牛顿插值法原理及应用
- 格式:doc
- 大小:391.50 KB
- 文档页数:18
插值计算的原理及应用1. 概述插值计算是一种通过已知数据点推测出未知数据点的数值的方法。
这种计算方法被广泛应用于各个领域,如数值分析、数据处理、图像处理等。
2. 原理插值计算的原理是基于一个假设:已知数据点之间存在某种规律或趋势,可以通过这种规律或趋势推测出未知数据点的数值。
插值计算的基本思想是在给定的数据点之间构建一个适当的插值函数,根据这个函数来推测出未知数据点的数值。
3. 插值方法插值计算有多种方法,下面列举了一些常用的插值方法:•线性插值:线性插值是最简单的插值方法之一。
它假设数据点之间的关系是线性的,通过这些已知点之间的直线来推测未知点的数值。
•拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。
它通过在已知数据点上构建一个多项式来推测未知数据点的数值。
•牛顿插值:牛顿插值也是一种基于多项式的插值方法。
它通过使用插值多项式的差商表来推测未知数据点的数值。
•样条插值:样条插值是一种通过在已知数据点之间构建多项式部分来推测未知数据点的数值的方法。
这些多项式部分称为样条函数。
4. 插值应用插值计算在各个领域都有广泛的应用,下面列举了一些常见的插值应用:•数值分析:在数值计算中,插值计算可以在给定数据点之间进行数值逼近,从而得到更加精确的结果。
•数据处理:在数据处理中,插值计算可以填补数据缺失的部分,从而得到完整的数据集。
•图像处理:在图像处理中,插值计算可以用于图像的放大、缩小、旋转等操作,从而得到更高质量的图像。
•地理信息系统:在地理信息系统中,插值计算可以根据已知地理数据点推测未知地理数据点的数值,从而进行地理信息的分析和预测。
5. 总结插值计算是一种通过已知数据点推测出未知数据点的数值的方法。
它基于已知数据点之间存在某种规律或趋势的假设,并通过构建适当的插值函数来推测未知数据点的数值。
插值计算有多种方法,如线性插值、拉格朗日插值、牛顿插值和样条插值等。
插值计算在各个领域都有广泛的应用,如数值分析、数据处理、图像处理和地理信息系统等。
南昌工程学院课程设计姓名:邓力群班级:08信息与计算科学学号:83课题名称:牛顿法—插值法指导老师:龚建华2011年6月4日牛顿法——牛顿插值法摘要:插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn (x)关键字:牛顿插值法函数牛顿插值法具体算法步骤1:输入节点(x j,y j),精度ξ,计值点xx,f0→p,1→T,1→i;步骤2:对k=1,2,……,i依次计算k阶均差f[x i-k,x i-k+1,…,x i] = (f[x i-k+1,…,x i]- f[x i-k,…,x i])/( x i -x i-k )步骤3:(1)、若| f[x1,…,x i]- f[x0,…,x i-1]|< ξ,则p为最终结果N i-1(x),余项R i-1= f[x0,…,x i](xx-x i-1)T。
(2)、否则(xx-x i-1)*T→T,p+ f[x0,…,x i]*T→p,转步骤4。
步骤4:若i<n,则i+1→i,转步骤2;否则终止。
程序清单2004-10-23x1)(1)(21)()()(21''1'1x x x f x fx x f x q -+-+=x 2'=q )()('''1x f x f x x kk k k -=+⋅⋅⋅ε<-+x x k k 1ε<)('x f kε)(''≠x fxx22+22)(+='x x f 22221++-=+x x x k kkk kx x ⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫<+>-0,40,4)(334343x x x f x x x x )(1)(21)()()(21''1'1x x x f x fx x f x q -+-+=x 20'=q x2)()('''1x f x f x x kk k k -=+⋅⋅⋅ε<-+x x k k 1ε<)('x f kε<-+x xk k 1)()('''1x f x f x x kkk k -=+ 4.000000 f2.800000f2.012500 f1.507817 f1.204385 f1.051791 f1.004643 f0.600000 f-0.600000 f-0.827608 f-1.158643 f-1.598022 f-2.122156 f-2.699757 f-3.308431 f-3.935325 f-4.573380 f-5.218623 f-5.868713 f-6.522204 f-7.178162 f-7.835963 f-8.495174 f-9.155487 f-9.816676 f-10.478573 f-11.141050 f-11.804007 f-12.467368 f-13.131069 f-13.795062 f ••• 参考文献[1]龙熙华.数值分析[M].西安:陕西科学技术出版社,.[2]《数值分析简明教程》-2 Editon -高等教育出版社 -page 136 -算法流程图 [3] 谭浩强 C 程序设计[M] 清华大学出版社 1999年12月第2版 [4] 《数值计算方法》,冯天祥编著.四川科技出版社.2003[5] 百度百科 牛顿迭代法 《数值计算方法》 杨一都编著. 高等教育出版社。
