当前位置:文档之家› 机械类两篇外文翻译

机械类两篇外文翻译

机械类两篇外文翻译
机械类两篇外文翻译

英文题目一Overall-mechanized assembling line for Production in the uzbekkhimmash works Shell

翻译内容

The process of shell production applied in the Uzbekkhimmash Works involves a great number of adjusting and transporting operations. The latter are carried out with the help of electric overhead cranes which lengthens the production cycle. To eliminate these deficiencies according to the VNIIPTkhimnefteapparatury, an overall-mechanized assembling line was constructed and introduced in the plant; it is used in the production of boiler sheels of diameters from 600 to 2200mm, lengths up to 2000 mm and wall thicknesses up to 20 mm, of carbon steel and high-alloy steels (Fig. 1). A sheet with the planned edges is brought by crane to the mechanized roll-type conveyer 1 which transfers it to the hydraulic press 2 in which the edges are bent.

The press generating loads of 360 tons is provided with a rotary plunger guaranteeing a bending with the necessary radius of curvature. After the bending of the first edge the sheet passes through the press where the second edge is bent. The die is provided with special hinged props for accurate orientation of the sheet's edges relative to the press.

The sheet with the bent edges is transferred along the roll-type conveyer 3 to a three-roller sheet-bending roll. The conveyers 1 and 3 are controlled from the press control desk; in addition to this the conveyer 3 is controlled from the roller control desk. Inconsistent operation of the conveyers is excluded by a blocking mechanism. The rolls 4 bend the sheet according to the radius of the future shell until the ends of the sheet meet. With the help of the lifting mechanism 5, which is of the form of a runway crane along which two coupled telphers with the load-lifting mechanism move, the half-finished shell is transferred from the roils to the inclined assembling

rails 6 (Fig. 2). The hoisting mechanism is provided with remote control operated by the worker himself.

The half-finished shell then moves along the inclined assembling rails (angle of slope 45') under its own weight. The total length of the rails is 49 m.

Fig. i. Overall-mechanized assembly line for the production of boiler shells, 600-2200 mm in diam: a) schematic

diagram, b) general view.

Fig. 2. Assembling rail with the boiler shells on it.

On stand 7 the shells are assembled and prepared for inner welding of the longitudinal butt. The automatic welding of the longitudinal butt is carried out from inside the shell, on a pneumoflux cushion under a layer of fusing agent by a special eight-pole arrangement. The range of the poles is 2500 mm, the diameter of the electrode wire is 3 mm and the welding rate is 10-50 m/h.

After the inner longitudinal seam has been welded, the half-finished shell is transferred to stand 9 where the seam roots are dressed. On this stand the longitudinal butt of the shell is prepared for welding on the outer side,

which is then carried out on a special device of ten-balcony

type of ABC head. In order to weld shells of various

diameters, the balcony can be displaced in a vertical

direction at a speed of 1.85 m/min. The load-lifting

capacity of the balcony is 1000 kg. After the outside

welding the shell is calibrated on the three-roller roils 11

and is transferred to the x-ray room for quality control of

the welding seam.

In order to prevent the half-finished shells from

rolling by themselves along the rails, in front of each

working post the rails are provided with stopping devices

12 with interceptors. A pneumatic drive enables the

stopping devices to hold the shells on the inclinded rails

and to let them pass, one at a time, to the working stand.

The working stands are provided with outstanding driving

roller-bearings 13 with rubbercoated rollers which make it

possible to hold the shells in the necessary position with

the help of electric drives. All transportation of the

half-finished shells between the individual operations is

carried out without the electric overhead crane, thus

reducing time losses between operations.

The industrial introduction of the over-all mechanized assembly line permitted a considerable acceleration of the

shell production cycle; it made work easier and eliminated

one of the bottle-necks in the industrial production of

chemical apparatus.

The present efforts of the work's collective are aimed at the construction of a second assembly line producing

vessels from shells; such a line would permit a complete

mechanization of the entire production process of the

vends of chemical apparatus in the plant.

