当前位置:文档之家› HCR一种高效好氧生物处理技术

HCR一种高效好氧生物处理技术

HCR一种高效好氧生物处理技术
HCR一种高效好氧生物处理技术

HCR-一种高效好氧生物处理技术

摘要:HCR工艺具有所需空间少、占地省、设计集成合理、COD降解率高、空气氧利用率高且操作便利安全等优点。在纸浆和造纸工业废水处理的工程实例中,其最大的容积负荷达到70kgCOD/(m3·d),反应器单体最大容积为1200m3,日处理污水量近23000m3,COD的降解率达到80%,而剩余污泥的产率小于0.2kgSS/kgCOD。

好氧生物处理工艺历史悠久,自1914年第一座活性污泥法污水处理试验厂运行以来,已经80 多年了。近20年来,改进曝气技术和好氧生物固定技术以提高污水处理的效果,是好氧生物处理领域的主要研究内容,HCR工艺就是这一特定时期的产物。

1 HCR工艺的主要特点

HCR工艺(High Performance Compact Reactor)是德国克劳斯塔尔(Clausthal)工科大学物相传递研究所于80年代发明的。该工艺的问世是好氧生物处理技术的一个飞跃,它融合了当今的高速射流曝气、物相强化传递、紊流剪切等技术,并具有深井曝气和流化污泥床的特点。因此,其空气氧的转化率高,反应器的容积负荷大,水力停留时间短,是当前为西方国家所广泛接受的一种高效好氧生物处理方法。至今,已经在德国、瑞典、加拿大、意大利、法国、韩国等国家建成了数十个HCR系统,并已投产运行,污水处理效果普遍良好。

HCR系统主要包括:集成反应器、两相喷头、沉淀池以及配套的管路和水泵等(见图1)。集成反应器为圆形容器,其外筒两端被封闭,连接着各种管道;内筒两端开口,两相喷头安装在反应器上部的正中央。循环水泵提升高压水流经喷头射入反应器,由于负压作用同时吸入大量空气。水流和气流的共同作用又使喷头下方形成高速紊流剪切区,把吸入的气体分散成细小的气泡。富含溶解氧的混合污水经导流筒达到反应器底部后,又向上返流形成环流,再经剪切向下射流,如此循环往复运行。于是,污水被反复充氧,气泡和微生物菌团被不断剪切细化,并形成致密细小的絮凝体。

由该工艺的工作原理可知,HCR的主要特点是:

(1)系统占地少,基建费用低。HCR系统占地一般很少,其原因主要有三:一是系统设计紧凑,结构合理,减少了占地;二是反应器高径比大(为7∶1),部分被埋在地下,有效地利用了垂向空间,减少了平面上的占地;三是所需水力停留时间很短,容积负荷和污泥负荷都很高,减少了反应器的体积。

合理集成设计、少占地是减少基建投资的主要因素,反应器和沉淀池的容积小,又节省土建投资或设备制造费用。根据工程预算结果对比表明,采用HCR工艺处理同样数量的污水,其基建费用比活性污泥法工艺要减少30%以上。

(2)空气氧转化利用率高,容积负荷和污泥负荷高。HCR工艺的曝气方式采用射流扩散式,并通过垂向循环混合,使溶解氧达到最大值,这一过程实际上吸取了深井曝气依靠压头溶氧的优点。高速喷射形成紊流水力剪切,使气泡高度细化并均匀分散,决定了该方法对空气氧的转化利用率高。据试验测定,其空气氧的转化利用率可高达50%,溶解氧含量易保持在5mg/L以上。

足够的溶解氧是保证好氧生物处理系统高负荷运行的条件,这也是HCR工艺的优势所在。一般情况下,HCR系统的污泥浓度在10g/L左右,最高可超过20g/L。反应器中生物量之大,决定了其负荷值必然高。试验和已有工程的运行结果显示,HCR的容积负荷最大可达70kgBOD5/(m3·d),小试可达100 kg BOD5/(m3·d);其污泥负荷值可以超过6 k g BOD5/(kgSS·d)。