⽜顿插值法及其C++实现⽜顿插值法⼀、背景引⼊相信朋友们,开了拉格朗⽇插值法后会被数学家的思维所折服,但是我想说有了拉格朗⽇插值法还不够,因为我们每次增加⼀个点都得重算所有插值基底函数,这样会增加计算量,下⾯我们引⼊⽜顿插值法,这种插值法,添加⼀个插值结点我们只要做很⼩的变动便可以得到新的插值多项式。
⼆、理论推导-均差的定义:(⼀阶均差)⼆阶均差为⼀阶均差再求均差。
(显然是递推的)⼀般地,函数f 的k阶均差定义为:由均差的性质可以推导出:k+1阶均差:(具体性质看:《数值分析:第5版》 page:30)由均差的递推性,我们可以⽤以下表来求:求表的公式:table[i][j] = (table[i - 1][j] - table[i - 1][j - 1]) / (x[j] - x[j - i]);其中P(x) 为插值多项式,⽽R(x) 为插值余项。
所以p(x):(由于图⽚问题此处P(x) 同N(x))三、代码实现由以上推导可知,求⽜顿插值多项式⼦主要就是求均差。
均差可由上表递推求得:求表的公式:table[i][j] = (table[i - 1][j] - table[i - 1][j - 1]) / (x[j] - x[j - i]);#include <iostream>using namespace std;#include <vector>inline double newton_solution(double x[], double y[], int n, double num, int newton_time) {vector<vector<double> > table(n + 1);for (int i = 0; i <= n; i++) {table[i].resize(n + 1);}for (int i = 0; i <= n; i++) table[0][i] = y[i];for (int i = 1; i <= n; i++) {for (int j = i; j <= n; j++) {table[i][j] = (table[i - 1][j] - table[i - 1][j - 1]) / (x[j] - x[j - i]); }}double res = 0.0;for (int i = 0; i <= newton_time; i++) {double temp = table[i][i];for (int j = 0; j < i; j++) {temp *= num - x[j];}res += temp;}return res;}int main(int argc, char const *argv[]){int n = 0;cout << "插值节点个数-1:";cin >> n;double x[n + 1], y[n + 1];cout << "\n请输⼊x[i]:";for (int i = 0; i <= n; i++) {cin >> x[i];}cout << "\n请输⼊y[i]:";for (int i = 0; i <= n; i++) {cin >> y[i];}double num = 0;cout << "\n请输⼊要求的点的x:";cin >> num;cout << "\n请输⼊所求的插值多项式次数:";double newton_time = 0;cin >> newton_time;cout << newton_solution(x, y, n, num, newton_time) << endl; return0;。
插值法数学计算方法插值法是一种数学计算方法,用于在已知数据点的基础上,通过构建一条插值曲线来估计未知数据点的值。
插值法可以应用于各种数学问题中,例如逼近函数、插值多项式、差值等。
本文将详细介绍插值法的原理和常见的插值方法。
一、插值法的原理插值法的基本思想是通过已知数据点的函数值来构建一个函数表达式,该函数可以通过插值曲线来估计任意点的函数值。
根据已知数据点的数量和分布,插值法可以采用不同的插值方法来构建插值函数。
