当前位置:文档之家› Material Studio建模

Material Studio建模

Material Studio建模
Material Studio建模

铁基块体非晶合金-纳米晶转变的动力学模拟过程

Discover模块

1 原子力场的分配

在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。

在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。

图 3-1

1)计算并显示原子类型:点击Edit→Atom Selection,如图所示

弹出对话框,如图所示

从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit→Edit Sets,如图所示

弹出对话框见图,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:

在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡。

图3-2Discover Setup对话框Typing选项卡

在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

2力场的选择

1)Energy

力场的选择:

力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的

原子是如何相互作用的。对系统中的每个原子,力场类型都被指定了,它描述了原子的局部环境。力场包括描述属性的不同的信息,如平衡键长度和力场类型对之间的电子相互作用。常见力场有COMPASS、CVFF和PCFF。

Select下拉菜单中有三个选项:

①COMPASS 力场:COMPASS 力场是第一个把以往分别处理的有机分子体系的力场与无

机分子体系的力场统一的分子力场。COMPASS 力场能够模拟小分子与高分子,一些金属

离子、金属氧化物与金属。在处理有机与无机体系时,采用分类别处理的方式,不同的体系采用不同的模型,即使对于两类体系的混合,仍然能够采用合理的模型描述。

②CVFF力场:CVFF 力场全名为一致性价力场(consistant valence force field),最初以生化分

子为主,适应于计算氨基酸、水及含各种官能团的分子体系。其后,经过不断的强化,CVFF 力场可适用于计算多肽、蛋白质与大量的有机分子。此力场以计算系统的结构与结合能最为准确,亦可提供合理的构型能与振动频率。

③PCFF力场:PCFF为一致性力场,增加一些金属元素的力参数,可以模拟含有相应原子的分子体系,其参数的确定除大量的实验数据外,还需要大量的量子力学计算结果。

3非键的设置:

非键作用力包括范德华力和库伦力。这里将两者都选上,为的是后期做minimizer 优化原子位置时精确度更高,因为考虑了作用力因素多,即两者都考虑了。Summation method(模拟方法):

①Atom Based

atom based基于原子的总量,包括一个原子的截断距离,一个原子的缓冲宽度距离;为直接计算法,即直接计算原子对之间的非键相互作用,当原子对超出一定距离(截断半径cutoff distance)时,即认为原子对之间相互作用为零(注:cutoff distance指范德瓦尔斯作用力和库仑力的范围,比如:设定截断半径为5,则表示已分子或原子中心为圆心,以5为半径作圆,半径以外的作用力都不考虑)。此方法计算量较小,但是可能导致能量和其导数的不连续性。当原子对间距离在Cut Off半径附近变化时,由于前一步考虑了原子对之间的相互作用,而后一步

不考虑,由此会导致能量发生跳跃。当然,对于较小的体系,则可以设置足够大的Cutoff半径来保证所有的相互作用都被考虑进来。

②Group Based

group based基于电子群的,总量中包括一个原子的截断距离,一个原子的缓冲宽度距离;大多数的分子力场都包括了每个原子之间点电荷的库仑相互作用。甚至在电中性的物种中也存在点电荷,例如水分子。点电荷实际上反映了分子中不同原子的电负性。在模拟中,点电荷一般是通过电荷平衡法(charge equilibrium)评价或者力场定义的电荷来分配的。当评价点电荷时,一定要小心不要在使用Cutoff技术时引入错误的单极项。要了解到这一点,可以参看如下事实:两个单极,当只有1e.u.电荷时,在10A的位置上其相互作用大约为33Kcal;而对于由单位单极分离1A所形成的两个偶极,相同距离其相互作用能不超过0.3Kcal/mol。

很明显,忽略单极-单极相互作用会导致错误的结果,而忽略偶极-偶极相互作用则是适度的近似。然而,如果单极相互作用处理不清的话,仍然会出问题。当non-bond Cutoff使用基于原子-原子基组时,就可能发生,会人为将偶极劈裂为两个“假”的单极(当一个偶极原子在Cutoff内,另一个在其外)。这就不是忽略了相对较小的偶极-偶极相互作用,而是人为引入了作用较大的单极-单极相互作用。为了避免这种人为现象,Materials Studio引入了在Charge Groups之上的Cutoff。

一个“Charge Group”是一个小的原子基团,其原子彼此接近,净电荷为0或者接近于0。在实际应用中,Charge Group一般是常见的化学官能团,例如羰基、甲基或者羧酸基团的净电荷接近于中性Charge Group。Charge Group之间的距离为一个官能团中心到另一个官能团中心的距离R,Cutoff设置与Atom Based 相类似。

③Ewald Summation

Ewald是在周期性系统内计算Non-bond的一种技术。Ewald是计算长程静电相互

作用能的一种算法。Ewald加和方法比较合适于结晶固体。原因在于无限的晶格内,Cutoff方法会产生较大的误差。然而,此方法放也可以用于无定形固体和溶液体系。Ewald计算量较大,为o(N^3/2),体系较大时,会占用较多的内存并花费较长的时间【《分子模拟—从算法到应用》】。

④cell multipole cell based只能用于基于指定数量层。

一般情况下,基于Atom适合于孤立体系,对于周期性体系计算量较小,但是准确性较差;基于Group适合于周期性和非周期性体系,计算的准确性好一些,计算量最小;Ewald适合于周期性能体系,计算最为准确,但计算量最大。

Cutoff distance(截断距离):指的是范德瓦尔斯作用力和库仑力的范围。Spline width:

Buffer width:缓冲宽度距离。

Setup其他选项保留默认设置即可。

4 结构优化

在工具栏上点击Discover按钮,然后选择Minimizer。或者从菜单栏选择Modules | Discover | Minimizer。

显示Discover Minimizer对话框,可以进行几何结构优化计算。注:优化前(Min),先查看所有原子是否都已分配力场,如果没有,可以手动添加,在Properties Explorer中双击Forcefield type,然后修改力场类型即可。其次在Min之前,需要把晶体结构所有原子重新固定。minimizer只是对结构进行优化,以达到能量最小化。在作动力学(dynamics)之前最好minimizer一下,因为如果不minimizer 计算收敛时间会比较长,能量波动会比较大,而且计算有可能出错。

