism of magnetic materials and production process, application and development prospect, etc. Key words:Magnetic materials Applications of Magnetic materials Development of Magnetic materials 磁性材料 关键词磁性材料磁性材料的应用磁性材料的发展前景 1 磁性材料的认识 中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。 近代,电力工业的发展促进了金属磁性材料——硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。20世纪40年代,荷兰.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材

关于磁性材料的发展研究综述

关于磁性材料的发展研究综述 关键词:磁性材料、钕铁硼永磁材料、纳米磁性材料、磁电共存、应用及前景 摘要:磁性材料,是古老而用途十分广泛的功能材料,与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。人们对钕铁硼永磁材料的研究和优化,是磁性材料进一步发展,并逐渐深入到纳米磁性材料的研发和研究…… 关于磁性材料的研究发展综述 一、磁性材料简介 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁性物质。根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性。实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因。我们把顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质称为强磁性物质。通常所说的磁性材料是指强磁性物质。磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。 二、磁性材料分类 磁性是物质的一种基本属性。实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同。物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质。磁性材料按性质分为金

属和非金属两类,前者主要有电工钢、镍基合金和稀土合金等,后者主要是铁氧体材料。按使用又分为软磁材料、硬磁材料和功能磁性材料。功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料,旋磁材料以及磁性薄膜材料等,反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。 1、软磁材料软磁材料亦称高磁导率材料、磁芯材料,对磁场反应敏感,易于 磁化。大体上可分为四类:①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。 ②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、 B、P和其他掺杂元素,又称磁性玻璃。。磁介质(铁粉芯):FeNi(Mo)、FeSiAl、 羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。④铁氧体:包括尖晶石型──M O·Fe2O3 (M代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。 2、硬磁材料硬磁材料,又称永磁材料,不易被磁化,一旦磁化,则磁性不易消 失。目前使用的永磁材料答题分为四类:①阿尔尼科磁铁:其构成元素Al、Ni、Co(其余为Fe),是强磁性相α1在非磁性相α2中以微晶析出而呈现高矫顽力的材料,对其进行适当处理,可增大磁积能。②铁氧体永磁材料:以Fe2O3为主要成分的复合氧化物,并加入钡的碳酸盐。③稀土类钴系磁铁:含有稀土金属的钴系合金,具有非常强的单轴磁性各向异性。④钕铁硼系稀土永磁合金:该合金采用粉末冶金方法制造,是由④Nd2Fe14B、 Nd2Fe7B6和富Nd相(Nd-Fe,Nd-Fe-O)三相构成,其磁积能是目前永磁材料中的最高纪录。 三、磁性材料的应用 由于磁体具有磁性,所以在功能材料中备受重视。磁体能够进行电能转换(变压器)、机械能转换(磁铁、磁致伸缩振子)和信息储存(磁带)等。 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁

分子磁性材料及其研究进展

第27卷第4期2012年8月 大学化学 UNIVERSITY CHEMISTRY Vol.27No.4 Aug.2012  分子磁性材料及其研究进展* 袁梅 王新益 张闻 高松** (北京大学化学与分子工程学院 北京100871) 摘要 对分子磁性材料的一些基本概念和磁学现象作了简单介绍,主要包括磁耦合二磁有序二磁弛豫和自旋交叉等几个方面三重点综述了单分子磁体二单链磁体二自旋交叉化合物二多功能复合磁体以及磁性分子组装领域的研究进展三 关键词 分子磁性 单分子磁体 单链磁体 自旋交叉 多功能复合磁体 分子磁性材料是一类通过化学方法将自由基或顺磁离子(包括过渡金属离子和稀土金属离子)及抗磁配体以自发组装和控制组装的方式组合而形成的磁性化合物三由于较传统磁体有着密度小二透明度高二溶解性好二易于加工二可控性好等优点,并有望在航天材料二微波材料二信息记录材料二光磁及电磁材料等领域得到应用,所以近年来对分子磁性的研究已经成为化学二物理学以及材料科学等多个领域研究的热点之一[1]三 分子磁性是指由材料中具有未成对电子的顺磁中心在配位化学环境中通过孤立或者协同作用表现出来的行为三通过研究孤立顺磁离子在配体场中的自旋状态,人们可以实现高低自旋态之间的转变,并通过温度二压力二光照等外场实现可控调节[2];通过研究自旋之间的协同行为,人们可以对磁耦合作用二磁有序温度等进行调节,从而得到各种具有不同体相磁性质的材料三除了常见的抗磁二顺磁二铁磁二亚铁磁和反铁磁性外,在分子磁性材料中还发现了很多新颖和复杂的磁现象,如单分子磁体二单链磁体二自旋交叉等磁性双稳态,spin?flop转变,变磁性和弱铁磁性等三化学家希望在分子化合物中实现和观察到这些新的磁现象,给物理学家提供新的研究模型,进而探讨它们的物理机制三本文将对这些分子磁性材料的基本概念和各种磁现象作简单介绍,并对目前的若干研究热点如单分子磁体二单链磁体以及自旋交叉配合物等作重点介绍[3?5]三 1 磁耦合[6?10] 要得到具有协同磁作用的磁性材料,体系中就必须存在磁耦合三在量子理论中,耦合也称为交换(exchange),最重要的几种交换作用包括直接交换二间接交换二各向异性交换以及偶极?偶极交换等三1.1 直接交换 直接交换(direct exchange)作用起源于相邻原子轨道的重叠,仅涉及相邻原子局域的电子自旋,即原子间没有其他原子来隔开传递交换的通路三这种作用主要存在于金属和合金中,而在金属配合物中则可以被忽略三 * **基金资助:国家自然科学基金项目;科技部项目通讯联系人,E?mail:gaosong@https://www.doczj.com/doc/a712245036.html,