插值法的原理可以用以下几个步骤来描述:1.收集已知数据点:首先,需要收集一组已知的数据点。
这些数据点可以是实际测量得到的,也可以是其他方式获得的。
2.选择插值方法:根据问题的特性和数据点的分布,选择适合的插值方法。
常见的插值方法包括拉格朗日插值法、牛顿插值法、埃尔米特插值法等。
3.构建插值函数:通过已知数据点,利用选择的插值方法构建插值函数。
这个函数可以拟合已知数据点,并通过插值曲线来估计未知数据点。
4.估计未知数据点:利用构建的插值函数,可以估计任意点的函数值。
通过插值曲线,可以对未知数据点进行预测,获得相应的数值结果。
二、常见的插值方法1.拉格朗日插值法:拉格朗日插值法基于拉格朗日多项式,通过构建一个具有多项式形式的插值函数来逼近已知数据点。
插值函数可以通过拉格朗日基函数计算得到,式子如下:P(x) = ∑[f(xi) * l(x)], i=0 to n其中,P(x)表示插值函数,f(xi)表示已知数据点的函数值,l(x)表示拉格朗日基函数。
2.牛顿插值法:牛顿插值法基于牛顿差商公式,通过构建一个递归的差商表来逼近已知数据点。
插值函数可以通过牛顿插值多项式计算得到,式子如下:P(x) = f(x0) + ∑[(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1)] , i=1 to n其中,P(x)表示插值函数,f[x0, x1, ..., xi]表示xi对应的差商。
常见的插值方法及其原理1. 拉格朗日插值法(Lagrange Interpolation)拉格朗日插值法是一种基于多项式的插值方法,通过n+1个已知点的函数值来构造一个n次多项式。
具体的计算公式如下:L(x) = Σ[yk * lk(x)], k=0 to n其中yk为已知点(xi, yi)的函数值,lk(x)为拉格朗日基函数,定义为:lk(x) = Π[(x - xj)/(xi - xj)], j=0 to n, j≠k拉格朗日插值法的原理是通过构造一个通过已知点的n次多项式,来代替未知函数的近似值。
利用拉格朗日基函数的性质,可以保证插值多项式通过已知点。
2. 牛顿插值法(Newton Interpolation)牛顿插值法是一种递推的插值方法,通过已知点的函数值和差商来逐步构造插值多项式。
差商的定义如下:f[x0]=y0f[x1]=(f[x1]-f[x0])/(x1-x0)f[x2]=(f[x2]-f[x1])/(x2-x1)...f[xn] = (f[xn] - f[xn-1]) / (xn - xn-1)利用差商的定义,可以得到牛顿插值多项式的表达式:N(x) = f[x0] + f[x0, x1](x-x0) + f[x0, x1, x2](x-x0)(x-x1) + ... + f[x0, x1, ..., xn](x-x0)(x-x1)...(x-xn)牛顿插值法的原理是通过递推计算差商来得到插值多项式。
通过使用差商来处理已知点的函数值差异,可以得到更高次的插值多项式。
3. 样条插值法(Spline Interpolation)样条插值法是一种基于分段低次插值函数的插值方法,常用的是三次样条插值。
样条插值法通过寻找一组分段函数,使得满足原函数的插值条件,并要求函数在每个插值点处的函数值、一阶导数和二阶导数连续。
这样可以保证插值函数在每个插值点处的平滑性。
三次样条插值法的原理是将整个插值区间划分为多个小区间,在每个小区间内使用三次多项式进行插值。
牛顿差值法牛顿差值法(Newton’s Difference Method)是一种在数值分析中广泛应用的二次多项式拟合方法和根求解方法。
该方法引入了多项式中的牛顿多项式(Newton Polynomial)。
牛顿多项式将一组数据的多项式拟合能力极大地提升,从而使得求解方程的精度和速度都更加有效。
牛顿差值法又称为牛顿插值法,最早可以追溯到17世纪法国数学家叶塞立雅(Isaac Newton)提出的,叶塞立雅是一位非常伟大的数学家,他发明了多种重要的数学方法,而牛顿差值法是他的最重要的发现之一。
牛顿的思想是从一组已知的点的函数值拟合出一个多项式,其中的每个点都被精确的表示。
牛顿差值法是一种称为牛顿形式的特殊牛顿多项式的拟合方法,这种多项式简单并产生了一系列的非线性多项式公式,它将一组数据的拟合能力极大地提升,从而求解方程的精度和速度都更加有效。
牛顿差值法通常是基于插值函数的形式。
基于此函数形式,其计算(或估计)插值点的值时,都是使用已知的点的函数值的线性组合。
如一次多项式的形式为p_0+p_1x+p_2x^2,则给定点(x_0,f(x_0))...(x_n,f(x_n)),组合函数值f(x)即为f(x)= a_0 f (x_0)+a_1 f (x_1)...+a_n f (x_n).牛顿差值法中,系数a_0,a_1...a_n是拟合多项式系数,可以通过求解方程组来求解。