指导教师评语

指导教师签字

年月日

英文题目二Robot based system for the automation of

flow assembly lines

翻译内容

Abstract In this paper a promising approach to the automation of flow assembly lines is presented. The developed system uses a standard industrial robot and synchronizes it to the product in all degrees of freedom. The synchronization is enabled by dividing the assembly process in different phases and controlling the robot in each phase with an adequate sensor system. Besides that a compliance is integrated into the gripper system in order to reduce high contact forces and tolerate high frequent pose deviations. Main advantages of the synchronized assembly are the avoidance of buffers and the reduction of the throughput time.

Keywords:Assembly . Robot .Flow lines

Today’s assembly systems have to cope with a high number of variants of the product by realizing competitive quality and costs. Therefore these assembly systems are usually manual or hybrid assembly lines [1]. Especially the German car manufacturers use mostly manual labor in their assembly lines [2]. Automation is hindered by the need for clocked cycles, the lack of flexibility of these systems and the necessary separation of man and robots [3].

The synchronized assembly in motion or assembly on the fly as shown in Fig. 1, is one answer for the economic need for automation in flow assembly lines [4]. Even though this idea is around for about 50 years it still needs further development. The existing approaches to an automated assembly in motion can be differentiated by the principle of synchronization between the conveyor system and the robot. There are approaches using mechanical, guided or controlled synchronizing principles.

The mechanical synchronization is the simplest principle

of synchronization because it is based on either a force

fit or an interlocking joint. Disadvantages are the required mechanical adaptations of the conveyor system and the low

accuracies [5].

More promising are the guided and the controlled synchronization.

Today the guided conveyor tracking is implemented in most robot control systems. Using this method the

conveyor speed is measured and the difference of the conveyor to the tool center point (tcp) of the robot is calculated within the interpolation cycle. Then the movement of the robot is corrected by the robot control. According to Dirndorfer [5] this system cannot achieve a maximum accuracy in synchronization of less than 1 mm due to vibrations and the following error of the robot. The controlled or feedback systems use either hydraulic or electronic algorithms for synchronization. All these methods have in common a constant measurement of the deviation between the robot and the conveyor system. Hence, the robot speed can be adjusted using a feedback algorithm. So far, all applied synchronized robot systems lack in achieving the accuracy of a stationary robot. One reason is the insufficient speed of control because of long processing times. Furthermore, the synchronization is enabled only in flow direction of the conveyor systems. All other movements and therefore deviations in pose perpendicular to the flow course are not considered. Furthermore economic application in industry is additionally hindered by the complexity and the costs of the systems.

Fig. 1 Prototype of the assembly in motion

5 Realization

In order to validate the described concept a robot based prototype has been realized within this research project. The implemented assembly process is the mounting of the wheels to a car body as shown in Fig. 1. This particular process is characterized by a tolerance of 0.13 mm. The whole process from detecting the car to gripping the wheels, synchronizing the robot and finally assembling the wheel has been realized in order to realistically reproduce the process. The prototype is based on an industrial robot which is mounted on a linear unit and carries up to 180 kg. Due to the linear axis the length of synchronized work is up to 7 m.

The car body is conveyed by a monorail conveyor system with a speed of 6 m/min. The conveyor system has been adapted so that a movement of 0.5 m in height can also be realized. This adaptation is necessary in order to simulate the behavior of different kinds of conveyor systems.

Special interest has been paid to the gripper system, shown in Fig. 4. As described previously a vision system and a compliant force–torque sensor have been implemented. The vision system is positioned in the middle of the gripper system in order to prevent occlusion and to realize near process measurements [10, 11].

The compliant force–torque sensor is mounted on top of the gripper system close to the robot flange. Due to the limited payload of the sensor three additional springs were positioned around it to parallelize the forces. The applied compliance compensates deviations between the robot and the assembly part up to 3 mm and 3_ in all dof.

The gripping of the wheel takes place on the tread so that the hole of the axis is free for the vision system. Furthermore, five automatic screw systems have been implemented to enable the mounting of the wheel.

7 Summary

The assembly in motion is one of the key factors in enabling economic automation in flow assembly lines. Due to the limited stiffness of conveyor and robot systems synchronization of the robot tcp and the assembly point is necessary. The described robot system realizes this kind of synchronization in all six degrees of freedom.