(3)固液分离效果好,剩余污泥量较少。HCR工艺混合污水中的微生物菌团颗粒小,其沉降性能好,这是其显著特点之一,污泥在沉淀池中的停留时间一般只需要40min左右。该工艺每降解1kg BOD所产生的剩余污泥量,比其他好氧方法平均减少40%左右,从而大大减少了污泥处理量。剩余污泥量较少的原因主要有两个:其一,强烈曝气使微生物代谢速度快,由此引起的生化反应可能加大内源消耗,剩余污泥量相对少;其二,由于反应器中混合污水被高速循环液流剪切,微生物的团粒被不断分割细化,团粒内部的气孔减少,使其密度相对增加,总的体积减少。

(4)抗冲击负荷的能力强。HCR为完全混合型运行方式,原水先与回流污水合流,然后再进入反应器,并立即被快速循环混合。高浓度COD或有毒废水冲击系统时,它们在进入反应器之前实际上已经被稀释,进入反应器后又被迅速均匀混合,使冲击液流的浓度大大降低,从而有效地提高了HCR系统抗冲击负荷的能力。此外,强烈曝气使微生物的新陈代谢加快后,也可能减少冲击所造成的部分影响。

工程实践表明,HCR工艺对甲醛废水、含酚废水、糖醛废水、树脂酸废水都能进行有效处理;如已有工程实例的进水COD浓度达到了20000mg/L;该工艺还有望提高污水脱氮的效果。

(5)系统操作简便灵活,处理效果有保障。HCR系统的反应器循环水量、补充曝气量、污泥回流量等都可以根据需要进行调节,便于选择最佳的组合效果。正因为如此,采用HCR工艺容易保证较高的COD去除率。图2显示了HCR反应器容积负荷与COD去除率的变化关系。可以看出,尽管其容积负荷变化较大,COD去除率均达到80%左右。

从目前已经运行的数十个工程所反馈的信息表明,HCR系统启动较快,操作管理比较方便,适应的环境条件很宽松,运行中很少出现故障,其推广应用正在受到越来越多的重视。

2 应用实例及其效果

已有HCR工程处理的废水类型有:奶品加工废水、酵母生产工艺废水、造纸厂废水、化工废水、印刷业废水、屠宰废水、填埋场渗滤液及城市污水等。其中,尤以造纸废水的处理工程最多,已分别在德国、挪威、中国、法国、加拿大等地建成投入运行(表1)。

表1 HCR典型工程实例运行参数

参数处理量

(m3/d)

废水COD浓度

(mg/L)

反应器体积

(m3)

水力停留时间

(h)

所在国家

酵母168 11000 25+10 4.99 德国玻璃工艺241 11000 25 2.49 德国橄榄业138 4000 5 x 3 2.62 意大利造纸工艺2500 14000 2 x 250 4.8 挪威造纸工艺14000 1500 2 x 300 1.03 加拿大造纸工艺13000 1720 2 x 300 0.90 中国造纸工艺22000 3500 2 x 1100 2.37 挪威造纸工艺6926 1350 300 1.14 法国

屠宰业14400 1700 2 x 250 1.2 韩国

造纸工艺21000 3000 1200+800 2.29 挪威

实例1 拉维克市雀斯科夫锐兹公司(Treschow Fritze, Larvik)的半化学纸浆废液,其COD浓度高达20000mg/L,采用HCR工艺处理,其容积负荷达80 kg COD/(m3·d) ,COD的降解率达〖CM(22〗到了70%。废水中含有过氧化漂白污水,但它对于水处理的效果没有任何不良影响,其剩余污泥的产率约为0.2kg SS/kg COD。

实例2 在威尼斯拉市的汉斯霍司公司(Hunsfos,Vennesla),亚硫酸盐化学纸浆浓缩液(来自化学再生系统)COD的变化范围为5 000~10000 mg/L,污水中同时含有糖醛,因而对附近纳污区的鱼类构成危害。用HCR工艺处理,容积负荷平均达60 kg COD/(m3·d) ,COD的降解率为80%,糖醛的去除率达100%,剩余污泥的产率仅为0.15 kg SS/kg COD。