需要注意的是,牛顿差值法更能反映函数在点之间变化,它同样可用于插补曲线,主要用于拟合数据点,求解方程,以及求解极值点,等等。
由于牛顿多项式的拟合能力较强,牛顿差值法的估计和求解过程都比较精确,在实际应用中拥有良好的精度与准确性。
它常常被用于求解和拟合数据,尤其是函数的拟合,是一种经常应用的方法之一。
matlab 拉格朗日插值法和牛顿插值法题目:MATLAB中的拉格朗日插值法和牛顿插值法引言在实际问题中,我们常常需要通过一系列已知数据点来估计未知数据点的值。
这种问题很常见,例如用温度测量数据来预测未来某一天的温度。
为了解决这种插值问题,拉格朗日插值法和牛顿插值法是常用的方法之一。
在本文中,我们将介绍这两种插值方法并详细解释如何在MATLAB中使用它们。
一、拉格朗日插值法拉格朗日插值法是基于拉格朗日多项式的一种插值方法。
该方法使用已知数据点的值和位置来构造一个多项式,进而估计未知数据点的值。
其基本思想是通过多项式与每个数据点相等,并利用拉格朗日插值公式来得到插值多项式。
1. 拉格朗日插值公式拉格朗日插值公式可以表示为:P(x) = Σ(yi * li(x))其中P(x)是插值多项式,yi是第i个数据点的值,li(x)是拉格朗日基函数。
拉格朗日基函数li(x)定义为:li(x) = Π((x-xj)/(xi-xj)) (j ≠i)2. MATLAB实现要在MATLAB中实现拉格朗日插值法,我们可以按照以下步骤进行:(1)首先定义数据点的横坐标x和纵坐标y;(2)使用for循环遍历每个数据点,并计算插值多项式的每一项;(3)将每个数据点的插值多项式项相加,得到最终的插值多项式;(4)通过给定的x值,计算插值多项式的值。
该过程可以通过以下MATLAB代码实现:matlab定义已知数据点的横坐标和纵坐标x = [1, 2, 3, 4];y = [2, 4, 1, 6];计算插值多项式的每一项n = length(x); 数据点数量P = 0; 初始化插值多项式for i = 1:n计算每一项的拉格朗日基函数li = ones(size(x));for j = 1:nif j ~= ili = li .* (xs - x(j)) / (x(i) - x(j));endend计算每一项的插值多项式项Pi = yi * li;将每一项相加得到最终的插值多项式P = P + Pi;end给定x值,计算插值多项式的值x_val = 2.5;y_val = polyval(P, x_val);二、牛顿插值法牛顿插值法是一种使用差商的插值方法。
牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。
为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)。
插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn 上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。
若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。
定理:n次代数插值问题的解存在且唯一。
牛顿插值法C程序程序框图#include<>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = ;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)... (x-xn-1)+Rn(x)关键词:牛顿插值法流程图程序实现一、插值法的由来在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。
有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。
解决这类问题的方法有两种:一种是插值法,另一种是拟合法。
插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机软件中,许多库函数,如等的计算实际上归结于它的逼近函数的计算。
逼近函数一般为只含有算术运算的简单函数,如多项式、有理分式(即多项式的商)。
在工程实际问题当中,我们也经常会碰到诸如此类的函数值计算问题。
被计算的函数有时不容易直接计算,如表达式过于复杂或者只能通过某种手段获取该函数在某些点处的函数值信息或者导数值信息等。
因此,我们希望能用一个“简单函数”逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。