优化方法Mathod:最陡下降法(Steepest Descent)、共轭梯度法(Conjugate Gradient)、牛顿方法(Newton)和综合法(Smart Minimizer)。Convergence level:收敛精度水平。

Maximum iteration :最大迭代数。

Optimize cell 选中的话表示优化晶胞参数和原子位置。

MS Discover 结构优化原理

分子的势能一般为键合(键长、键角、二面角、扭转角等)和非键合相互作用(静电作用、范德华作用等)能量项的加和,总势能是各类势能之和,如下式:

总势能 = 范德华非键结势能 + 键伸缩势能 + 键角弯曲势能

+ 双面角扭曲势能 + 离平面振动势能 + 库伦静电势能 + … 除了一些简单的分子以外,大多数的势能是分子中一些复杂形势的势能的组合。势能为分子中原子坐标的函数,由原子不同的坐标所得到的势能构成势能面(Potential Energy Surface ,PES )。势能越低,构象越稳定,在系统中出现的机率越大;反之,势能越高,构象越不稳定,在系统中出现的机率越小。通常势能面可得到许多极小值的位置,其中对应于最低能量的点称为全局最小值(Global Energy Minimum ),相当于分子最稳定的构象。由势能面求最低极小值的过程称为能量最小化(Energy Minimum ),其所对应的结构为最优化结构(Optimized Structure ),能量最小化过程,亦是结构优化的过程。

通过最小化算法进行结构优化时,应避免陷入局部最小值(local minimum ),也就是避免仅得到某一构象附近的相对稳定的构象,而力求得到全局最小值,即实现全局优化。分子力学的最小化算法能较快进行能量优化,但它的局限性在于易陷入局部势阱,求得的往往是局部最小值,而要寻求全局最小值只能采用系统搜寻法或分子动力学法。在Materials Studio 的Discover 模块中,能量最小化算法有以下四种:

1)最陡下降法(Steepest Descent ),为一经典的方法,通过迭代求导,对多变量的非线性目标函数极小化,按能量梯度相反的方向对坐标添加一位移,即能量函数的负梯度方向是目标函数最陡下降的方向,所以称为最陡下降法。此法计算简单,速度快,但在极小值附近收敛性不够好,造成移动方向正交。最陡下降法适用于优化的最初阶段。

2)共轭梯度法(Conjugate Gradient ),在求导时,目标函数下降方向不是仅选取最陡下降法所采用的能量函数的负梯度方向,而是选取两个共轭梯度方向,即前次迭代时的能量函数负梯度方向与当前迭代时的能量函数负梯度方向的线性组合。此法收敛性较好,但对分子起始结构要求较高,因此常与最陡下降法

联合使用,先用最陡下降法优化,再用共轭梯度法优化至收敛。

3)牛顿方法(Newton),以二阶导数方法求得极小值。此法的收敛很迅速,也常与最陡下降法联合使用。

4)综合法(Smart Minimizer),该方法可以混合最陡下降法,共轭梯度法和牛顿法进行结构优化,在MS中是可选择的。

Smart Minimizer中,牛顿法可以设定最大的原子数,如果体系的原子数大于所设定的值,则计算是会自动地转为前面设定的收敛法(共轭梯度法或最陡下降法),收敛精度会改为共轭梯度法的默认收敛精度值。

点开各种方法后面的More,可设定收敛精度(Convergence),算法(Algorithm)和一维搜索(Line search,指每一次迭代中的精度)等。

当Job结束后,结果被返回到Disco Min目录,最小化的结构被命名为3D Atomistic.xsd,并被保存在“3D Atomistic Disco Min”目录。还生成一个名为“3D Atomistic.out”的文本文档,它包含了有关计算的所有能量信息。同时还生成“SimulationEnergies.xcd”,它显示了能量随迭代次数的变化情况。如图所示。

本次模拟得到如图所示的结构,

5 高温弛豫

打开discover下的Dynamics,如图所示

Ensemble(系综):NVE、NVT、NPT、NPH。

Temperture:目标温度。

Pressure:给系统所施加的压力。

Number of steps:整个动力学所运行的总步数。

Timp step:每一动力学步骤所花费的时间。

Dynamics time:Number of steps×Timp step。

Trajectory Save:Coordinates表示保存坐标;Final Structure表示只保存最终结构;Full表示保存所有。

Frame output every:若输入5000,则表示每5000步输出一次体系构型文件。

此操作表示结构在2000K的温度下进行弛豫,此过程原子通过迁移、运动或者扩散,逐步降低原来的高内能态,向稳定的低内能态转变。

运行结束后,可以通过调用Animation观看三维动画,见图

动画工具条可以控制三维窗口中动画文件的显示。它包含以下命令:

Play Backwards:倒映动画文件。

Step Backwards:每次向后放一帧

Stop:停止放映。

Step Forwards:每次一帧加速放映。

Play:放映动画。

Pause:暂停放映,再按一次后继续放映。

Animation Mode:显示动画模式下拉菜单,

6.1 系综简介

系综(ensemble)是指具有相同条件系统(system)的集合。平衡态的分子动力学模拟,总是在一定的系综下进行。系综是统计力学中非常重要的概念,系统的一切统计特性基本都是以系综为起点推导得到的。实际应用时,要注意选择适当的系综,如(N,T,P) 常用于研究材质的相变化等。

1)在微正则系综(micrononical ensemble)中,模型体系的粒子数N、体积V 及内能(热力学能)E(在热力学通常用U表示内能)。孤立、保守的系统。值得注意的是:体系总能量,即势能和动能的总和,是保持守恒的,常被用来判断积分的精度固定不变。它对应于绝热过程,即体系与环境没有热交换,不存在温度T和压力p的控制因素。由于体系的能量E是守恒的,体系的动能和势能之间互转化。一般说,给定能量的精确初始条件是无法得到的。能量的调整通过对速度的标度进行,这种标度可能使系统失去平衡,迭代弛豫达到平衡。

2)NVT系综(正则系综)

正则系综(canonical ensemble)中,体系的粒子数N、体积V及温度T保持不变,且总动量保持不变。因此正则系综动力学有时也被称为恒温动力学。为了控制体系的温度,就需要设置一个“虚拟”的热浴环境,与体系进行能量交换。常用的热浴(bath)包括:Nose-Hoover,Berendsen,Andersen以及“velocity scaling(速度标定)”方法等。

3)NPT系综(恒温恒压系综)