The developed robot system can be used in all kinds of flow assembly lines. Possible scenarios for the conveying belt synchronous assembly are all assembly processes

where large and heavy items are mounted like the cockpit,

the seats or the retractable roof.

Major advantages of the synchronized assembly are

the avoidance of buffers in front of and after automated

assembly cells, the avoidance of special conveyor systems

for automation and of ergonomically critical manual

workstations.

指导教师评语

指导教师签字

年月日

总体机械化组装生产线在生产uzbekkhimmash壳上的应用

V. K. Shitov UDC658.527-213

应用在Uzbekkhimmash壳生产过程的工程涉及调整和大量运输业务。后者是通过电动桥式起重机的帮助而延长了生产周期。为了按照VNIIPTkhimnefteapparatury消除这些缺陷,在车间构建了整体机械化装配生产线。它是用于生产直径从600到2.2米,长度达2000毫米,壁厚达20毫米的锅碳素钢和高合金钢炉盖(如图一)。一个设计好的边板通过起重机调到机械化辊式输送机1上,在转移到液压机2进行边缘弯曲。

一个旋转柱塞提供了360吨载荷的保证必要的曲率半径弯曲。后的第一个边沿的工作表通过报刊其中第二个优势是通过弯曲弯曲。第一个边沿弯曲后,薄板通过液压机进行第二个边的弯曲。模具拥有殊铰链的的装置使得薄板相对液压机准确的旋转角度。

折边板沿着辊式输送机3传送到三辊板弯机。输送机1和3通过由液压机操作台控制;同时输送机3也可以通过滚筒操作台控制。不一致的输送机操作防止了机器的阻塞。轧辊4弯曲半径需根据前面几道工序,使得薄板的最终弯曲满足要求。通过由吊车导轨和起重机构耦合的提起机构5,凌乱半成品壳转移到斜面装配导轨6(如图二)。吊装机器是由工人自己远程控制操作的。

半制成品壳然后根据其自身的重量沿倾斜组装轨道(45度角的斜坡)移动。该轨道总长度为49米。

图一、总体机械化在锅炉外壳的生产流水线、600-2200毫米直径:1)原理图,b)

总体图

图2、锅炉盖在装配轨上

第7站,组装好的壳准备内部的纵向对接焊。自动纵向对接焊从内壳上进行,由一个特别的八竿子安排的代理层下的pneumoflux坐垫处融合。两极的范围是2500毫米,电极丝直径为3毫米,焊接速度为10-50米/小时。

纵缝内焊接完成后,半成品的外壳被转移到9站进行接缝根处理。在这一站,壳的纵向焊接对接已经为外侧焊接做好了准备,然后将其运到ABC头的十头型阳台形的专用设备上。为了满足在各种直径的壳的焊接,阳台可在垂直方向以1.85米/分钟的速度移动。在阳台起重能力为1000公斤。在外壳焊接完成以后,壳通过三辊板弯机1校准并且转移到X光室进行焊缝质量控制。

为了防止半成品壳自身沿导轨滚动,在每一个工作位前的铁轨上装有停止装置12进行拦截。气动驱动器可以使停止装置让壳在倾斜轨道上停止或者移动,让他们通过,一次一个,到下一个加工的地方。

这个加工位置配有很好的涂胶滚动体驱动滚动轴承13,通过电力驱动帮助在必要的位置使壳停下。个道工序之间的半成品壳的转移都未经电动桥式起重机,从而减少操作之间的时间损失。全工业机械化流水线的引进使的壳生产周期有了可观的提速;使工作更容易和消除了化工设备在工业生产的一个瓶颈。

目前的努力主要是为了提高第二条生产线的的容量而准备,从壳船,这样一条流水线允许化工设备厂在整个生产过程的完成机械化。

基于机器人系统的自动化装配流线

摘要: 本文提出了一种很有潜力的自动化流水线的设计方法。所开发的系统使用标准的工业机器人并将它和产品在多个自由度上都同步。同步过程的启动是通过将装配过程划分成多个不的同阶段,通过控制适当的传感器控制各个阶段的机器人。此外,增加了一个与夹持系统相结合的符合器以减少高接触力和高频度引发

