当前位置:文档之家› 土壤氮的生物化学循环

土壤氮的生物化学循环

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪 一、方法原理 土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。 1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。 2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。 直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。直接提取法测定土壤微生物量的碳的方法日趋成熟。现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。 二、主要仪器 振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。 二、试剂 1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。 2.0.5 mol·L-1 K2SO4浸提液:43.57g分析纯K2SO4定溶至1L。 四、操作步骤 称取过2mm筛的新鲜土样12.5g六份,置于小烧杯中。将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。另三份土壤放入另一干燥器中,但不放氯仿。 将熏蒸的土样全部转移至150 mL三角瓶中,加入50mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30min,过滤。未熏蒸土样操作相同,同时做空白。 五、结果计算 土壤微生物量碳 =(熏蒸土壤有机碳-未熏蒸土壤有机碳)/0.45 式中:0.45——将熏蒸提取法提取液的有机碳增量换算成土壤微生物生物量碳所采用的转换系数(kEc)。 一般量容法采用的kEc值为0.38,仪器分析法kEc 取值0.45。 六、注意事项 1.氯仿致癌,操作时应在通风厨中进行。 2.打开真空干燥器时,要听声音,如没空气进去的声音,试验需重做。 3.应注意试剂的厂家,有些厂家的K2SO4试剂不宜浸提土壤微生物量碳。 4.浸提液应立即用TOC-V CPH有机碳分析仪测定或在-18℃下保存。 1.23.2土壤微生物量氮的测定 一、方法原理 土壤微生物态氮是土样在CHCl3熏蒸后直接浸提氮含量,并进行测定,以熏蒸和不熏蒸

农业生态系统碳循环研究2013

农业生态系统碳循环研究 摘要:在人们对温室效应理解不断加深的同时,全球碳循环的研究也随着技术的进步不断深入。与人类生产生活关系最密切的是陆地生态系统碳循环研究,而农业生态系统碳循环研究是其中最为重要的一部分。经过国内外研究者的努力,已对农业生态系统碳源/汇效益、碳循环影响因素、模拟模型、碳通量及农业生态系统对全球变暖的响应等诸多研究内容取得极为重要的成果。但在一些问题上尚存在不小争议,对一些过程尚不能清楚认识,对一些因素尚不能准确联系。 关键词:农业生态系统;碳循环;低碳农业; 近百年来,全球变暖已成为不争事实,温度的上升对整个地球环境和人类生产生活产生了巨大的影响,产生了一系列严重的和不可逆转的后果:草原和荒漠面积增加,森林面积减少;热带扩展,副热带、暖热带和寒带缩小,寒温带略有增加;农业的种植决策、品种布局和品种改良、土地利用、农业投入和技术改进等受到影响;加剧了目前日趋紧张的水资源问题;改变了区域降水、蒸发分布状况;引发环境问题,增加了对人类及其生存环境的压力[1]。 随着全球气候变化研究的不断深入,对全球气候变暖形成原因的理解也产生了一些分歧:一部分人认为人类改造自然的活动是全球气候变暖的主要原因;另一部分人认为全球气候变暖是气候周期性变化的结果,太阳活动和火山活动是变化的主要原因,而人类活动不是决定性原因。但不论全球气候变暖的主要原因是什么,人类活动对整个地球系统产生的巨大影响不容忽视,人类活动排放出以CO2为主的温室气体引起了全球碳循环的变化,而这一变化又进一步影响到全球气候的变化,产生不利于人类生存及发展的变化。碳循环研究在此种局势下显示出极为重要的意义。 根据Falkowski研究结果表明,陆地生态系统蓄积了总量大约为2 000 Gt(1Gt=1×1015g)的碳[2]。尽管相较于岩石圈>60 000 000Gt和海洋38 400Gt的碳量,陆地生态系统蓄积的碳量十分微弱,但是人类主要的生产生活空间位于陆地上,人类的行为最直接的影响陆地生态系统,且产生的影响最大,使得这部分碳储量的变化体现出非同一般的可变性和极为显著的重要性。土壤碳库是温室气体重要的释放源,也是重要的吸收汇[3]。正因为人类活动的强烈影响,可以说全球碳循环中最大不确定性主要来自陆地生态系统。陆地生态系统碳循环过程可以解释为:植物通过光合作用将大气中的CO2吸收存于植物体内,形成有机化合物并固定起来,而后一部分有机物在植物的呼吸作用和土壤及枯枝落叶层中有机质腐烂过程中返回大气。这样的一个循环过程就形成了大气-陆地植被-土壤-大气整个陆地生态系统的碳循环[4]。 在人类活动中,农业生产对陆地生态系统起了巨大的影响,农业生产不仅改变了原有的土地利用方式,改变了原有植被种类,甚至改变了土壤类型,并因这些改变对原有碳循环产生了极为重要的影响。1850-1990年期间,土地利用变化造成的CO2排放量约为124Gt,而其中贡献最大的是农业的扩张。在农业活动中,耕地所造成的总净通量约占68%,牧草占13%,迁移农业占4%。人类活动已经强烈改变了原有的全球碳循环模式[5]。 1. 农业生态系统碳源?碳汇? 农业生态系统是碳汇还是碳源,这是首先需要回答的问题。 农业生态既可以是碳汇,也可以是碳源。农业碳排放主要源于农业废弃物、肠道发酵、粪便管理、农业能源利用、稻田以及生物燃烧。而农业生态系统的碳主要固定在作物和土壤中。农田生态系统中,农田管理措施、土壤性质是影响土壤有机碳固定、转化及释放的主要因素,同时还受土地利用方式、植物品种、气候变化等多种因素影响[3]。不同的农业生态系统因自身特点呈现出不同的碳通量,同一农业系统因管理方式或利用方式不同,甚至可以