恒温恒压系综中,体系的粒子数N、压力p、温度T都是恒定不变的。恒温恒压系综允许体系的“体积”发生变化。这里的体积的变化有两种方式,一种是只变化尺寸而保持形状(比如对于晶体来说,晶格类型维持不变,但是晶胞参数中的a,b,c可以变化),另一种是同时变化形状和尺寸(即晶格类型和晶胞参数都可以变化)。压强P与体积共轭,控压可以通过标度系统的体积来实现。目前有许多调压的方法都是采用的这个原理。

4)NPH系综(恒焓恒压系综)

NPH系综中体系的粒子数N、压力p及体系的焓H(H=E+pV)是守恒的,例如节流膨胀就是一恒焓过程。在模拟中较少见。

6.2 系综控温机制

系综的控温:温度调控机制可以使系统的温度维持在给定值,也可以根据外界环境的温度使系统温度发生涨落。一个合理的温控机制能够产生正确的统计系综,即调温后各粒子位形发生的概率可以满足统计力学法则。系综控温机制主要有:Velocity Scale、Nose、Berendsen。

Thermostat下拉菜单有四个:

1)Velocity Scale(直接速度标定法):系统温度和粒子的速度直接相关,可以通过调整粒子的速度使系统温度维持在目标值。实际分子动力学模拟中,并不需要对每一步的速度都进行标定,而是每隔一定的积分步,对速度进行周期性的标定,从而使系统温度在目标值附近小幅波动。直接速度标定法的优点是原理简单,易于程序编制。缺点是模拟系统无法和任何一个统计力学的系综对应起来;突然的速度标定引起体系能量的突然改变,致使模拟系统和真实结构的平衡态相差较远。

2)Nose:该方法可以把任何数量的原子与一个热浴耦合起来,可以消除局域的相关运动,而且可以模拟宏观系统的温度涨落现象。

Andersen:

3)Berendsen控温机制:又称Berendsen外部热浴法。其基本思想是假设系统和一个恒温的外部热浴耦合在一起,通过热浴吸收和释放能量来调节系统的温度,使之与恒温热浴保持一致。对速度每一步进行标定,以保持温度的变化率与热浴和

系统的温差(Tbath-T(t))成比例。

6.3 系综空压机制

下拉菜单有3项:

Andersen:假定系统与外界“活塞”耦合,当外部压强不能补偿系统内部压强时,“活塞”运动引起系统均匀地膨胀或收缩,最终使得系统压强等于外部压强。Andersen方法具有重要的意义,后来的各种压力控制方法基本都是基于Andersen 思想发展起来的。

Berendsen:这种方法是假想把系统与一“压浴”相耦合。

Parrinello:这种方法允许原胞的形状与体积同时发生变化,以达到与外压平衡。这种方法是对Anderson调压方法的一种扩展,可以实现对原胞施加拉伸剪切以及混合加载情况的模拟,因此在对材料的力学性质的分子动力学模拟中,得到了广泛地应用。

运行结束后可以

2 Forcite模块

2.1 Quench(快冷)

在工具栏上点击按钮,选择calculation,弹出对话框,如图所示

1.选择Quench(快冷,淬火),再点击More…出现如图所示对话框:

再点击Dynamics options的more…出现如图所示:

Initial velocities:第一次由于设置速度,所以只能选择Random(随即速度),第二次以及以

后运行则可选择Current(当前速度)了,此时速度为上一次结束的速度。

注意:模拟退火的时候要加力。

运行结束后会得到一些文件,有1)3D Atomistic.xtd,这是快冷后得到的结构,从这里可以得知得到的是非晶合金,见图。2)Status.txt以及3D Atomistic.txt包含了快冷过程的相关参数设置以及结果数据。3)3D Atomistic Temperature.xcd描述了温度与时间的关系,见图。4)3D Atomistic Energies.xcd描述了几种能量(势能、动能、非键能以及总能量)最时间的变化关系(见图)等。

2.选择退火(anneal)如图所示

点击more…出现下图:

Annealing cycles:运行一次退火所作的退火循环次数。

Initial temperature:一次退火循环的起始温度也是退火循环的终止温度。

Mid-cycle temperature:一次退火循环包括升温过程和降温过程中的最高温度。

Heating ramps per cycle:一次循环中加热过程的温度梯度步数,冷却过程的温度下降梯度(cooling ramps per cycle)步数与加热过程的温度梯度步数相等。

Dynamics steps per ramp:每一温度梯度的动力学步数。

Total number of steps:Annealing cycles×(Heating ramps per cycle+coolingHeating ramps per cycle)×Dynamics steps per ramp(即上图中的总步数=5×10×500)

目标温度根据快冷得到700K的结构而设定为700K,而两组模拟中,中间最高温度(Mid-cycle temperature)分别设为835K和830K,因其晶化温度大致在825K左右【】。

以及得到其他信息,可在Project中点击查看。

再对上面的结构作X衍射。

3 Reflex 模块

如下图所示,调出Powder Diffraction工具

从工具栏选择Reflex工具,然后选择Powder Diffraction,或者从菜单

栏选择Modules | Reflex。

显示Reflex Powder Diffraction对话框,如图9―1所示。

Powder Diffraction对话框由8个不同的选项卡组成,包括你需要的所有设置。Diffractometer-设置基本的扫描设置,例如2-theta范围和线性变化;Radiation-设置不同的衍射线类型,可以选择X射线、电子和中子射线;Profiles-设置粉末衍射图显示的峰形函数并加宽显示衍射图;

Sample-设置样品尺寸;

Temperature Factors-包括控制修正原子热振动对衍射图的影响;Asymmetry-控制用于修改峰形的任何不对称性修正;

Experimental Data-允许你添加实验数据进行对比;

Display-设置常规的显示属性,这对控制图形数据是很重要的。

第一步是计算衍射图。

2003全国大学生数学建模竞赛b题参考答案

2003大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31)

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级 题目基于SIMULINK的基带传输系统的仿真姓名学号 指导教师胡娟 2014年6月27日