的疲劳偏差。同步装配的主要优点是避免了缓冲区和减少了吞吐时间。

关键词:装配、机器人、流水线

一、介绍

目前的装配系统必须应付大量的变异的产品同时使其质量和成本具有竞争力。因此,这些通常是手工装配系统或混合装配线[1]。特别是德国汽车制造商,其组装生产线主要是使用体力劳动[2]。自动化受制于需要的监控周期中,因为这些系统缺乏灵活性和必需分离的人与机器人[3]。

如图1所示,这种同步装配在工作或停止,这是解决装配流水线经济需求的一种方法[4]。虽然这个想法已经有大约50年了,但是它仍然需要进一步发展。现有制备运动中自动化装配流水线方法对,可根据输送系统以及机器人的同步原则区分。这些方法通过机械、引导或者控制同步的原则实现。机械同步是最简单的同步原则,因为它要么是基于压入配合,或者是一个联锁关节。缺点是输送系统需要机械适应性及精度低[5]。

更有潜力的是引导和控制是同步。如今的引导输送跟踪机大多数是安装在机器人控制系统中。使用该方法测量输送速度,用插补周期计算传输机到机器人的工具中心点(tcp)的差异。然后机器人的运动被机器人的控制修正。根据文献Dirndorfer[5]由于振动和机器人下面步骤产生的误差该系统无法取得最大精度小于1毫米的同步化。

用于同步的控制或反馈系统利用液压或电子算法。所有这些方法的共同点是在机器人与输送系统之间有一个常数的测量偏差。因此,这个机器人速度可利用反馈算法调整。到目前为止,所有应用同步实现机器人系统缺乏一个固定的机器人准确。原因之一是因长时间加工使得控制的速度不够。此外,同步激活只在输送系统的流动方向。所有其他动作姿势,因此不考虑在垂直于流动过程的偏差。此外,因为复杂性和成本系统,它在经济工业中的应用尤为受制。

七、总结

在运动中装配,其关键因素之一是将经济自动化装配线应用在装配流水线上。由于输送机的刚度有限和机器人系统同步的机器人tcp和装配点是必要的。所以描述中的机器人同步系统要实现所有六自由度。

发达的机器人系统可应用于各种流装配线。同步输送带可能出现在所有的装配过程中,又大又重的物品将被安,如装驾驶舱、座位或可伸缩的屋顶。这种同步化的主要优点是避免总前面的缓冲器和后后面的自动化装配单元,避免特殊的自动化输送系统同时符合人体工程学临界手册。

机械毕业设计英文外文翻译71车床夹具设计分析

附录A Lathe fixture design and analysis Ma Feiyue (School of Mechanical Engineering, Hefei, Anhui Hefei 230022, China) Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points. Keywords: lathe fixture; design; points Lathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle. THE MAIN TYPES OF LATHE FIXTURE Installed on the lathe spindle on the lathe fixture

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

机械设计外文翻译-- 机械加工介绍

毕业论文(设计) 外文翻译 题目:机械加工介绍

机械加工介绍 1.车床 车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。因此,在生产中使用的各种车床比任何其他种类的机床都多。 车床的基本部件有:床身、主轴箱组件、尾座组件、溜板组件、丝杠和光杠。 床身是车床的基础件。它能常是由经过充分正火或时效处理的灰铸铁或者球墨铁制成。它是一个坚固的刚性框架,所有其他基本部件都安装在床身上。通常在床身上有内外两组平行的导轨。有些制造厂对全部四条导轨都采用导轨尖朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。导轨要经过精密加工以保证其直线度精度。为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。导轨上的任何误差,常常意味着整个机床的精度遭到破坏。 主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。它提供动力,并可使工件在各种速度下回转。它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮(类似于卡车变速箱)所组成。通过变速齿轮,主轴可以在许多种转速下旋转。大多数车床有8~12种转速,一般按等比级数排列。而且在现代机床上只需扳动2~4个手柄,就能得到全部转速。一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。 由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因此当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。 尾座组件主要由三部分组成。底板与床身的内侧导轨配合,并可以在导轨上作纵向移动。底板上有一个可以使整个尾座组件夹紧在任意位置上的装置。尾座体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾座能与主轴箱中的主轴对正。尾座的第三个组成部分是尾座套筒。它是一个直径通常大约在51~76mm之间的钢制空心圆柱体。