全球氮循环

亚热带盐沼湿地土壤氮循环关键过程对全球变化的响应

摘要 河口盐沼湿地受到了陆地和海洋相互作用的影响,可以认为是生物活动较为活跃的地区,同时也是地球化学过程最为活跃的地区,对人类和社会有着重要的影响。氮在大气组分占78%,是大气圈中最丰富的元素,其在环境介质中的含量会直接影响到周围生物的生长。由于目前大量的人为输入氮源对河口的盐沼湿地已经产生了巨大的影响,河口地带出现赤潮、河口溶解氧含量锐减,以及大量的温室气体从河口溢出等环境效应。本研究以福州闽江河口盐沼湿地为研究对象,充分的研究了土壤氮循环的关键过程对全球变化的响应,通过野外采集、实验室模拟的方式,定量的研究了闽江河口盐沼湿地土壤-水体界面的氮循环过程,分别研究了盐入侵、植物入侵、酸沉降和盐沼湿地改为养虾塘后,土壤中硝化、反硝化和矿化作用的变化情况,探讨了氮在河口湿地的变化,及其在河口湿地扮演的重要角色。主要得到的研究结果如下: 1、植物入侵对氮循环的影响 无机氮和总氮:(1)互花米草入侵改变了土壤NO3--N含量在不同土层含量,可显著降低土壤的NO3--N含量,但整体增加了土壤的NH4+-N含量。(2)互花米草不同入侵过程土壤TC、TN含量以及C/N比的垂直变化特征均比较一致,入侵整体增加了土壤的碳氮含量和C/N比和土壤的碳氮储量。(3)闽江口互花米草入侵对短叶茳芏湿地土壤碳氮含量的影响相对于江苏盐城、长江口以及杭州湾湿地的影响可能更为显著,主要与其对闽江口湿地植物群落格局、养分生物循环以及强促淤作用引起的土壤颗粒组成等的显著改变有关。互花米草入侵亦改变了土壤中陆源和海源有机质的来源比例,使得入侵后湿地土壤养分的自源性增强。 硝化和反硝化:(1)闽江河口湿地土壤的反硝化速率远高于硝化速率,且呈现明显的季节变化,夏季的硝化-反硝化作用最强。不同季节条件下,土壤硝化-反硝化速率由大到小顺序,硝化速率:夏季>春季>秋季>冬季,反硝化速率:夏季>秋季>冬季>春季;按不同植被类型下土壤硝化-反硝化速率由大到小顺序,硝化速率:入侵边缘>互花米草>短叶茳芏,反硝化速率:互花米草>交汇处>短叶茳芏。(2)闽江河口湿地不同植被类型下沉积物-水界面N2O交换通量呈现明显的季节变化。土著物种短叶茳芏的土壤仅春季对上覆水N2O有微量吸收,夏、秋两季均对水体释放N2O,表现为水体中N2O的净源;由于互花米草的入侵,入侵边缘的土壤为春季释放N2O,而夏、秋两季土壤均吸收N2O,与土著物种短叶茳芏完全相反;互花米草入侵成功后的土壤,其夏季的沉积物-水界面N2O交换通量达到最大,表现为向水体释放较多的N2O,而其春、秋两季都为吸收N2O,但吸收总量小于释放量。(3)闽江口湿地互花米草入侵后,增强了土壤的硝化-反硝化作用,促进了N2O对大气的释放。