1任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功率谱进行估计。假设接收定时恢复是理想的。 2基带系统的理论分析 1.基带系统传输模型和工作原理 数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。系统工作过程及各部分作用如下。 g T(t) n 定时信号 图 1 :数字基带传输系统方框图 发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形g T(t)。这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。 基带传输系统的信道通常采用电缆、架空明线等。信道既传送信号,同时又因存在噪声n(t)和频率特性不理想而对数字信号造成损害,使得接收端得到的波形g R(t)与发送的波形g T(t)具有较大差异。 接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。 抽样判决器首先对接收滤波器输出的信号y(t)在规定的时刻(由定时脉冲cp控制)进行抽样,获得抽样信号{r n},然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。 2.基带系统设计中的码间干扰和噪声干扰以及解决方案

富士康科技集团桂航校园招聘会通知

富士康科技集团桂航校 园招聘会通知 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

富士康科技集团桂航校园招聘会通知 一、安排表 二、公司简介 创立于1974年,富士康科技集团在总裁郭台铭先生的领导下,以前瞻性的眼光与自创颠覆电子代工服务领域的机光电垂直整合“eCMMS”商业模式,提供客户囊括共同设计(JDSM)、共同开发(JDVM)…… 全球运筹及售后服务等等之全球最具竞争力的一次购足整体解决方案。 富士康科技集团是全球3C(计算机、通讯、消费性电子)代工领域规模最大、成长最快、评价最高的国际集团,集团旗下公司不仅

于亚洲及欧洲的证交所挂牌交易,更囊括当今捷克前三大出口商、大中华地区最大出口商、富比士及财富全球五百大企业,及全球3C 代工服务领域龙头等头衔。 集团多年来致力于研发创新,以核心技术为中心,包括:纳米技术、绿色制程技术、平面显示器技术、无线通讯技术、精密模具技术、服务器技术、光电 / 光通讯技术材料与应用技术及网络技术等。集团不仅具完善的研发管理制度,更在智权管理上努力耕耘,积极地以提升华人之国际竞争力为己任;截至2005年底已在全世界共获超过15,300件专利,因此集团不仅在美国麻省理工学院的全球年度专利排行榜(MIT Technology Review)中,是全球前二十名中惟一上榜的华人企业。也因如此,才能被美国财富杂志评鉴入选为全球最佳声望标竿电子企业15强,并成为全球惟一能在过去五年持续名列美国商业周刊(BusinessWeek)科技百强(IT100)前十名的公司! 三、富士康科技集团2010届大专班需求专业分类表

系统建模与仿真

一、基本概念 1、数字正弦载波调制 在通信中不少信道不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即所谓数字正弦载波调制。 2、数字正弦载波调制的分类。 在二进制时, 数字正弦载波调制可以分为振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式。如黑板所示。 2、高斯白噪声信道 二、实验原理 1、实验系统组成 2、实验系统结构框图

图 1 2FSK信号在高斯白噪声信道中传输模拟框图 各个模块介绍p12 3、仿真程序 x=0:15;% x表示信噪比 y=x;% y表示信号的误比特率,它的长度与x相同FrequencySeparation=24000;% BFSK调制的频率间隔等于24KHz BitRate=10000;% 信源产生信号的bit率等于10kbit/s SimulationTime=10;% 仿真时间设置为10秒SamplesPerSymbol=2;% BFSK调制信号每个符号的抽样数等于2 for i=1:length(x)% 循环执行仿真程序 SNR=x(i);% 信道的信噪比依次取中的元素 sim('project_1');% 运行仿真程序得到的误比特率保存在工作区变量BitErrorRate中 y(i)=mean(BitErrorRate); end hold off% 准备一个空白的图 semilogy(x,y);%绘制的关系曲线图,纵坐标采用对数坐标 三、实验结论

图 4 2FSK信号误比特率与信噪比的关系曲线图 系统建模与仿真(二) ——BFSK在多径瑞利衰落信道中的传输性能 一、基本概念 多径瑞利衰落信道 二、实验原理 1、实验系统组成

富士康科技集团介绍03-03

本講內容 ★初識:科技製造鉅子 ★工業報國志向,催生鴻海-富士康★願景與使命 ★扎根大陸運籌全球 ★專注科技製造,發展6C産品 ★推进自主創新,製造转型科技 ★成功不由天降,模式制勝未來

初識:科技製造鉅子(之一) ★中國內地最大的出口企業是哪家? ★兩岸四地最大的科技製造公司是哪家? ★兩岸四地全球專利申請最多的科技製造公司是哪家?★全球華商最大的科技製造公司是哪家? ★全球最大的專業電子製造服務商是哪家? ★自《Business Week》1998年發佈全球IT TOP100排行榜以來,連續十年上榜、連續六年躋身前十名的唯一华商IT企業是哪家? ★《財富》全球500強中最先且連續上榜的華商民營科技製造公司是哪家?

初識:科技製造鉅子(之二) ★「全球經濟結構性調整與國際製造規模性東移」這一趨勢的首創發佈者是誰? ★「台灣接單、大陸製造、全球交貨」的台商國際化模式首創者是誰? ★「兩地研發、三區設計製造、全球組裝交貨」的華商國際化模式首創者是誰? ★CMMS全球專業科技製造模式的首創者是誰?★「農村城市化、城市工業化、工業科技化、科技國際化」的「世紀中國新四化」建言者是誰?

初識:科技製造鉅子(之三) ★如何解決「三農」與「就業」、「製造」與「科技」的矛盾? ★如何解決「富裕中的貧窮」這一世界性難題? ★如何解決「沿海VS內地,東部VS西部,城市VS農村, 發達區VS欠發達區,工業VS農業,和諧VS發展,公平VS 效率,人VS環境,當代VS後代,中國VS世界」的「當代中國新十大關係」所面臨的嚴峻課題?