机械类数控车床外文翻译外文文献英文文献车床.doc

Lathes Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod. The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle. The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers. Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up

外文文献翻译:汽车的发展

The development of automobile As the world energy crisis and the war and the energy consumption of oil -- and are full of energy in one day someday it will disappear without a trace. Oil is not inresources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society people invented the electric car. Electric cars will become the most ideal of transportation. In the development of world each aspect is fruitful especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications the application of the electronic device cars and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance but also improve the automobile fuel economy performance reliability and emission spurification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system electronic control ignition system electronic control automatic transmission electronic control ABS/ASR control system electronic control suspension system electronic control power steering system vehicle dynamic control system the airbag systems active belt system electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response the use function of quick car high reliability guarantees of engine power and reduce fuel consumption and emission regulations meet standards. The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example automatic transmission in road can not on the clutch can achieve automatic shift and engine flameout not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter gear transmission pump hydraulic control system electronic control system and oil cooling system etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going and stability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height low set to gas or oil cylinder filling or oil. If is opposite gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car car motions of state and optimum control performance and increased automobile adhesion controlling and stability. Besides these appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passengers safety and greatly reduce automobile in collision of drivers and passengers in the buffer to protect the safety of life. Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities

外文翻译(带图)

外文翻译 通常,应变计应用在两个方面:在机械和结构的实验力分析中和应用力,扭矩,压力,流量以及加速度传感器结构中。非粘贴丝式应变计通常是当作专门的转换器来使用,其结构是使用一些有预载荷的电阻丝连接成惠斯登电桥,如图4.11: 在最初的预载荷中,四根金属丝的应变和电阻在理论上是相等的,它们组成一个平衡电桥,并且e0 = 0 (参考第10章电桥电路特性)。输入端一个小的位移(满量程≈0.04 mm)将会使两根金属丝的拉力增大而使另外两根的拉力减小(假设金属丝不会变松弛),引起电阻阻值的变化,电桥失衡,输出电压与输入位移成比例。金属丝可以由砷镍、镍铬和铁镍等多种合金制造,直径约为0.03 mm,可以承受的最大应力仅为0.002 N,灵敏系数为2到4,每个桥臂的电阻为120Ω到1000Ω, 最大激励电压5到10V,满量程输出典型值为20到50mV。 粘结丝式应变计(现在主要被粘贴箔式结构的应变计取代)应用于应力分析和作为转换器。具有很细丝式敏感栅粘贴在待测试件表面,来感受应变。金属丝被埋入矩形的粘合剂中,不能弯曲从而如实地反映待测试件的压缩和拉伸应力。因为金属丝的材料和尺寸与那些非粘贴应变计相似,所以灵敏度和电阻具有了可比性。 粘贴箔式应变计采用与丝式应变计相同或类似的材料,现在主要用于多用途力分析任务及多种传感器中。 其感应元件是利用光腐蚀工艺加工成厚度小于0.0002的薄片,当其形状改变时,它具有很大的灵活性。如图4.12: 例如,这三个线形敏感栅应变计被设计成端部宽大的形状。这种局部的增大将会减小横向灵敏度,以及在测量应变沿敏感栅单元的长度方向的分量时产生的干扰输入信号。在丝式应变计中,这种端部形状也应用在纵向单元的连接处,以便增加横向抗干扰能力。并且在制造过程中也非常方便在图4.12上的全部四个应变计上焊接焊盘。