森林生态系统土壤碳库与碳吸存对氮沉降的响应

森林生态系统土壤碳库与碳吸存对氮沉降的响应 1引言 近几十年来石化燃料燃烧、化肥使用及畜牧业发展等向大气中排放的含氮化合物激增并引起大气 N 沉降成比例增加。并且全球 N 沉降水平预计在未来 25 a 内会加倍,目前人类对全球 N 循环的干扰已经远远超过对地球上其它主要生物地球化学循环的影响。从 20 世纪 80 年代起,欧洲和北美的生态学家就开始在温带森林开展了 N 沉降对森林结构和功能影响的研究。目前,N 沉降研究已成为国际上生态和环境研究的热点内容之一。 土壤碳库是陆地生态系统碳库中最大的贮库,并且是其中非常活跃的部分[10]。全球约有 1.4×1018 ~ 1.5×1018g 碳是以有机质形态储存于地球土壤中,是陆地植被碳库(0.5×1018 ~ 0.6×1018 g)的 2 ~ 3 倍,是大气碳库(0.7×1018 g)的 2 倍[10]。土壤碳库在维持全球碳平衡中的巨大作用使土壤碳库对人类活动的响应已成为国内外研究的热点[11]。由于土壤碳库巨大,它的波动对大气 CO2 浓度产生重要的影响。同时,增加土壤有机碳存储可有效促进陆地生态系统对大气 CO2 固定和延缓温室效应。土壤碳周转速率慢,受各种干扰影响小,能维持较长时期的碳储藏。影响森林生态系统土壤碳库的因素很多,如森林的采伐、开垦、火烧以及在全球变化背景下的全球变暖、UVB 辐射增强、N 沉降等,在这些方面已相继展开了大量研究。目前国内外对土壤碳库的研究多是针对当前环境下某种生态系统的土壤碳含量、碳储量的估算,不能很好的预测全球环境变化对土壤碳库的影响。大气 N 沉降借助其对凋落物分解和土壤呼吸的直接或间接作用,极大地影响了生态系统土壤碳蓄积过程,并且大部分沉降到森林生态系统中的 N 都被固定在土壤中,直接与土壤碳库相互作用[17]。全球存在 116PgC/yr 的碳失汇,部分是由于大气中 N 沉降增加及其与碳循环相互作用的结果[18]。所以深入探讨大气 N 沉降对土壤碳库的影响具有重要的价值,已经成为 2006 年 IGBP 计划第二期中陆地生态系统与大气过程相互作用的研究重点。虽然国内已有了很多关于 N 沉降对凋落物分解和土壤呼吸、根系周转方面的论述,但全面反映N 沉降对土壤碳库影响的研究尚未见报道。本文对国内外在土壤碳库如凋落物分解、土壤呼吸、根系周转等方面对 N 沉降响应的研究进展进行了综述,为进一步开展相关研究作参考。