磁铁的原理知识

精心整理 磁铁原理知识等等 磁铁是指可以产生磁场的物体或材质,通常用金属合金制成,具有强磁性。传统上可分作“永久性磁铁”与“非永久性磁铁”。 永久性磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕磁铁)。 非永久性磁铁,有时会失去磁性。 古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。 经过千百年的发展,今天磁铁已成为我们生活中的强力材料。通过合成不同材料的合金可以达和钐钴(SmCo)] 没有取 南极。 摄氏度 软磁包括硅钢片和软磁铁芯;硬磁包括铝镍钴、钐钴、铁氧体和钕铁硼,这其中,最贵的是钐钴磁钢,最便宜的是铁氧体磁钢,性能最高的是钕铁硼磁钢,但是性能最稳定,温度系数最好的是铝镍钴磁钢,用户可以根据不同的需求选择不同的硬磁产品。 怎样来定义磁铁的性能? 主要有如下3个性能参数来确定磁铁的性能: 剩磁Br:永磁体经磁化至技术饱和,并去掉外磁场后,所保留的Br 称为剩余磁感应强度。 矫顽力Hc:使磁化至技术饱和的永磁体的B 降低到零,所需要加的反向磁场强度称为磁感矫顽力,简 称为矫顽力 磁能积BH:代表了磁铁在气隙空间(磁铁两磁极空间)所建立的磁能量密度,即气隙单位体积

的静磁能量。由于这项能量等于磁铁的Bm和Hm的乘积,因此称为磁能积。 磁场:对磁极产生磁作用的空间为磁场 表面磁场:永磁体表面某一指定位置的磁感应强度 如何选择磁铁? 在决定选择哪一种磁铁之前应明确需要磁铁发挥何种作用? 主要的作用:移动物体,固定物体或抬升物体。 所需磁铁的形状:圆片形,圆环形,方块形,瓦片形或特殊形状。 所需磁铁的尺寸:长,宽,高,直径及公差等等。 所需磁铁的吸力,期望价格及数量等等。 指南针就是根据磁铁的性质发明的 1指南北 2 3 4. 5 (主 “山 。 在讲述磁性材料的磁性来源、电磁感应、磁性“器件”时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。 例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都已经在讲述其它内容时说到了。 「生物界和医学界的磁应用」: 信鸽爱好者都知道,如果把鸽子放飞到数百公里以外,它们还会自动归巢。鸽子为什么有这么好的认家本领呢?原来,鸽子对地球的磁场很敏感,它们可以利用地球磁场的变化找到自己的家。如果在鸽子的头部绑上一块磁铁,鸽子就会迷航。如果鸽子飞过无线电发射塔,强大的电磁波干扰也会使它们迷失方向。 在医学上,利用核磁共振可以诊断人体异常组织,判断疾病,这就是我们比较熟悉的核磁共振

相关主题
文本预览
相关文档 最新文档