【机械类文献翻译】机床

毕业设计(论文)外文资料翻译 系部: 专业: 姓名: 学号: 外文出处:English For Electromechanical (用外文写) Engineering 附件:1.外文资料翻译译文;2.外文原文。 指导教师评语: 此翻译文章简单介绍了各机床的加工原理,并详细介绍了各机床的构造,并对方各机床的加工方法法进行了详细的描述, 翻译用词比较准确,文笔也较为通顺,为在以后工作中接触英 文资料打下了基础。 签名: 年月日注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 机床 机床是用于切削金属的机器。工业上使用的机床要数车床、钻床和铣床最为重要。其它类型的金属切削机床在金属切削加工方面不及这三种机床应用广泛。 车床通常被称为所有类型机床的始祖。为了进行车削,当工件旋转经过刀具时,车床用一把单刃刀具切除金属。用车削可以加工各种圆柱型的工件,如:轴、齿轮坯、皮带轮和丝杠轴。镗削加工可以用来扩大和精加工定位精度很高的孔。 钻削是由旋转的钻头完成的。大多数金属的钻削由麻花钻来完成。用来进行钻削加工的机床称为钻床。铰孔和攻螺纹也归类为钻削过程。铰孔是从已经钻好的孔上再切除少量的金属。 攻螺纹是在内孔上加工出螺纹,以使螺钉或螺栓旋进孔内。 铣削由旋转的、多切削刃的铣刀来完成。铣刀有多种类型和尺寸。有些铣刀只有两个切削刃,而有些则有多达三十或更多的切削刃。铣刀根据使用的刀具不同能加工平面、斜面、沟槽、齿轮轮齿和其它外形轮廓。 牛头刨床和龙门刨床用单刃刀具来加工平面。用牛头刨床进行加工时,刀具在机床上往复运动,而工件朝向刀具自动进给。在用龙门刨床进行加工时,工件安装在工作台上,工作台往复经过刀具而切除金属。工作台每完成一个行程刀具自动向工件进给一个小的进给量。 磨削利用磨粒来完成切削工作。根据加工要求,磨削可分为精密磨削和非精密磨削。精密磨削用于公差小和非常光洁的表面,非精密磨削用于在精度要求不高的地方切除多余的金属。 车床 车床是用来从圆形工件表面切除金属的机床,工件安装在车床的两个顶尖之间,并绕顶尖轴线旋转。车削工件时,车刀沿着工件的旋转轴线平行移动或与工件的旋转轴线成一斜角移动,将工件表面的金属切除。车刀的这种位移称为进给。车

汽车保险中英文对照外文翻译文献

汽车保险中英文对照外文翻译文献(文档含英文原文和中文翻译)

汽车保险 汽车保险是在事故后保证自己的财产安全合同。尽管联邦法律没有强制要求,但是在大多数州(新罕布什和威斯康星州除外)都要求必须购买汽车保险;在各个州都有最低的保险要求。在鼻腔只购买汽车保险的两个州,如果没有足够的证据表明车主财力满足财务责任法的要求,那么他就必须买一份汽车保险。就算没有法律规定,买一份合适的汽车保险对司机避免惹上官和承担过多维修费用来说都是非常实用的。 依据美国保险咨询中心的资料显示,一份基本的保险单应由6个险种组成。这其中有些是有州法律规定,有些是可以选择的,具体如下: 1.身体伤害责任险 2.财产损失责任险 3.医疗险或个人伤害保护险 4.车辆碰撞险 5.综合损失险 6.无保险驾驶人或保额不足驾驶人险 责任保险 责任险的投保险额一般用三个数字表示。不如,你的保险经纪人说你的保险单责任限额是20/40/10,这就代表每个人的人身伤害责任险赔偿限额是2万美元,每起事故的热身上海责任险赔偿限额是4万美元,每起事故的财产损失责任险的赔偿限额是1万美元。 人身伤害和财产损失责任险是大多数汽车保险单的基础。要求汽车保险的每个州都强令必须投保财产损失责任险,佛罗里达是唯一要求汽车保险但不要求投保人身伤害责任险的州。如果由于你的过错造成了事故,你的责任险会承担人身伤害、财产损失和法律规定的其他费用。人身伤害责任险将赔偿医疗费和误工工资;财产损失责任险将支付车辆的维修及零件更换费用。财产损失责任险通常承担对其他车辆的维修费用,但是也可以对你的车撞坏的灯杆、护栏、建筑物等其他物品的损坏进行赔偿。另一方当事人也可以决定起诉你赔偿精神损失。