氮循环

[强化训练] 一、选择题: 1、起固定氮作用的化学反应是() A、N 2与H 2 在一定条件下合成NH 3 B、NO与O 2 反应生成NO C、NH 3被O 2 氧化成NO和H 2 O D、由NH 3 制备化肥NH 4 HCO 3 2、Murad等三位教授最早提出NO分子在人体内有独特功能,近年来此领域研究有很大进展,因此这三位教授荣获了1998年诺贝尔医学及生理学奖。关于NO的下列叙述不正确的是() A、NO可以是某些含低价N物质氧化而来的产物 B、NO不溶于水 C、NO可以是某些含高价N物质还原而来的产物 D、NO是红棕色气体 3、将盛有氮气和二氧化氮(假设无N 2O 4 )混合气体的试管倒立于水中,经过足够长时间后, 试管内气体的体积缩小为原来的一半,则原混合气体中氮气与二氧化氮的体积比是() A、1:1 B、1:2 C、1:3 D、3:1 4、发射卫星的运载火箭,其推进剂引然后发生剧烈反应,产生大量高温气体从火箭尾部喷 出。引然后产生的高温气体主要是CO 2、H 2 O、N 2 、NO,这些气体均为无色,但在卫星发射现 场看到火箭喷出大量红烟,产生红烟的原因是() A、高温下N 2遇空气生成NO 2 B、CO 2 与NO反应生成CO和NO 2 C、NO遇空气生成NO 2 D、NO和H 2 O反应生成H 2 和NO 2 5、现在城市每日空气质量报告中涉及的污染物主要指的是() A、SO 3、NO 2 、尘埃 B、CO、NO 2 、尘埃 C、SO 2、NO、可吸入颗粒物 D、SO 2 、NO 2 、可吸入颗粒物 6、下列叙述的内容与光化学烟雾无关的是() A、引起大气污染的氮氧化物主要是NO、NO 2 B、化石燃料的燃烧产生CO和粉尘污染大气 C、汽车尾气是城市大气中氮氧化物的主要来源之一 D、氮氧化物和碳氢化合物受太阳紫外线作用,发生光化学反应产生的有毒物质混合在一起形成浅蓝色烟雾 7、室内空气污染主要来自() ①建筑物自身;②人自身;③室内装饰材料;④水;⑤人为活动;⑥空气;⑦室外 A、①②④⑤ B、①③⑥⑦ C、①③⑤⑦ D、②③⑤⑦ 8、下列叙述不正确的是() A、治理光化学烟雾污染,就必须对汽车尾气进行净化处理 B、大气中可吸入颗粒物的源头是工业烟尘和灰尘 C、大气中可吸入颗粒物的直径在10nm以下 D、室内装饰材料挥发出来的有害物质主要是苯和甲醛 9、造成降水pH降低的主要原因,是降水中溶有() A、亚硫酸、硫酸、硝酸 B、碳酸、硫酸、硝酸 C、氢硫酸、碳酸、硫酸 D、盐酸、硫酸、硝酸 10、食油在锅内过热着了火,离开火炉后,火仍不熄灭,此时熄灭它的最好方法是() A、立即浇水 B、用灭火器 C、把油泼掉 D、盖严锅盖 11、对某地区空气质量检测的结果显示,二氧化硫的污染指数是40,二氧化氮的污染指数是60,可吸入颗粒物的污染指数是140。以下是对该地区空气状况评价,其中不正确的是()

生物化学名词解释及简答题

生物化学 1、生物化学的主要内容是什么? 答:(一)生物体的化学组成、分子结构及功能 (二)物质代谢及其调控 (三)遗传信息的贮存、传递与表达 2、氨基酸的两性电离、等电点是什么? 答:氨基酸两性电离和等电点,氨基酸的结构特征为含有氨基和羧基。氨基可以接受质子而形成NH4+,具有碱性。羧基可释放质子而解成COO—,具有酸性。因此氨基酸具有两性解离的性质。在酸性溶液中,氨基酸易解离成带正电荷的阳离子,在碱性溶液中,易解成带负电的阴离子,因此氨基酸是两性电解质。当氨基酸解离成阴、阳离子趋势相等,净电荷为零时,此时溶液和PH值为氨基酸的等电点。 3、什么是肽键、蛋白质的一级结构? 答:在蛋白质分子中,一个氨基酸的a羧基与另一个氨基酸的a氨基,通过脱去一分子的H2O所形成化学键(---CO—NH--- )称为肽键。蛋白质肽链中的氨基酸排列顺序称为蛋白质一级结构。 4、维持蛋白质空间结构的化学键是什么? 答:维持蛋白质高级结构的化学键主要是次级键,有氢键、离子键、疏水键、二硫键以及范德华引力。 5、蛋白质的功能有哪些? 答:蛋白质在体内的多种生理功能可归纳为三方面: 1.构成和修补人体组织蛋白质是构成细胞、组织和器官的主要材料。 2.调节身体功能 3. 供给能量 6、蛋白质变性的概念及其本质是什么?