一、工業報國志向,催生鴻海-富士康 ——集團成長歷程(1974-2007)

material_studio_中文版帮助手册

欢迎 欢迎使用Materials Studio Materials Studio是一个采用服务器/客户机模式的软件环境,它为你的PC机带来世界最先进的材料模拟和建模技术。 Materials Studio使你能够容易地创建并研究分子模型或材料结构,使用极好的制图能力来显示结果。与其它标准PC软件整合的工具使得容易共享这些数据。 Materials Studio的服务器/客户机结构使得你的Windows NT/2000/XP,Linux和UNIX服务器可以运行复杂的计算,并把结果直接返回你的桌面。 Materials Studio采用材料模拟中领先的十分有效并广泛应用的模拟方法。Accelry’s的多范围的软件结合成一个集量子力学、分子力学、介观模型、分析工具模拟和统计相关为一体容易使用的建模环境。卓越的建立结构和可视化能力和分析、显示科学数据的工具支持了这些技术。 无论是使用高级的运算方法,还是简单地利用Materials Studio增强你的报告或演讲,你都可以感到自己是在用的一个优秀的世界级材料科学与化学计算软件系统。 易用性与灵活性 Materials Studio可以在Windows 98,Me,NT,2000和XP下运行。用户界面符合微软标准,你可以交互控制三维图形模型、通过简单的对话框建立运算任务并分析结果,这一切对Windows用户都很熟悉。 Materials Studio的中心模块是Materials Visualizer。它可以容易地建立和处理图形模型,包括有机无机晶体、高聚物、非晶态材料、表面和层状结构。Materials Visualizer 也管理、显示并分析文本、图形和表格格式的数据,支持与其它字处理、电子表格和演示软件的数据交换。 Materials Studio是一个模块化的环境。每种模块提供不同的结构确定、性质预测或模拟方法。你可以选择符合你要求的模块与Materials Visualizer组成一个无缝的环境。你也可以把Materials Visualizer作为一个单独的建模和分子图形的软件包来运行。 如果你安装了Materials Studio的其它模块,后台运算既可以运行在本机,也可以通过网络运行在远程主机上。这取决于你建立运算时的选择和运算要求。Materials Studio的客户机/服务器模式支持服务器端运行在Windows NT/2000/XP,Linux或UNIX下,使得你可以最大化利用计算资源。 效率和交流 所以的研究人员都可以从Materials Studio强大功能中获益。这份文档的“演示”部分给出了一些简单的分子和材料的模型。这能使你获得对材料的更好的理解并能创建优秀的图形。与其它Windows软件的协同工作使得能容易地拷贝粘贴这些图形到其它文档。结构和性质的数据能容易地从电子表格和数据库中导入导出。Materials Studio帮助你显示和共享数据。Materials Visualizer也可以安装在研究部门、生产部门、

富士康科技集团(深圳)

富士康科技集团(深圳) 公司简介及基础人力招募简章 富士康1988年投资祖国大陆,是专业生产6C(Computer, Communication, Consumer Electronics, Channel, Car, Content)产品及半导体设备的高新科技集团。在中国大陆、台湾以及美洲、欧洲和日本等地拥有数十家子公司,在国内华南、华东、华北等地创建了九大科技工业园区,现有员工60余万人。自1991年至今集团年均营业收入保持超过50%的复合增长率,是全球最大的计算机连接器和计算机准系统生产商,连续9年入选美国《商业周刊》发布的全球信息技术公司100大排行榜(2005、2006年排名第二),连续四年稳居中国内地企业出口200强第一名。2005年(第371位)、2006年(第206位)迅速跻身《财富》全球500强。多年来集团杰出的营运成绩和扎根大陆、深耕科技的投资策略,深为国家与地方领导肯定:胡锦涛、江泽民、吴邦国、温家宝、李瑞环、李长春、吴仪等国家领导人多次莅临集团视察,给集团“扎根中国,运筹全球”以巨力支持。 今天,富士康科技集团正处于从“制造的富士康”迈向“科技的富士康”的事业转型历程中,将重点发展纳米科技、热传技术、纳米级量测技术、无线网络技术、绿色环保制程技术、CAD/CAE技术、光学镀膜技术、超精密复合/纳米级加工技术、SMT技术、网络芯片设计技术等,建立集团在精密机械与模具、半导体、信息、液晶显示、无线通信与网络等产业领域的产品市场地位,进而成为光机电整合领域全球最重要的科技公司。 集团投资大陆18年来,形成了富有自身特色的经营模式、运筹模式、育才模式与发展模式。未来富士康将继续深耕科技,广揽人才,为年轻人提供最佳的学习与发展环境,持续攀登科技高峰。

material_studio个人经验讲解

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。Materials Studio软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux 或UNIX系统。使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。他可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。 任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。同时他还能处理各种不同来源的图形、文本以及数据表格。 多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。 ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。 Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。模块简介:基本环境 MS.Materials Visualizer 分子力学与分子动力学 MS.DISCOVER https://www.doczj.com/doc/a710559887.html,PASS MS.Amorphous Cell MS.Forcite MS.Forcite Plus MS.GULP MS.Equilibria MS.Sorption晶体、结晶与X射线衍射 MS.Polymorph Predictor MS.Morphology MS.X-Cell MS.Reflex MS.Reflex Plus MS.Reflex QPA量子力学 MS.Dmol3 MS.CASTEP MS.NMR CASTEP MS.VAMP高分子与介观模拟 MS.Synthia

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

系统建模与仿真项目驱动设计报告

系统建模与仿真项目驱动设计报告 学院:电气工程与自动化学院 专业班级:自动化143班 学号:2420142928 学生姓名:李荣 指导老师:杨国亮 时间:2016年6月10号

仿真技术是一门利用物理模型或数学模型模拟实际环境进行科学实验的技术,具有经济、可靠、实用、安全、灵活和可多次重复使用的优点。 本文中将使用Matlab软件实现一个简单的控制系统仿真演示,可实现对一些连续系统的数字仿真、连续系统按环节离散化的数字仿真、采样控制系统的数字仿真以及系统的根轨迹、伯德图、尼克尔斯图和奈氏图绘制。 本设计完成基本功能的实现,基于Matlab的虚拟实验仿真的建立和应用,培养了我们的兴趣,提高了我们的实践能力。 关键字:Matlab;系统数字仿真;根轨迹;伯德图。

第一章概述 (4) 1.1 设计目的 (4) 1.2 设计要求 (4) 1.3设计内容 (4) 第二章 Matlab简介 (6) 2.1 Matlab的功能特点 (6) 2.2 Matlab的基本操作 (6) 第三章控制系统仿真设计 (8) 3.1 控制系统的界面设计 (8) 3.2 控制系统的输入模型设计 (9) 3.3 欧拉法的Matlab实现 (12) 3.4 梯形法的Matlab实现 (14) 3.5 龙格-库塔法的Matlab实现 (15) 3.6 双线性变换法的Matlab实现 (16) 3.7 零阶保持器法的Matlab实现 (17) 3.8 一阶保持器法的Matlab实现 (18) 3.9 系统PID控制的Matlab实现 (19) 3.10 系统根轨迹的绘制 (21) 3.11系统伯德图的绘制 (22) 3.12系统尼克尔斯图的绘制 (23)

