当前位置:文档之家› 历年高考排列组合试题及其答案

历年高考排列组合试题及其答案

历年高考排列组合试题及其答案
历年高考排列组合试题及其答案

圆梦辅导中心二项式定理历年高考试题荟萃

一、填空题 ( 本大题共 24 题, 共计 120 分)

1、 (1+2x)5的展开式中x2的系数是。(用数字作答)

2、的展开式中的第5项为常数项,那么正整数的值是 .

3、已知,则(的值等于。

4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答)

5、展开式中含的整数次幂的项的系数之和为。(用数字作答)

6、(1+2x2)(x -)8的展开式中常数项为。(用数字作答)

7、的二项展开式中常数项是。(用数字作答).

8、 (x2+)6的展开式中常数项是。(用数字作答)

9、若

的二项展开式中的系数为,则。(用数字作答)

10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于。

11、(x +)9展开式中x3的系数是。(用数字作答)

12

、若展开式的各项系数之和为32,则n= 。其展开式中的常数项为。(用数字作答)13、的展开式中的系数为。(用数字作答)

14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= 。

15、(1+2x)3(1-x)4展开式中x2的系数为 .

16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)

17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)

18、 (1+x3)(x+)6展开式中的常数项为_____________.

19、若x>0,则(2

+)(2-)-4(x-)=______________.

20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.

21、记(2x +)n的展开式中第m项的系数为b m,若b3=2b4,则n= .

22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)

23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.

24、展开式中x的系数为.

二项式定理历年高考试题荟萃答案

一、填空题 ( 本大题共 24 题, 共计 102 分)

1、40解析:T3=C(2x)2,∴系数为22·C=40.

2、解:∵的展开式中的第5项为,且常数项,

∴,得

3、-256

解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,

即(a0+a2+a4)+(a1+a3+a5)=0; ①

令x=-1,则有a0-a1+a2-a3+a4-a5=25,

即(a0+a2+a4)-(a1+a3+a5)=25. ②

联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.

4、57解析:1×1+2×=57.

5、答案:72解析:∵T r+1=

(=,

∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.

6、答案:-42解析:的通项T r+1=

=,∴(1+2x2)

展开式中常数项为=-42.

7、8、15解析:T r+1=x2(6-r)x-r =x12-3r,令12-3r=0,得r=4,∴T4==15. 9、答案:2解析:∵=,∴a=2.

10、答案:7解析:T r+1=C(2x3)n-r ()r=2C x x=2C x

令3n -r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.

11、84 T r+1=,∴9-2r=3∴r=3.∴84.

12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.

∴n=5.而展开式中通项为T r+1=(x2)r ()5-r =x5r-15.令5r-15=0,∴r=3.

∴常数项为T4=C35=10.

13、84 由二项式定理得(1-)7展开式中的第3项为T3=·(-)2=84·,

即的系数为84.

14、31 解析:由二项式定理中的赋值法,令x=0,则a0=(-2)5=-32.

令x=1,则a0+a1+a2+a3+a4+a5=-1.∴a1+a2+a3+a4+a5=-1-a0=31.

15、-6解析:展开式中含x2的项

m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·

14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.

16、10 32 展开式中通项为T r+1=(x2)5-r ()r =,其中常数项为

T3==10;令x=1,可得各项系数之和为25=32.

17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为

40.

18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为

所求,由T r+1=·()r =·x6-3r,∴当r=2时,=15.当r=3时,=20.

故原展开式中的常数项为15+20=35.

19、答案:-23 原式=4-33-4+4=-23.

20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.

21、5 记(2x+)n的展开式中第m项为T m =

a n-m+1

b m-1=·(2x)n-m+1·()m-1,则b m =·2n-m+1.又∵b3=2b4,∴·2n-2=2

×·2

n-3=,解得n=5.

22、答案:10 ·x4·=5×2=10.

23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,

由F r+1=x n-r ()r =x n-4r.∵2≤n≤8,可以验证n=5时成立.

24、2 展开式中含x的项

n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,

∴展开式中x的系数为2。

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

高考排列组合常见题型及解题策略

可重复的排列求幂法 相邻问题捆绑法 相离问题插空法 元素分析法(位置分析法) 多排问题单排法 定序问题缩倍法(等几率法) 标号排位问题(不配对问题) 不同元素的分配问题(先分堆再分配) 相同元素的分配问题隔板法: 多面手问题(分类法---选定标准) 走楼梯问题(分类法与插空法相结合) 排数问题(注意数字“0”) 染色问题 “至多”“至少”问题用间接法或分类: 十三.几何中的排列组合问题: 排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法?