答:天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 7、酶的特点有哪些? 答:1、酶具有极高的催化效率 2、酶对其底物具有较严格的选择性。 3、酶是蛋白质,酶促反应要求一定的PH、温度等温和的条件。 4、酶是生物体的组成部分,在体内不断进行新陈代谢。 8、名词解释:酶活性中心、必需基团、结合基团、催化基团 答:酶活性中心:对于不需要辅酶的酶来说,活性中心就是酶分子在三维结构上比较靠近的少数几个氨基酸残基或是这些残基上的某些基团,它们在一级结构上可能相距甚远,甚至位于不同的肽链上,通过肽链的盘绕、折叠而在空间构象上相互靠近;对于需要辅酶的酶来说,辅酶分子,或辅酶分子上的某一部分结构往往就是活性中心的组成部分。一般还认为活性中心有两个功能部位:第一个是结合部位,一定的底物靠此部位结合到酶分子上,第二个是催化部位,底物的键在此处被打断或形成新的键,从而发生一定的化学变化。 酶的分子中存在有许多功能基团例如,-nh2、-cooh、-sh、-oh等,活性中心是酶分子中能与底物特性异结合,并将底物转化为产物的部位。酶分子的功能团基团中,那些与酶活性密切相关的基团称做酶的必需基团。有些必需基团虽然在一级结构上可能相距很远,但在窨结构上彼此靠近,集中在一起形成且定窨构象的区域,能与底物特异的结合,并将底物转化为产物。这一区域称为酶的活性中心。但并不是这些基团都与酶活性有关。一般将与酶活性有关的基团称为酶的必需基团 构成酶活性中心的必需基团可分为两种,与底物结合的必需基团称为结合基团,促进底物发生化学变化的基团称为催化基团。活性中心中有的必需基团可同时具有这两方面的功能。还有些必需基团虽然不参加酶的活性中心的组成,但为维持酶活性中心应有的空间构象所必需,这些基团是酶的活性中心以外的必需基团 9、酶共价最常见的形式是什么? 答:酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化甩脱甲化、腺苷化与脱腺苷化,以及—SH与—S—S—的互变等。 10、酶促反应动力学中,温度对反应速度的影响是什么?

生物化学

名词解释: 1蛋白质的一级结构 2蛋白质的三级结构 3结构域 4蛋白质的四 级结构 5蛋白质的等电点 6蛋白质的变性 7肽单元 8肽键 9模体10 16酶 26 循环 41ATP 51酶的区 72转录基因 95回文结构102限制性核酸内切酶103基因组文库104质粒105转化106转导107PCR 108 克隆109DNA重组110受体111G蛋白 112第二信使113蛋白激酶114自身磷酸化115小G蛋白 问答: 1什么是蛋白质的二级结构?它主要有哪几种?2简述α-螺旋结构特征3简述常用的蛋白质分离纯化方法4简述谷胱甘肽的结构特点和功能5哪些因素影响蛋白质α—螺旋结构的形成或稳定6简述细胞内主要的RNA及主要功能7简述真核生物mRNA的结构特点8简述B-DNA的结构要点9简述Chargff规则10什么是单纯酶?什么是结合酶?酶辅助因子有几类?11何为酶的特异性(专一性),举例说明酶的特异性有几种?12何为酶的活性中心,酶的必需基团?13何谓酶促反应动力学?影响酶促反应速率的因素有哪些?14什么是同工酶及同工酶的生物学意义?15试说明酶变构调节的机制及生物学意义? 16什么是酶的化学

修饰调节?有何特点?17什么是酶的可逆抑制,不可逆抑制?可逆抑制有几种?各有何特点?18简述糖酵解的关键酶反应19简述磷酸戊糖途径的生理意义?20简述三羧酸循环的要点21简述三羧酸循环的生理意义22写出三羧酸循环中的脱氢酶促反应23简述糖异生的关键酶反应24简述乳酸循环形成的原因及其生理意义25简述6-磷酸葡萄糖的代谢途径及其在糖代谢中的作用26比较糖的有氧氧化与无氧氧化的特点27 6-磷酸葡糖糖在肝脏的代谢去路有哪些?28简述酮体的生成过程29简述血浆脂蛋 白的分类,来源及主要功能 30简述磷脂酶的种类及其作用特点31 1分子软脂酸彻底氧化分解净生成多少分子ATP?请写出计算依据32乙酰CoA在脂类代谢中的来源与去路33简述呼吸链的组成及各复合体的主要作用34氧化磷酸化的抑制剂分哪几类?请举例分别说明其作用特点35简述NADH氧化呼吸链,如果鱼藤酮错在时其结果如何?36影响氧化磷酸化的因素有哪些,请简述其主要作用37胞浆中NADH是通过何种机制转运而进入线粒体的? 以肝细胞为例,说明其转运过程 38 40 43 作用 48 平? 56 58 60 6466试述参与聚合 70 73 76 的特点 作用特点84 8789简述外源性基因与载体的主要连接方式90一种可靠的DNA诊断学方法应符合哪些条件91简述基因位点特异性重组与同源重组的差别92什么是质粒?为什么质粒可作用基因载体 93简述原核表达体系和真核表达体系的优缺点94已知有一mRNA分子,怎样能使它翻译出相应的蛋白质?简述其过程。95叙述膜受体介导的信息传递途径的机制96试述胰高血糖使血糖升高的机制97说明类固醇激素的作用机制98简述细胞内小分子第二信使的共同特点99简述Ca依赖性蛋白激酶途径的信号转导过程100简述受体与配体的结合特点101简述G蛋白的结构特点,分类及作用机制102简 述野生型p53基因的抑癌机制