富士康科技集团南宁科技园报告

(四)富士康科技集团南宁科技园 1、公司简介: 富士康科技集团是专业从事计算机、通讯、消费电子等3C产品研发制造,广泛涉足数位内容、汽车零组件、通路、云运算服务及新能源、新材料开发应用的高新科技企业。 图 4.1 富士康标志 富士康南宁科技园项目是桂台经贸交流、两岸经济合作新的重要成果,是南宁市承接东部产业转移的重大招商引资项目之一。项目选址位于沙井大道西侧,总投资约63.4亿元,规划总用地2965.49亩,总建筑面积1659860平方米,总用工人数约12万人,其中一期直接用工约3万人。2011年至2012年,项目先开发建设B地块,总用地792亩,净用地约600.551亩。富士康南宁科技园项目的主要产品包括电子书、智能手机、GPS、高端路由器、高端交换机网卡等高端电子产品,预计2015年实现销售收入300亿元以上。 富士康南宁科技园项目作为自治区和南宁市统筹推进的重大项目,是南宁市大力实施工业强市战略、加快构建现代产业体系、着力打造区域性加工制造基地的标志性工程。今天竣工投产的富士康南宁科技园一期工程,是继2011年6月富士康南宁科技园高新园区项目投产之后南宁市与富士康集团共享发展机遇、真诚深化合作、共谋科学发展的又一重要成果,标志着南宁市与富士康集团的战略合作迈上了一个新的台阶。这一项目的投产,不仅对在全市持续掀起项目建设热潮、继续保持全市经济发展势头具有良好的示范带动效应,更对进一步调整优化全市产业结构、加快现代产业发展、提升产业发展水平具有重要的推动作用。

图 4.2 富士康正大门 2、实习摘要: 2014年3月20日,在老师带领下,我们乘车前往江南区沙井的富士康科技集团南宁科技园进行新一天的毕业实习。 一来到富士康的大门,我就被震撼到了,气派与宏伟,在进入园区前:人力资源部的接待人员着重强调了几点: (1)进入园区,要紧跟参观队伍,不能随意走动; (2)不能随便拍照,电子产品如相机、U盘、数据线、读卡器等东西要上交;(3)不能随意触碰机器,不能影响工作人员工作。 进入园区,我们发现富士康科技园内环境十分干净,路上几乎看不到行人。从刚刚接待人员强调的东西来看,足见富士康对产品的保密性有多高,足见富士康的纪律性多强。 首先我们参观的是冲压厂 进入厂区里面,我们发现噪音污染很严重,富士康给工作人员都给配了耳塞,但这种环境下,我觉得棉耳塞是无济于事。 冲压厂的主管告诉我们,这里是高度的机械化生产,从客户那里拿到产到图纸,经过模具部生产出模具,进行加工。在这里,我们看到许多现金的车床以及号称世界上最安全的叉车。就我进行生产实习以及毕业实习这么久,在富士康 看到的机床是最接近世界先进水平的,工厂的环境是最干净的,不愧是世界五百

materials studio介绍资料和案例的应用

新一代材料模拟软件 Materials Studio Accelrys材料科学软件的主要应用领域包括: 固体物理及表面科学 催化、分离与化学反应 高分子及软材料 纳米材料 材料表征与仪器分析 晶体与结晶 QSAR (定量构效关系)与配方设计 Accelrys(美国)公司是世界领先的计算科学公司,是一系列用于科学数据的挖掘、整合、分析、模建与模拟、管理和提交交互式报告的智能软件的开发者,是目前全球范围内唯一能够提供分子模拟、材料设计、化学信息学和生物信息学全面解决方案和相关服务的软件供应商,所提供的全面解决方案和科技服务满足了当今全球领先的研究和开发机构的要求。 Accelrys材料科学软件产品提供了全面和完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体、表面和界面的结构模型,并研究、预测材料的结构与相关性质。Accelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。 Accelrys软件用于材料科学研究的主要产品是Materials Studio分子模拟软件,它可以运行在台式机、各类型服务器和计算集群等硬件平台上。Materials Studio分子模拟软件广泛应用在石油、化工、环境、能源、制药、电子、食品、航空航天和汽车等工业领域和教育科研部门;这些领域中具有较大影响的跨国公司及世界著名的高校、科研院所等研究机构几乎都是Accelrys产品的用户。 Materials Studio分子模拟软件采用了先进的模拟计算思想和方法,如量子力学(QM)、线性标度量子力学(Linear Scaling QM)、杂化量子力学分子力学(QM/MM)、分子力学(MM)、分子动力学(MD)、蒙特卡洛(MC)、介观动力学(MesoDyn)和耗散粒子动力学(DPD)、统计方法QSAR(Quantitative Structure-Activity Relationship )等多种先进算法和X射线衍射分析等仪器分析方法;模拟的内容包括了催化剂、聚合物、固体及表面、界面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 Materials Studio分子模拟软件支持32与64位Windows和Linux操作平台,而且界面非常友好、操作简便,使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种小分子、晶体、无定型以及高分子材料的性质及相关过程进行深入的研究,得到切实可靠的数据。 Materials Studio软件使任何研究者都能得到和世界一流研究部门相一致的材料模拟技术。

2018全国大学生数学建模大赛模板

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2018年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和

materialstudio使用经验总结

materialstudio 使用经验总结 关于K 点 1.应当使用多少个k 网格? 很难一般地回答,只能给出一般建议。注意:一定要检查k 网格,首先用较粗糙的网格计算, 接下来用精细的网格计算。通过比较两次的结果, 决定选用较粗糙的网格, 或是继续进行更 精细网格的计算, 直到达到收敛。金属体系需要精细的网格, 绝缘体使用很少的k 点通常就 可以。小单胞需要精细格点, 大单胞很可能不需要。因此: 单位晶胞内原子数很多(比如 40-60个)的绝缘体,可能仅需要一个(移动后的)k点。另一方面,面心立方的铝可能需 要上万个k点以获得好的DOS对于孤立原子或分子的超晶胞,仅需要在 Gamm点计算。对 于表面(层面)的超晶胞计算,仅需要(垂直于表面)z方向上有1个k点。甚至可以增加 晶格参数c,这样即使对精细格点,沿z方向上也只产生一个k点(产生k 点后, 不要忘记 再把 c 改回)。