表2列出了某地城市污水采用两种方法处理的主要效果参数。可以看出HCR工艺相对于传统的活性污泥法工艺在充氧速率、容积负荷、污泥负荷、二沉池表面负荷、剩余污泥产率、水力停留时间等方面,都具有明显的优势。

表2 HCR工艺处理某城市污水效果对比

参数活性污泥

HCR工艺

充氧速率(kg/(m3·h)<0.06 0.5-3.0

能耗(kg/(kW·h))0.7-2.0 0.5-3.0 容积负荷(kg BOD5/(m3·d))0.75-1.0 <40 污泥浓度(kg/m3·d) 2.5-3.0 1-8

污泥负荷(kg BOD5/(kg

MLSS·d))

0.3 <15

去除率(%) <95 80~90

停留时间(h) 4~8 <0.5 耗能容积率(kW/m3) <0.05 1~2

污泥指数(m3/kg) 100~150 <70 二沉池表面负荷(m3/(m2·h))<1.5 2~8 剩余污泥产率9kg MLSS/kg 1.0 <0.6

3 HCR工艺在中国的应用前景分析

根据HCR所具有的特点,我们认为该工艺在中国有以下几方面的应用前景:

(1)普通工业废水的处理。中国工业企业的废水种类很多,变化也很复杂。特别是一些中小型企业,因其废水量不大,或因污染物浓度不太高,而且废水中又不含明显的有毒物(即普通工业废水),故一直未进行达标处理。根据当前的环境保护要求,这类废水也是非治不可的。然而,原来厂区规划又大都没有考虑废水处理的场所。鉴于这些废水的特点及处理场所不足等矛盾,选择占地少、适应性强的HCR工艺,有望解决这类废水的处理。

(2)特殊工业废水的处理。有一些工业废水含有某些毒性物质或可能致毒的组份(称特殊工业废水),往往无法采用常规好氧或厌氧工艺进行处理。如防腐产品工业和农药产品工业等产生的废水中,多含有难降解的有机物,且对微生物具有致死的毒性。过去多采用焚烧方法或固化填埋方法进行处理,但是成本很高,并可能产生二次污染。

HCR工艺采用快速高效的氧传递转输方式,溶解氧多保持在5mg/L左右,反应器中的微生物群落能快速适应污染物种类和浓度的变化,这对于特殊工业废水的处理十分有利。前面谈到的甲醛废水、苯酚废水、苯甲醛废水等,采用HCR工艺处理都获得了很好的效果,且运行状况良好,就是较好的实例。

(3)城市中水工程中应用。城市中水工程所处理的原水具有水量少,变化幅度大,且COD浓度不太高等特点;中水工程对出水的水质要求也不太高(主要用作冲洗水或绿地用水)。要满足这些条件,HCR工艺是最好的方法之一。首先,它可以根据不同水量水质的变化来灵活地设计工艺系统;其次,因HCR工艺采用封闭式结构,系统产生的废气用管道收集外排,这种设计有利于城市小区的环境保护,工程附近的居民可以免遭恶臭之苦;再者,HCR系统充分利用了地上和地下空间,设计别致,造型美观,容易和小区的景观融合在一起。

4 几点认识

(1)HCR工艺采用高效的空气氧传递转输方法,合理利用了射流曝气技术,应用了压头和快速强制溶氧的原理,并利用紊流剪切扩散和均匀分布的作用,使空气氧的传递转输率高达5 0 %,是一种高效的好氧生物处理技术。

(2)已经运行的HCR工程系统表明,该工艺适应范围广,负荷率高,COD去除率高,运行效果好。其占地面积少,综合经济效益好,具有推广应用的价值。

(3)中国工业污水的种类复杂多样,城市中水工程正有待开发,HCR工艺在中国大有发展前景。必须提醒注意的是,应该以技术引进为主,尽量采用国产的设备和附件,使之更加符合本国的国情,以获得最佳的环境效益和经济效益。