电子 电流 外文翻译 外文文献 英文文献 高度稳压直流电源

高精度稳压直流电源 文摘:目前对于可调式直流电源的设计和应用现在有很多微妙的,多种多样的,有趣的问题。探讨这些问题(特别是和中发电机组有关),重点是在电路的经济适用性上,而不是要达到最好的性能。当然,对那些精密程度要求很高的除外。讨论的问题包括温度系数,短期漂移,热漂移,瞬态响应变性遥感和开关preregualtor型机组及和它的性能特点有关的的一些科目。 介绍 从商业的角度来看供电领域可以得到这样一个事实,在相对较低的成本下就可以可以获得标准类型的0.01%供电调节。大部分的供电用户并不需要这么高的规格,但是供应商不会为了减少客户这么一点的费用而把0.1%改成0.01%。并且电力供应的性能还包括其他一些因素,比如说线路和负载调解率。本文将讨论关于温度系数、短期漂移、热漂移,和瞬态的一些内容。 目前中等功率直流电源通常采用预稳压来提高功率/体积比和成本,但是只有某些电力供应采用这样的做法。这种技术的优缺点还有待观察。 温度系数 十年以前,大多数的商业电力供应为规定的0.25%到1%。这里将气体二极管的温度系数定位百分之0.01[1]。因此,人们往往会忽视TC(温度系数)是比规定的要小的。现在参考的TC往往比规定的要大的多。为了费用的减少,后者会有很大的提高,但是这并不是真正的TC。因此,如果成本要保持在一个低的水平,可以采用TC非常低的齐纳二极管,安装上差动放大电路,还要仔细的分析低TC绕线电阻器。 如图1所示,一个典型的放大器的第一阶段,其中CR1是参考齐纳二极管,R是输出电位调节器。

图1 电源输入级 图2 等效的齐纳参考电路 假设该阶段的输出是e3,提供额外的差分放大器,在稳定状态下e3为零,任何参数的变化都会引起输出的漂移;对于其他阶段来说也是一样的,其影响是减少了以前所有阶段的增益。因此,其他阶段的影响将被忽略。以下讨论的内容涵盖了对于TC整体的无论是主要的还是次要的影响。 R3的影响 CR1-R3分支的等效的电路如图2所示,将齐纳替换成了它的等效电压源E'和内部阻抗R2。对于高增益调节器,其中R3的变化对差分放大器的输入来说可以忽略不计,所以前后的变化由R3决定。 如果进一步假定IB << Iz;从(1)可以得到 同时,

机床加工外文翻译参考文献

机床加工外文翻译参考文献(文档含中英文对照即英文原文和中文翻译) 基本加工工序和切削技术 基本加工的操作 机床是从早期的埃及人的脚踏动力车和约翰·威尔金森的镗床发展而来的。它们为工件和刀具提供刚性支撑并可以精确控制它们的相对位置和相对速度。基本上讲,金属切削是指一个磨尖的锲形工具从有韧性的工件表面上去除一条很窄的金属。切屑是被废弃的产品,与其它工件相比切屑较短,但对于未切削部分的厚度有一定的增加。工件表面的几何形状取决于刀具的形状以及加工操作过程中刀具的路径。 大多数加工工序产生不同几何形状的零件。如果一个粗糙的工件在中心轴上转动并且刀具平行于旋转中心切入工件表面,一个旋转表面就产生了,这种操作称为车削。如果一个空心的管子以同样的方式在内表面加工,这种操作称为镗孔。当均匀地改变直径时便产生了一个圆锥形的外表面,这称为锥度车削。如果刀具接触点以改变半径的方式运动,那么一个外轮廓像球的工件便产生了;或者如果工件足够的短并且支撑是十分刚硬的,那么成型刀具相对于旋转轴正常进给的一个外表面便可产生,短锥形或圆柱形的表面也可形成。