2.当体系没有出现时间反演对称操作时, 是否加入? 大多数情况下的回答是“是” , 只有包含自旋- 轨道耦合的自旋极化(磁性)计算除外。这 时, 时间反演对称性被破坏(+k 和-k 的本征值可能不同), 因此决不能加入时间反演对称性。 3.是否移动k 网格?(只对某些格子类型有效) “移动” k网格意味着把所有产生的k点增加x,x,x,把那些位于高对称点(或线)上的k 点移动到权重更大的一般点上。通过这种方法(也即众所周知的“特殊k 点方法” )可以产 生等密度的,k 点较少的网格。通常建议移动。只有一点注意: 当对半导体的带隙感兴趣时 (通常位于Gamma,X或BZ边界上的其它点),使用移动的网格将不会得到这些高对称性 的点,因此得到的带隙和预期结果相比或大或小。这个问题的解决:用移动的网格做SCF 循环,但对DOS计算,改用精细的未移动网格。 关于k 空间布点的问题, 建议参阅以下文献Phys.Rev.B 49,16223 1994 如何构建缺陷晶体结构 晶体结构改成P1, 然后去掉想抹去的原子就可以了 在ms中如何做空穴 对于金属缺陷, 是直接剪切一个原子?

2007年全国大学生数学建模竞赛题目

2007年全国大学生数学建模竞赛题目 [日期:2009-11-05] 阅读:307 次 A 题:中国人口增长预测 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007 年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从《中国人口统计年鉴》上收集到的部分数据。试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;别要指出你们模型中的优点与不足之处。 B题:乘公交,看奥运 我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。

为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路线(要有清晰的评价说明)。 (1)、S3359→S1828 (2)、S1557→S0481 (3)、S0971→S0485 (4)、S0008→S0073 (5)、S0148→S0485 (6)、S0087→S3676 2、同时考虑公汽与地铁线路,解决以上问题。 3、假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。

电力系统建模及仿真课程设计

某某大学 《电力系统建模及仿真课程设计》总结报告 题目:基于MATLAB的电力系统短路故障仿真于分析 姓名 学号 院系 班级 指导教师

摘要:本次课程设计是结合《电力系统分析》的理论教学进行的一个实践课程。 电力系统短路故障,故障电流中必定有零序分量存在,零序分量可以用来判断故障的类型,故障的地点等,零序分量作为电力系统继电保护的一个重要分析量。运用Matlab电力系统仿真程序SimPowerSystems工具箱构建设计要求所给的电力系统模型,并在此基础上对电力系统多中故障进行仿真,仿真波形与理论分析结果相符,说明用Matlab对电力系统故障分析的有效性。实际中无法对故障进行实验,所以进行仿真实验可达到效果。 关键词:电力系统;仿真;短路故障;Matlab;SimPowerSystems Abstract: The course design is a combination of power system analysis of the theoretical teaching, practical courses. Power system short-circuit fault, the fault current must be zero sequence component exists, and zero-sequence component can be used to determine the fault type, fault location, the zero-sequence component as a critical analysis of power system protection. SimPowerSystems Toolbox building design requirements to the power system model using Matlab power system simulation program, and on this basis, the power system fault simulation, the simulation waveforms with the theoretical analysis results match, indicating that the power system fault analysis using Matlab effectiveness. Practice can not fault the experiment, the simulation can achieve the desired effect. Keywords: power system; simulation; failure; Matlab; SimPowerSystems - 1 - 目录 一、引言 ............................................ - 3 -

Materials Studio介绍

Materials Studio专门为材料科学模拟所设计,能方便的建立 3D分子模型,深入分析有机、无机晶体、无定形材料以及聚合物,可以在催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域进行性质预测、聚合物建模和X射线衍射模拟,操作灵活方便,并且最大限度地运用网络资源。DISCOVER:分子力学和动力学程序。基于力场计算出最低能量构型、分子体系的结构和动力学轨迹等。 COMPASS:对凝聚态材料进行原子水平模拟的力场。可以在很大的温度、压力范围内精确地预测孤立体系或凝聚态体系中各种分子的结构、构象、振动以及热物理性质。 Reflex:模拟晶体材料的X光、中子以及电子等多种粉末衍射图谱。 DMol3:密度泛函程序,可用于研究均相催化、多相催化、分子反应性、分子结构等,也可预测溶解度、蒸气压、配分函数、溶解热、混合热等性质。 CASTEP:量子力学程序,应用于陶瓷、半导体、金属等多种材料,可研究晶体材料的性质、表面和表面重构的性质、表面化学、电子结构(能带及态密度)、晶体的光学性质、点缺陷性质(如空位、间隙或取代掺杂)、延展缺陷(晶粒间界、位错)、体系的三维电荷密度及波函数等。Materials Studio 3.1版加入的NMR CASTEP模块能够可靠地模拟任何材料的NMR化学屏蔽张量和四极耦合常数。 VAMP:半经验的分子轨道程序,适用于有机和无机的分子体系。

1. CASTEP可以使用超软赝势(USP)计算导电体系 2. DMol3可进行周期性模型的COSMO溶剂化计算 3. Nanotechnology Consortium使用户可以对大尺度体系进行量子力学模拟研究 4. 加入线性标度DFT程序ONETEP,和QM/MM程序QMERA Materials Studio 4.2新增功能: 1. GULP增强:用立场工具创建自己的力场;计算光学特性(反射率,折射率,介电常数) 2. 到Gaussian 03的接口:设定和提交任务;监视计算;显示分子,分子轨道和电荷密度;与Materials Studio的其它模块交换结构,电荷和Hessian。 3. QMERA支持“加成嵌入”QM/MM方法,用于考虑极化影响;优化过渡态。 4. ONETEP:改善了对重元素的支持。 Materials Studio 4.3新增功能: 1. ONETEP:计算结构,能量,电荷密度,分子轨道,以及态密度。对复杂体系执行结构优化和过渡态搜索。 2. CASTEP增强:用LDA+U改善开壳层体系带隙的描述。可以用标准的Hubbard U参数,也可以用自己优化的参数。