生物化学(人卫版)名词解释整理

生物化学名词解释整理版 章节根据人民卫生出版社第7版《生物化学》划分 参考教学PPT、各教辅术后习题及试卷标准答案 整理录入/清水秋香 第一章蛋白质结构与功能 isoelectric point, pI:氨基酸的等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。Peptide bond:肽键。由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的酰胺键。 Glutathione,GSH:谷胱甘肽。由谷氨酸,半胱氨酸,甘氨酸组成的三肽。是体内重要的还原剂。 peptide unit:肽单元。参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成了所谓的肽单元。peptide plane:肽平面。肽链主链的肽键C-N具有部分双键的性质,因而不能自由的旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽单位平面,又称酰胺平面。通常是反式的。 α-helix:α-螺旋。常见的蛋白质二级结构之一。为具有最大氢键联系的右手螺旋,侧链伸向螺旋外侧,每3.6个氨基酸残基螺旋上升一圈,螺距0.54nm。 motif:模体。在一个或几个蛋白质中出现的2个或2个以上二级结构元件的不同折叠形式,又称折叠或超二级结构。也是在DNA中对特殊序列的描述。 zinc finger:锌指结构。一种常见的模体。由1个α-螺旋和2个反平行的β-折叠共3个肽段组成,形似手指, 能够结合锌离子,锌指具有结合DNA的功能。 Domain:结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域(domain) 。 Molecular chaperon:分子伴侣。是细胞内一类可识别肽链的非天然构象、促进各功能域和整体蛋白质正确折叠的保守蛋白质。 Cooperativity:协同效应。一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应。 如果是促进作用则称为正协同效应 如果是抑制作用则称为负协同效应 allosteric effect:变构效应。蛋白质因与小分子物质相互作用而发生空间结构的改变,导致蛋白质功能的变化,称为变构效应。 Protein PI:蛋白质等电点。当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。Denaturation:蛋白质的变性。在某些物理和化学因素作用下,其特定的空间构象被破坏,即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。Renaturation:蛋白质的复性。若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能 第二章核酸的结构与功能

中科院生态环境研究中心土壤学试题[1]

07年中科院生态环境研究中心土壤学试题一:填空与选择:(5分1题) 1、旱地土壤淹水后土壤PH值是(升高/降低/不变) 2、国际制、美国制和中国制中对于“砾”的直径尺寸要求都是大于_________ 3、草甸土、水稻土、沼泽土哪个是地带性土壤:________ 4、 N、P、K中哪些能被矿物固定:________ 5、土壤固相包括哪三个部分:______、________、_________ 6、土壤胶体吸附的Na+、Fe3+、H+中哪些是必须元素_______、哪些是有益元素_________ 二:名词解释(5分1题) 1、土壤肥力(农学家的定义): 2、地下水临界深度: 三:计算题(10分1题) 1、从“孔度=孔隙体积/土壤体积” 推导出“孔度=1-(容重/密度)” 2、(记不清了) 四:实践题(10分1题) 1、试列举提高土壤有机质含量常用的三种措施,并简要解释原理 2、试列举提高土壤氮肥利用率的三种措施,并简要解释原理 3、为什么开垦土壤后土壤有机质会普遍减少?

五:问答题(15分1题) 1、比较团粒结构和非团粒结构土壤肥力特性差异 2、比较旱田和水田的水分运动方式的不同 六论述题(30分1题) 你认为肥沃的土壤应该具备哪些特性? 09年中科院生态环境研究中心土壤学试题 一简答题 1.主要成土过程: 2.土壤污染物的类型及危害: 3.土壤氧化还原体系: 4.土壤磷循环: 二论述题 1.土壤水分的运动特点及对土壤养分迁移转化的影响; 2.列举一种农作物的耕作措施对土壤碳氮循环的影响; 3.有机质的物理化学生物分组及其对生态系统碳循环的影响。 中科院生态所2006土壤学试题 昨天考完,原来感觉不错,但是对了英语答案,我心悬了,本来估分有370左右的,现在难说了,反正英语问题不小。专业课我想100分以上应该可以吧。我在抄题目的时候老师制止了,还有最后一道25分大题没抄到。 一,名词解释每题5分 土壤土壤肥力粘土矿物电荷零点土壤污染土壤缓冲容量土壤微生物生物量消化作用富铝化作用土壤诊断层 二,简答题每题10分 1。简述高岭石,蛭石和绿泥石的结构特征和主要性质 2。简述土壤有机质转化过程(矿质化过程和腐殖化过程)