(4)HCR工艺存在的问题:一是能耗,当污水COD去除率在80%及其以下时,所需能耗低且效益好;如果COD的去除率要求过高,其能耗就直线升高。因此,在实际工作中也不能盲目地选用HCR工艺。第二个问题是泡沫,HCR在处理某些废水时,也和常规好氧工艺一样会产生泡沫,设计时必须考虑这一因素。

参考文献

1 顾夏声. 废水生物处理数学模式. 清华大学出版社,1982

2 秦麟源. 废水生物处理. 同济大学出版社,1989

3 Wachsmann U,N Raebiger and A Vogelpohl. Effect of geometry on hydrod ynamics and mass transfer in the compact reactor. Ger Chem Eng,1985,8.

4 11~418

4 M K N Yenkie,S U Geissen and A Vogelpohl. Biokinetics of wastewater tr eatme nt in the high performance compact reactor (HCR). The Chemical Eng ineering Journ al,1992,(49). B1~B12

5 Sprehe M,E S Gaddis,A Vogilpohl. On the mass transfer in an impinging

stre am reactor. Chem Eng Technol 1998,21(1):19~21

6 高廷耀主编. 水污染控制工程(下册). 北京:高等教育出版社,1989

7 E A Naundorf,D Subramanian,N R*]biger and A Vogelpohl. Biological treat ment of wastewater in the compact reactor. chem Eng Process,1985,19. 22 9~233

8Vogelpohl A. Das HCR Verfahren,ein Hochleistungsverfahren zur aeroben Abwa sserreinigung. Bioengineering 1988,3. 141~143

9 Vogelpohl A. The HCR Process for Compact,High Performance Waste Wa ter Trea tment. Pollution and waste Management,1991. 140~145

10 U Wachsmann,N R*]biger and A Vogelpohl. The compact reactor-a newly develop ed loop reactor with a high mass transfer performance. Ger Chem E ng,1984,7. 39~44

11 Lübbecke S,A Vogelpohl und W Dewjanin. Wastewater treatment in a biol ogica l high-performance system with high biomass concentration. Wat Res,1 995,29(3):79 3~802

12 Kim S-M and A Vogelpohl. New processes for the removal of carbon and ammon i a from wastewater. The Water and Wastes in Our Future. DEPRI Report,1996,19(3) P usan,Korea

13 Jungblut J,M Sievers,A Vogelpohl,etc. Dynamic simulation of wastewater trea tment:the process of nitrification,simulation Practice and Theory. 1997,5. 689~700

○作者通讯处:刘康怀541004 桂林工学院

康为民李月中德国克劳斯塔尔工科大学

电话:

收稿日期:1999-11-4

好氧生物处理

好氧生物膜法: 好氧生物膜法是使微生物附着在载体表面上,污水在流经载体表面过程中,污水中的有机污染物作为营养物,为生物膜上的微生物所吸附和转化,污水得到净化,微生物自身也得以繁衍增殖。迄今为止,属于好氧生物膜处理法的工艺有生物滤池(普通生物滤池、高负荷生物滤池、塔式生物滤池)、生物转盘、生物接触氧化设备和生物流化床等。 简介: 好氧生物膜法是利用固着生长的微生物——生物膜的代谢作用去除有机物,主要适用于处理溶解性有机物,污水同生物膜接触后,溶解性有机物和少量悬浮物被生物膜吸附降解为稳定的无机物(CO2、H2O等)。 好氧生物膜结构: 好氧生物膜由多种多样的好氧微生物和兼性厌氧微生物黏附在生物滤池滤料上或黏附在生物转盘盘片上的一层带黏性、薄膜状的微生物混合群体。好氧生物膜在滤池内的分布不同于活性污泥,生物膜附着在滤料上不动,废水自上而下淋洒在生物膜上。水滴从上到下与生物膜接触,几分钟内废水中的有机和无机杂质逐级被生物膜吸附。滤池内不同高度(不同层次)的生物膜所得到的营养不同,致使不同高度的微生物种群和数量不同。微生物相是分层的,若把生物滤池分上、中、下3层,则上层营养物浓度高,生长的全是细菌,有少数鞭毛虫。中层微生物得到的除废水中营养物外,还有上层微生物的代谢