【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有6 7种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、3 8 B 、8 3 C 、3 8A D 、 38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有3 8种 不同的结果。所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4 424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 22223242C A A A =432 种 其中男生甲站两端的有1 2 2 2 2 23232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排 列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法 种数是52 563600A A =种 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答) 【解析】: 111 789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合高考专项练习题

例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步。 (二)每一步是向上还是向右,决定了不同的走法。 (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有____ __种。 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换,共12种。 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有_______ _。 (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决。 (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法。 (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种。 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

完整版排列组合练习题及答案

排列组合》 一、排列与组合 1. 从9 人中选派2 人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有90 种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13 个 C.14 个 D.15 个 5.用0,1 ,2,3,4,5 这六个数字, (1 )可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000 的自然数? (5)可以组成多少个大于3000,小于5421 的数字不重复的四位数? 二、注意附加条件 1.6 人排成一列(1 )甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2. 由1 、2、3、4、5、6 六个数字可组成多少个无重复数字且是6 的倍数的五位数? 3. 由数字1 ,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379 个数是 A.3761 B.4175 C.5132 D.6157 4. 设有编号为1、2、3、4、5 的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

排列组合习题_(含详细答案)

圆梦教育中心 排列组合专项训练 1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法 (2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配, 可将名额分给2所学校、1所学校,共两类: 2 1 33C C +(种) (法2——挡板法) 相邻名额间共4个空隙,插入2个挡板,共: 246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每 个位置至少分配一个元素的问题.(位置有差别,元素无差别) 同类题一 题面: 有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案 答案:6 9C 详解: 因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板 方法对应一种分法共有69C 种分法。 同类题二 题面: 求方程X+Y+Z=10的正整数解的个数。 答案:36. 详解: 将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。 2.题2 (插空法,三星) 题面:某展室有9个展台,现有3件展品需要展出,要 求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48 同类题一 题面: 6男4女站成一排,任何2名女生都不相邻有多少种排法 答案:A 66·A 47种. 详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法. 同类题二 题面: 有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种 答案:C. 详解:恰有两个空座位相邻,相当于两个空位与第三个 空位不相邻,先排三个人,然后插空,从而共A 33A 24=72 种排法,故选C. 3.题3 (插空法,三星) 题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位. 1]没有坐人的7个位子先摆好, [2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有: 58A =6720种排法. (法2)[1]5个男生先排好:55A ; [2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高考试题分类解析排列组合二项式定理

高考试题分类解析排列组 合二项式定理 Last revision date: 13 December 2020.

2005年全国高考试题分类解析(排列组合、二项式定理) 选择题 1. (全国卷Ⅱ)10()x 的展开式中64x y 项的系数是( ) (A) 840 (B) 840- (C) 210 (D) 210- 2.(全国卷Ⅲ)在(x?1)(x+1)8的展开式中x 5的系数是( ) (A )14 (B )14 (C )28 (D )28 3.(北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) (A )124414128C C C (B )124414128 C A A (C )12441412833C C C A ( D )12443141283C C C A 4.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) (A )144 4C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 5.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游 览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙 两人不去巴黎游览,则不同的选择方案共有( ) A .300种 B .240种 C .144种 D .96种 6.(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给 4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那 么不同的分法种数是( ) A .168 B .96 C .72 D .144 7.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A .48 B .36 C .24 D .18 8.(江苏卷)设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( ) ( A ) 10 ( B ) 40 ( C ) 50 ( D )80 9.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( ) (A )96 (B )48 (C )24 (D )0 10.(江西卷)123)(x x +的展开式中,含x 的正整数次幂的项共有 ( )

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

历年高考排列组合试题及其答案

二项式定理历年高考试题荟萃(三) 一、填空题(本大题共 24 题, 共计102分) 1、(1+2x)5的展开式中x2的系数是________.(用数字作答) 2、的展开式中的第5项为常数项,那么正整数的值 是. 3、已知,则( 的值等于 . 4、(1+2x2)(1+)8的展开式中常数项为。(用数字作答) 5、展开式中含的整数次幂的项的系数之和为(用数字作答). 6、(1+2x2)(x-)8的展开式中常数项为。(用数字作答) 7、的二项展开式中常数项是(用数字作答). 8、 (x2+)6的展开式中常数项是.(用数字作答) 9、若的二项展开式中的系数为,则______(用数字作答). 10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等 于. 11、(x+)9展开式中x3的系数是.(用数字作答)

12、若展开式的各项系数之和为32,则n= ,其展开式中的常数项为。(用数字作答) 13、的展开式中的系数为.(用数字作答) 14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________. 15、(1+2x)3(1-x)4展开式中x2的系数为 . 16、的展开式中常数项为 ; 各项系数之和 为 .(用数字作答) 17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、(1+x3)(x+)6展开式中的常数项为_____________. 19、若x>0,则(2+)(2-)-4(x-)=______________. 20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________. 21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= . 22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答) 23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.

排列组合典型题大全含答案

排列组合典型题大全 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看 作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住 店处理的策略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法 (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果 (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 1、4封信投到3个信箱当中,有多少种投法 2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况 3、4个同学参加3项不同的比赛 (1)每位同学必须参加一项比赛,有多少种不同的结果 (2)每项竞赛只许一名同学参加,有多少种不同的结果 4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少又他们争夺这4项比赛的冠军,获得冠军的可能性有多少 5、甲乙丙分10瓶汽水的方法有多少种 6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 (A)10种(B) 20种(C) 25种 (D) 32种 7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种 8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种 思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有 【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4 424 A 种

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

相关主题
文本预览
相关文档 最新文档