这种方法就叫插值逼近或者插值法。
逐次线性插值法优点是能够最有效地计算任何给定点的函数值,而不需要写出各步用到的插值多项式的表达式。
但如果解决某个问题时需要插值多项式的表达式,那么,它的这个优点就成了它的缺点了。
能不能根据插值条件构造一个插值多项式,它既有具体的表达式,又很容易用它计算任何点的函数值呢牛顿插值法能作到这一点。
二、牛顿插值法的概念牛顿插值多项式的表达式设)())(())(()(11121xx x x x x c x x x x c x x c c N n nn--⋅⋅⋅--⋅⋅⋅+--+-+=问题是如何根据插值条件()y x N iin=,i=0,1,2⋅⋅⋅n来计算待定系数c c c c n ⋅⋅⋅210,,由)()(00x yx N f n==知, )(000x yc f ==。
由 )()(111x y x N f n== 知y x x c c 111)(=-+因而[]x x x x x x xx y y c ff f 11010111,)()(◊--=--=,其中 []x x f 10, 称为函数f(x)在x x 10,点的一阶商。
由)()(222x yx N f n==知因而()()()],,[)(],[],[)(],[))(()](,[)](,[))(()](,[))(()](,[212121211212122211112122211121222122x x x x x x x x x x x x x x x y y x x x x x x x x x x x x y y x x x x x x x x y y y y x x x x x x x x y y c f f f f f f f f ◊--=----=-----+-=-----+-=-----=其中],,[210x x x f 称为函数f (x)在x x x 210,,点的二阶差商。
实际上,它是一阶差商的差商。
一般地,如果已知一阶差商],[],,[11x x x x i i i i f f +-, 那么就可以计算二阶差商 x xx x x x x x x i i i i i i i i i f f f 111111_],[],[],,[-+-++--=类似于上述过程不断地推导下去,可得],,,[)(],,[],[],,,,,[)(],,,[],,,[],,,,[)(],,[],,[2100121021443210043210432143210032103213x x x x x x x x x x x x x c x x x x x x x x x x x x x x x cx x x x x x x x x x x x c n n n n f f f f f f f f f ⋅⋅⋅◊-⋅⋅⋅-⋅⋅⋅=⋅⋅⋅⋅◊--=◊--=-其中,],,,,[3210x x x x f ],,,,,[43210x x x x x f ],,,,,,[543210x x x x x x f 分别称为函数f (x)在相应点处的三阶差商,四阶差商和n 阶差商。
实际上,cc c c n⋅⋅⋅21,, 的计算可通过以下简易地构造函数的差商来完成。
按上述方式构造插值多项式的方法叫做牛顿插值法。
根据插值多项式的惟一性知,其截断误差与拉格朗日插值法相同, 即:)()()!1(1π1)1(x n n n n fR +++=ξ)(],[)()(11101x x x x N Nn n n n f x x ∏⋅⋅⋅+=+++从而 )(],[)()()(111101111x x x x x N x N x n n n n n n n n f f +++++++∏⋅⋅⋅+==于是)(x N n 的截断误差可表为)(],,,[)(111x f x n n nx x x x R ∏++⋅⋅⋅=顺便指出,因为牛顿插值多项式具有性质:)())(](,[)()(121101x x x x x x x x x N Nn n n nf x x ---⋅⋅⋅--⋅⋅⋅+=所以,类似于逐次线性插值法,也可以把上述和式中的第二项)())(](,[12110x x x x x x x x x n n f --⋅⋅⋅--⋅⋅⋅看成是估计)(1x Nn - 的一种实用误差估计式。
与差商概念密切联系的另一个概念是差分,它是指在等距节点上函数值的差。
所谓等距节点,是指对给定的常数h (称为步长),节点)2,1,0(,0n i ih x x i⋅⋅⋅=+=称f x xki i f f ∆∇-+)()(1为x i处的一阶向前差分;称 fx x ii i f f ∆◊--)()(1为x i处的一阶向后差分;称 fx x ih i h i f f δ◊-+1()(22为x i处的中心差分。
一阶差分的差分称为二阶差分,即 ff fiii ∆◊∆-∆+21称为x i处的二阶向前差分。