产物,微生物的种类比上层稍多,有菌胶团、浮游球衣菌、鞭毛虫、变形虫、豆形虫、肾形虫等。下层有机物浓度低,低分子有机物较多,微生物种类更多,有菌胶团、浮游球衣菌外,有以钟虫为主的固着型纤毛虫和少数游泳型纤毛虫,如檐纤虫和漫游虫,另外还有轮虫等。 好氧生物处理: 利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。 定义: 利用好氧微生物处理有机污染物的方法。 原理: 微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。 应用: 污水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。

简析环保生物处理技术

环境生物技术是指将生物科学与工程技术应用于水、大气、土壤等环境污染治理、污染预防、生物修复、环境监测等。 广义上讲:凡是涉及环境污染控制的一切与生物技术有关的工程技术。 狭义上讲:直接或间接利用生物或生物体的某些组成部分或某些机能,建立降低或消除污染物产生的生产工艺或者能够高效净化环境污染,同时又能生产有用物质的工程技术。 生物技术已是环境保护中应用最广的、最为重要的单项技术,其在水污染控制、大气污染治理、清洁可再生能源的开发、环境监测和污染严重的工业企业的清洁生产等环境保护的各个方面,发挥着极为重要的作用。 接下来我们具体来看看有哪些具体的环境生物技术和应用: 01 污水的生物净化我国的水污染十分严重,高浓度有机物废水的处理是我国水污染治理的重点难题。 污水中有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。 该部分主要包含:①活性污泥法;②生物膜法;③厌氧生物处理法;④自然生物处理法。 举例看,比如微生物高效菌能够将氰化物(氰化钾、氰氢酸、氰化亚铜等)分解成二氧化碳和氨;利用专门分解硫化物的微生物可以从废水中回收硫磺;利用能够降解石油烃的超级菌以清除油对水质的污染等。 还可以将大量的微生物高效菌凝聚在泥粒上形成活性污泥,用来分解和吸附废水中的有毒物质,污水净化后沉积的污泥中存在丰富的氮、磷、钾等元素,是很好的有机肥料。 02 固体废物的生物降解固体废物的生物降解在众多的处理方法中(如堆肥、焚烧、热处理等),生物处理具有成本低、运行费用低、操作简单、易管理等优点。城市垃圾的“生物反应堆”理论就是其中的一种,它与传统的卫生填埋相

水解酸化、好氧生物处理工艺1

水解-好氧生物处理工艺 目录 第一节水解(酸化)工艺与厌氧工艺 (3) 一、基本原理 (3) 二、水解-好氧工艺的开发 (4) 三、水解(酸化)工艺与厌氧发酵的区别 (5) 第三节水解-好氧生物处理工艺特点 (7) 1、水解池与厌氧UASB工艺启动方式不同 (7) 2、水解池可取代初沉池 (8) 3、较好的抗有机负荷冲击能力 (9) 4、水解过程可改变污水中有机物形态及性质,有利于后续好氧处理 (9) 5、在低温条件下仍有较好的去除效果 (10) 6、有利于好氧后处理 (10) 7、可以同时达到对剩余污泥的稳定 (11) 第四节水解-好氧生物处理工艺的机理 (11) 一、有机物形态对水解去除率的影响 (11) 二、有机物降解途径 (12) 三、水解池动态特性分析 (13) 四、难降解有机物的降解 (14) 第五节水解工艺对后续好氧工艺的影响 (19) 1、有机物含量显著减少 (19) 2、B/C比值和溶解性有机物比例显著增加 (20) 3、BOD5降解动力学 (20) 4、污泥和COD去除平衡 (21) 第六节水解工艺的污泥处理 (22) 一、传统污泥处理的目的和手段 (23) 二、污泥有机物的降解表 (24)