土壤微生物量碳氮的测定

土壤微生物量的测定 一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳自动分析法) 1、试剂配制 (1)去乙醇氯仿制备:市售氯仿一般含有少量乙醇作为稳定剂,所以,使用前必须将其中的乙醇去掉。方法是量取适量的分析纯氯仿,按1 2(v : v)的比例与蒸馏水或去离子水一起放入分液漏斗中,充分摇动1min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于暗色试剂瓶中,在低温(4℃)、黑暗状态下保存。注意:氯仿具有致癌作用,所有操作必须在通风橱中进行。 (2)氢氧化钠溶液[c(NaOH)= 1mol L-1] (3)硫酸钾浸提剂[c(K2SO4)= 0.5mol L-1]:取1742.6 g分析纯硫酸钾,用研钵磨成粉末装,倒于25L塑料桶中,加蒸馏水至20L,盖紧螺旋盖置于摇床(150 r min-1),溶解24 h。 (4)六偏磷酸钠溶液(5%,pH2.0):50.0g分析纯六偏磷酸钠溶于800ml双蒸水,用分析纯浓磷酸调节至pH2.0,再用双蒸水定容至1L。注意:六偏磷酸钠溶解速度很慢应提前配制,且由于其易粘于烧杯底部,加热时常因受热不均使烧杯破裂。 (5)过硫酸钾溶液(2%):20.0g分析纯过硫酸钾溶于双蒸水,定容至1L。注意:过硫酸钾溶液易被氧化,应避光存放,使用期最多为7d。 (6)磷酸溶液(21%):37ml 85%分析纯浓磷酸与188ml双蒸水混合。 (7)邻苯二甲酸氢钾标准溶液[ρ(C6H4CO2HCO2K)= 1000mg C L-1]:2.1254g分析纯邻苯二甲酸氢钾(称量前先经105℃烘2~3h),溶于双蒸水,定容至1L。 2、仪器设备 碳–自动分析仪(Phoenix 8000)、真空干燥器(直径22cm)、水泵抽真空装置(图6–1)或无油真空泵、pH–自动滴定仪、塑料桶(带螺旋盖可密封,体积50L)、可密封螺纹广口塑料瓶(容积1.1L)、高温真空绝缘酯(MIST–3)、烧杯(25、50、80ml)。 3、操作步骤 (1)土壤前处理 新鲜土壤应立即处理或保存于4℃冰箱中,测定前先仔细除去土壤中可见植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2mm)并混匀。如果土壤过湿,应在室内适当风干,并经常翻动,以避免局部干燥,至土壤含水量约为田间持水量(Water-holding capacity,WHC)的40%(以手感湿润疏松但不结块为宜)。如果土壤过于干燥,用蒸馏水调节含水量至田间持水量的40%。将土壤置于密封的塑料桶内,在25℃下预培养7~15d,桶内有适量水以保持相对湿度为100%,并在桶内放一小杯1mol L-1 NaOH溶液以吸收土壤呼吸产生的CO2。这些过程是为了消除土壤水分限制对微生物的影响,以及植物残体对测定的干扰。经预培养的土壤应立即分析,否则,应置于4℃下保存,但分析前需在上述条件下至少再培养24h。 (2)熏蒸

水质的氮循环

在养殖水体中,有机污染物包括氮、碳、磷、硫4种主要物质,而后3者形成的产物在氧气充足的条件下对鱼类的影响程度不是很大,当氮以分子氨态或亚硝酸盐氮态存在时,却会对水生动物产生很强的神经性毒害。当前以强饲为特征的集约养殖方式加大了水体有机氮物质分解转化的负荷,微生物分解环节严重受阻,从而成为水体系统循环过程的制约瓶颈与顽结,造成水体富营养化甚至污染,引发出诸多病害、药残、食品隐患等问题。水体系统的氨氮循环及污染治理已成为世界性关注的环境问题和研究热点。 1 养殖水体内氨氮循环与脱氮过程 水体氮素的来源构成 集约养殖水体氮素的来源主体为饵料残剩物和粪便排泄物的分解,其次为老化池塘底泥沉积物氨化分解,再次为施肥积累。养殖生产包括自然再生产过程与经济再生产过程,然而传统的养殖方式片面追求产量经济效益,强化水体系统外的能量物质的投入。过量的投饵,形成大量有机代谢废物的沉积,致使水体系统的分解环节受抑制,造成硝化反应难以通畅完全进行,自净能力减弱,产生多种有机酸及氨氮、亚硝酸盐、硫化氢、甲烷等中间有毒有害产物同时,这些中间有毒产物也可再由含氮化合物通过反硝化细菌还原而返复积累。自然状态下水体氮素的来源:①一些固氮藻类及固氮细菌能把大气层中的氮气转变为有效氮;②鱼类等水生动物的最终代谢产物主要为氨态氮(NH3),其次为尿素和尿酸;③藻类细胞自溶与有机碎屑沉积物的矿化作用,使以颗粒状结合着的有机氮以NH3-N的形式释放到水体中;④地面泾流及域外污水串用带来的氮的污染问题也愈加突出,等等。对自然状态