平坦的表面是经常需要的,它们可以由刀具接触点相对于旋转轴的径向车削产生。在刨削时对于较大的工件更容易将刀具固定并将工件置于刀具下面。刀具可以往复地进给。成形面可以通过成型刀具加工产生。 多刃刀具也能使用。使用双刃槽钻钻深度是钻孔直径5-10倍的孔。不管是钻头旋转还是工件旋转,切削刃与工件之间的相对运动是一个重要因数。在铣削时一个带有许多切削刃的旋转刀具与工件接触,工件相对刀具慢慢运动。平的或成形面根据刀具的几何形状和进给方式可能产生。可以产生横向或纵向轴旋转并且可以在任何三个坐标方向上进给。 基本机床 机床通过从塑性材料上去除屑片来产生出具有特别几何形状和精确尺寸的零件。后者是废弃物,是由塑性材料如钢的长而不断的带状物变化而来,从处理的角度来看,那是没有用处的。很容易处理不好由铸铁产生的破裂的屑片。机床执行五种基本的去除金属的过程:车削,刨削,钻孔,铣削。所有其他的去除金属的过程都是由这五个基本程序修改而来的,举例来说,镗孔是内部车削;铰孔,攻丝和扩孔是进一步加工钻过的孔;齿轮加工是基于铣削操作的。抛光和打磨是磨削和去除磨料工序的变形。因此,只有四种基本类型的机床,使用特别可控制几何形状的切削工具1.车床,2.钻床,3.铣床,4.磨床。磨削过程形成了屑片,但磨粒的几何形状是不可控制的。 通过各种加工工序去除材料的数量和速度是巨大的,正如在大型车削加工,或者是极小的如研磨和超精密加工中只有面的高点被除掉。一台机床履行三大职能:1.它支撑工件或夹具和刀具2.它为工件和刀具提供相对运动3.在每一种情况下提供一系列的进给量和一般可达4-32种的速度选择。 加工速度和进给 速度,进给量和切削深度是经济加工的三大变量。其他的量数是攻丝和刀具材料,冷却剂和刀具的几何形状,去除金属的速度和所需要的功率依赖于这些变量。 切削深度,进给量和切削速度是任何一个金属加工工序中必须建立的机械参量。它们都影响去除金属的力,功率和速度。切削速度可以定义为在旋转一周时

汽车变速器设计外文翻译

汽车变速器设计 ----------外文翻译 我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。因此,我们希望发动机总是在最好的状态下工作。但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。这个矛盾要通过变速器来解决。 汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = w T,其中w是转动的角速度,T是扭距。当N固定的时候,w与T是成反比的。所以增速必减扭,减速必增扭。汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。 一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。不同的齿轮啮合就有不同的传动比,也就有了不同的转速。例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。 当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。 当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。

机械设计外文翻译--车床和铣床

中文4285字 附录1 LATHES & MILLING A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size. The basic machines that are designed primarily to do turning,facing and boring are called lathes. Very little turning is done on other types of machine tools,and none can do it with equal facility. Because lathe can do boring,facing,drilling,and reaming in addition to turning,their versatility permits several operations to be performed with a single setup of the workpiece. This accounts for the fact that lathes of various types are more widely used in manufacturing than any other machine tool. Lathes in various forms have existed for more than two thousand years. Modern lathes date from about 1797,when Henry Maudsley developed one with a leads crew. It provided controlled,mechanical feed of the tool. This ingenious Englishman also developed a change gear system that could connect the motions of the spindle and leadscrew and thus enable threads to be cut. Lathe Construction.The essential components of a lathe are depicted in the block diagram of picture. These are the bed,headstock assembly,tailstock assembly,carriage assembly,quick-change gearbox,and the leadscrew and feed rod. The bed is the back bone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy,rigid frame on which all the other basic components are mounted. Two sets of parallel,longitudinal ways,inner and outer,are contained on the bed,usually on the upper side. Some makers use an inverted V-shape for all four ways,whereas others utilize one inverted V and one flat way in one or both sets. Because several other components are mounted and/or move on the ways they must be made with precision to assure accuracy of alignment. Similarly,proper precaution should betaken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The ways on most modern lathes are surface hardened to

相关主题
文本预览
相关文档 最新文档