三、污泥脱水性能及处理 (24) 第七节水解池的启动和运行 (26) 一、水解池的启动方式 (26) 二、配水系统 (28) 三、排泥 (31) 四、负荷变化对水解池处理效果的影响 (32) 第八节水解工艺的进一步开发和应用 (33) 一、芳香类化合物的去除 (34) 二、奈的去除 (34) 三、卤代烃的去除 (34) 四、难生物降解工业废水处理的实际应用 (34) 五、高悬浮物含量废水的水解处理工艺 (35) 六、水解工艺的适用范围及要求 (36) 第九节水解-好氧工艺技术经济分析 (38) 一、厌氧处理应用的经济分析 (38) 二、水解-好氧系统设计参数 (39) 第十节水解-好氧生物处理工艺设计指南 (41) 一、预处理设施 (41) 二、水解池的详细设计要求 (41) 三、反应器的配水系统 (42) 四、管道设计 (45) 五、出水收集设备 (45) 六、排泥设备 (46)

废水好氧生物处理工艺生物膜法水处理教案

第四章废水好氧生物处理工艺(2)——生物膜法 第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力; 主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; ②生物转盘;③生物接触氧化法;④好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。 (1) 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2) 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C) 2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图

(1) 生物膜的性质: ①高度亲水,存在着附着水层; ②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。 (2) 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1) 厌氧膜的出现: ①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;②成熟的生物膜一般都由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度为2mm。 (2) 厌氧膜的加厚: ①厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;②气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③成为老化生物膜,其净化功能较差,且易于脱落。 (3) 生物膜的更新: ①老化膜脱落,新生生物膜又会生长起来;②新生生物膜的净化功能较强。 (4) 生物膜法的运行原则: ①减缓生物膜的老化进程;②控制厌氧膜的厚度;③加快好氧膜的更新;④尽量控制使生物膜不集中脱落。 二、生物膜处理工艺的特点 1、微生物方面的特征 (1) 微生物种类多样化: ①相对安静稳定环境;②SRT相对较长;③丝状菌也可以大量生长,无污泥膨胀之虞;④线虫类、轮虫类等微型动物出现的频率较高;⑤藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 (2) 生物膜上微生物的食物链较长: ①动物性营养者所占比例较大,微型动物的存活率较高;②食物链长;③污泥产量少于活性污泥系统(仅为1/4左右)。

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

生物法处理废气的技术探讨

广州和风环境技术有限公司 https://www.doczj.com/doc/a69495740.html,/ 生物法处理废气的技术探讨 摘要:生物法处理工业有机废气近年来得到了广泛的发展和运用。本文介绍了生物过滤、生物吸收和生物滴滤三种工艺条件比较成熟的生物法,指出了它们的原理、净化过程以及自身的优缺点,并罗列了几个新型的生物处理工艺。最后,对生物法现存的问题进行了归纳,并展望了今后的发展趋势。关键词:生物法有机废气生物过滤生物吸收生物滴滤 引言 近年来,随着工业的飞速发展,冶炼厂、印刷厂和化工厂等化工企业生产过程中排放大量有机废气。这些气体从组成来看,含有酯类、醛酮、芳香烃类和酚等有机化合物。这些物质绝大多数严重危害人类的身体健康,而且污染环境,违背了可持续发展的战屡目标。工业有机废气污染物的控制问题业已引起了广大科学工作者们的高度重视,并就相关课题开展了大量工作。多年来,处理有机废气的常规方法主要有吸附法,吸收法,冷凝法,催化氧化和焚烧法等。这些传统的处理手段虽然已经得到了广泛的应用,但自身仍有很多的局限性。国外自80年代以来,开始用生物技术对工业废气进行处理,技术清洁,操作简便,在常温常压下就可以进行反应,尤其在低浓度、高流量的废气净化上收到了良好的效果。 1 生物法处理技术当前概况 1.1 处理原理 对于生物法净化废气的机理研究至今没有一个统一的理论,荷兰学者Ottengraf S P P依据吸附操作的双膜理论提出的生物膜学说在全球范围内有较大的影响力,为多数人所接受和认可。该法实质上是通过微生物的代谢活动将复杂的有机物转变为简单、无毒的无机物和其它细胞质。经历的步骤如下:1)有机物首先由气膜扩散至液膜,跟水相进行接触,并溶解于其中。 2)液膜和生物膜之间存在浓度差,在此推动力的作用下,有机物扩散至生物膜,进生物法处理废气的技术探讨而被微生物捕获并加以吸收。3)微生物自身进行代写活动,可以将进入的有机污染物当做营养物质和能量来源进