MaterialsStudio教程

目录 第0章绪论 (1) 0.1 计算机材料设计的概念 (1) 0.2 计算机材料设计的发展 (1) 0.3 计算机材料设计的途径 (2) 第1章快速启动教程 (1) 1.1 创建项目(Creating a project) (1) 1.2 打开、浏览3D文档 (2) 1.3 绘制苯甲酰胺(benzamide)分子 (4) 1.4 用学习表文档进行浏览和工作 (8) 1.5 研究分子晶体:尿素 (11) 1.6 建立α-quartz晶体 (12) 1.7 建立聚甲基丙烯酸甲酯(methyl methacrylate) (14) 1.8 保存项目、结束本教程 (15) 第2章VISUALIZER 教程 (16) 2.1 项目管理 (16) 2.2 绘制简单的分子 (21) 2.3 绘制卟啉(porphyrin) (30) 2.4 绘制有机金属结构 (36) 2.5 覆盖和对齐分子 (43) 2.6 精确定位和移动原子 (46) 2.7 在表面对接分子 (49) 2.8 使用polymer builder (54) 2.9 使用layer builder (65) 2.10 使用crystal builder (72) 2.11 建立中尺度分子 (81) 2.12 用Analog Builder枚举库 (84) 2.13 用等位面(isosurfaces)和切片工作(slices) (88) 2.14 域隔离和分析 (94) 第3章ADSORPTION LOCATOR、BLENDS教程 (98) 3.1 用Adsorption Locator决定SO2在Ni(111)晶面上的位置 (98) 3.2 共混聚合物相容性筛选 (101) 第4章AMORPHOUS CELL教程 (108)

《生产物流系统建模和仿真》课程设计报告

《生产物流系统建模与仿真》课程设计 2012-2013学年度第一学期 姓名孙会芳 学号 099094090 班级工093 指导老师暴伟霍颖

目录 一、课程任务书 (3) 1.题 目............................................................... (3) 2.课程设计内容 (3) 3.课程设计要求 (4) 4.进度安排 (4) 5.参考文献 (4) 二、课程设计正文 (5) 1、题目 (5) 2、仿真模型建立 (5) (1)实体元素定义 (5) (2)元素可视化的设置 (6) (3)元素细节设计 (8) (4 ) 模型运行和数据.................................................................. . (10) (5)模型代码 (12) (6)模型改进 (16) 3.实验感想 (17)

三、参考文献 (18) 《生产物流系统建模与仿真》课程设计任务书 1. 题目 离散型流水作业线系统仿真 2. 课程设计内容 系统描述与系统参数: (1)一个流水加工生产线,不考虑其流程间的空间运输。 (2)两种工件A,B分别以正态分布和均匀分布的时间间隔进入系统,A进入队列Q1, B进入队列Q2,等待检验。(学号最后位数对应的仿真参数设置按照下表进行) (3)操作工人labor1对A进行检验,每件检验用时2分钟,操作工人labor2对B进行检验,每件检验用时2分钟。 (4)不合格的工件废弃,离开系统;合格的工件送往后续加工工序,A的合格率为65%,B的合格率为95%。 (5)工件A送往机器M1加工,如需等待,则在Q3队列中等待;B送往机器M2加工,如需等待,则在Q4队列中等待。 (6)A在机器M1上的加工时间为正态分布(5,1)分钟;B在机器M2上的加工时间为正态分布(8,1)分钟。

富士康(FOXCONN)的企业文化

富士康(FOXCONN)的企业文化 创立于1974年,富士康科技集团在总裁郭台铭先生的领导下,以前瞻性的眼光与自创颠覆电子代工服务领域的机光电垂直整合“eCMMS”商业模式,提供客户囊括共同设计(JDSM)、共同开发(JDVM)、全球运筹及售后服务等全球最具竞争力的一次购足整体解决方案。 富士康科技集团是全球3C(计算机、通讯、消费性电子)代工领域规模最大、成长最快、评价最高的国际集团,集团旗下公司不仅于亚洲及欧洲的证交所挂牌交易,更囊括当今捷克前三大出口商、大中华地区最大出口商、富比士及财富全球五百大企业,及全球3C代工服务领域龙头等头衔。 集团多年来致力于研发创新,以核心技术为中心,包括纳米技术、绿色制程技术、平面显示器技术、无线通讯技术、精密模具技术、服务器技术、光电、光通讯技术材料与应用技术及网络技术等。集团不仅具备完善的研发管理制度,更在智权管理上努力耕耘,积极地以提升华人之国际竞争力为己任。截至2005年底集团已在全世界共获超过15,300件专利,是惟一进入美国麻省理工学院的全球年度专利排行榜(MIT Technology Review) 前二十名的华人企业,也因此被美国《财富》杂志评为“全球最佳声望标竿电子企业”,

并成为全球惟一能在过去五年持续名列美国商业周刊(BusinessWeek)科技百强(IT100)前十名的公司! 富士康于1988年起投资中国大陆,是专业生产6C产品及半导体设备的高新科技集团。集团在中国大陆、台湾以及美洲、欧洲和日本等地拥有数十家子公司,在国内华南、华东、华北等地创建了八大科技工业园区。自1991年至今集团年均营业收入保持超过50%的复合增长率,是全球最大的计算机连接器和计算机准系统生产商,连续9年入选美国《商业周刊》发布的全球信息技术公司100大排行榜(2005、2006年排名第二),连续四年稳居中国内地企业出口200强第一名。2005年(第371位)、2006年(第206位)迅速跻身《财富》全球500强。多年来集团杰出的营运成绩和扎根大陆、深耕科技的投资策略,深为国家与地方领导肯定:胡锦涛、江泽民、吴邦国、温家宝、李瑞环、李长春、吴仪等国家领导人多次莅临集团视察,给集团“扎根中国,运筹全球”以巨力支持。 今天,富士康科技集团正处于从“制造的富士康”迈向“科技的富士康”的事业转型历程中,将重点发展纳米科技、热传技术、纳米级量测技术、无线网络技术、绿色环保制程技术、CAD/CAE技术、光学镀膜技术、超精密复合/纳米级加工技术、SMT技术、网络芯片设计技术等,建立集团在精密机械与模具、半导体、信息、液晶显示、无线通信与网络等产业领域的产品市场地位,进而成为光机电整合领域全球最重要的科技公司。

相关主题
文本预览
相关文档 最新文档