的氮素来源构成及转化过程应清楚把握和准确运用,才能不悖其水体物质转化循环规律,达到健康高效生态养殖的目的。 养殖水体生态系统的生物组成 消费者、分解者、生产者是养殖水体生态系统的生物组成部分。其特点是:①消费者:鱼虾类养殖动物为整个生态系统的核心,数量多、投饵量大,产生大量的排泄物和残饵; ②分解者:微生物的数量与种类较少,大量的有机物无法及时分解,经常处于超负荷状态,水质恶化;③生产者:藻类数量少,无法充分利用有机物降解产生的营养盐类,导致NH3-N 和-N等有害物质积累以至污染。因此,这种片面强调消费者,而忽视分解者和生产者的生态系统是极为不平衡的,常使其循环过程存在两处“瓶颈”梗阻。 水体物质循环的中间部位 即有机物的生物分解转化环节,水中有机物在异养微生物的作用下,第一阶段是碳氧化阶段,初步被分解出的产物是二氧化碳(CO2)和氨态氮,氮物质大部分以NH4+·NH3的形式释放出来。在自然条件下(温度为20℃),一般有机物第一阶段的氧化分解可在20d 内完成。第二阶段是氨物质的硝化过程,在亚硝化细菌的作用下氨(NH4+·NH3)被氧化成亚硝态氮(NO3--N);在硝化细菌的作用下再进一步被氧化成植物生长所需要的硝态氮(NO3--N)。在20℃自然条件下,第二阶段的氧化分解需百日才能最终完成。当水体缺氧时,另有一类反硝化细菌可以把硝酸盐(NO3-)还原为亚硝酸盐(NO3-),再还原为氨氮或游离氨或氮气,失去营养作用,成为植物不能直接利用的氮。这种游离氨或氮气由水体界面

碳的生物化学地球循环

碳的生物化学地球循环 一、碳元素及其同位素 C12(98.9%)C13(1.1%)C14(1.2*10^-10%) C13 稳定同位素C14放射同位素 二、什么是生物地球化学循环? 地球系统:大气圈、生物圈、水圈、地圈和人类构成的相互作用的系统。 生物地球化学循环: these cycles of chemical elements through the atmosphere, lithosphere, hydrosphere, and biosphere are called biogeophy chemical cycles Reservoirs: 1.Source-源 2.Sink-汇 3.Flux-通量 4.库 ?地球全层结构和各个圈层的相互影响 →实例:造山运动如青藏高原的隆升导致的物质“源-汇”效应 白垩纪(约1.35亿年到6500万年前) 【长江的浑浊物质中绝大多数来自于金沙江】 →汇:长江入海口 三、碳循环的重要性

1.碳是生物体的中央部分 2.碳循环造就了适宜居住的环境 3.是全球生物地球化学循环的主体线索 4.人类活动改变了原来的碳循环——温室效应 →碳循环的关键反映 1.光合作用(photosynthesis) 2.呼吸作用(respiration)——aerobic decay (呼吸和燃烧)& anaerobic decay (复杂化合物的形成——白垩纪和侏罗纪) 四、碳库和大气中的CO2 最大的碳库是地球表层的沉积物和沉积岩(通常不与大气交换)。 大气中碳的最主要形势是CO2,此外陆地生物存贮的碳量也非常大。 →因此,海洋、陆地和沉积库中碳量的小变化能够引起大气中碳量的大变化。 The dissolved inorganic carbon (DIC) in the ocean is by far the largest, active C pool. 五、carbon cycle flux ?slow flux and quick flux 六、生物泵的概念 在海洋的额垂直方向上,有上而下 1.Solubility pump-大气中CO2溶解到海水表面 2.Physical pump-海水表面物理混合作用使得碳酸氢根向海洋中扩散和传递 3.Biological pump-光合作用与呼吸作用是碳在有机和无机间转换。 七、CO2含量随纬度变化

相关主题
文本预览
相关文档 最新文档