废水好氧生物处理工艺其它工艺水处理教案

第五章 废水好氧生物处理工艺(3)——其它工艺 第一节 氧化沟工艺 氧化沟也称氧化渠,又称循环曝气池,是活性污泥法的一种变形;是20世纪50年代荷兰的Pasveer 首先设计的;最初一般用于日处理水量在5000m 3以下的城市污水。 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 图1 氧化沟及氧化沟系统平面图 图2 以氧化沟为主的废水处理流程 2、氧化沟的特征 ① 池体狭长,(可达数十米甚至上百米);池深度较浅,一般在2米左右; ② 曝气装置多采用表面机械曝气器,竖轴、横轴曝气器都可以; ③ 进、出水装置简单; ??构造上的特征 ④ 氧化沟呈完全混合?推流式;沟内的混合液呈推流式快速流动(0.4~0.5m/s ),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的; ⑤ BOD 负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好; ⑥ 对水温、水质和水量的变动有较强的适应性; ⑦ 污泥产率低,剩余污泥产量少; ⑧ 污泥龄长,可达15~30d ,为传统活性污泥法的3~6倍; ⑨ 世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。 二、氧化沟的几种典型的构造型式 原废水 格栅 氧 化 沟 出水

目前主要的氧化沟形式有:Carrousel氧化沟、Orbal氧化沟、交替工作式 氧化沟、曝气—沉淀一体化氧化沟等四种。 1、Carrousel 式氧化沟(图3) Carrousel 式氧化沟又称平行多渠形氧化沟;是60年代末荷兰DHV公司开 创的。采用竖轴低速表面曝气器;水深可达4~4.5m,沟内流速达0.3~0.4m/s; 混合液在沟内每5~20min循环一次;沟内混合液总量是入流废水量的30~50倍; BOD5去除率可达95%以上,脱氮率可达90%,除磷效率可达50%;应用广泛,最大规模为650000m3/d;在国内主要有昆明兰花沟污水处理厂、上海龙华肉联厂、桂林市东区废水厂等。 2、Orbal氧化沟(图4) Orbal氧化沟又称同心圆型氧化沟,其主要特点如下: ①圆形或椭圆形的沟渠,能更好地利用水流惯性,可节省能耗; ②多沟串联可减少水流短路现象; ③最外层第一沟的容积为总容积的60~70%,其中的DO接近于 零,为反硝化和磷的释放创造了条件; ④第二、三沟的容积分别为总容积的20~30%和10%,而DO则 分别为1和2mg/l; ⑤这种沟渠间的DO浓度差,有利于提高充氧效率; Orbal氧化沟在国内的主要工程实例有:①抚顺石油二厂废水处理站(28,800m3/d);②北京燕山石化公司新建废水处理厂(60000m3/d);③成都市天彭镇污水处理厂。 3、交替工作氧化沟 交替工作氧化沟由丹麦Kruger公司所开发的,有二沟和三沟式两种形式;其主要特点是其中的每一条沟均交替用做曝气池和沉淀池,而无需二沉池和污泥回流装置;但其中的曝气转刷的利用率较低,D型二沟只有40%,三沟式则提高到了58%; 图5:VR型氧化沟图6:D型氧化沟

好氧生物处理原理

好氧生物处理原理 好氧生物处理是利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。那么好氧生物处理原理是怎样的呢?生物处理是指什么呢?今天就带大家来了解一下这些固体废弃物安全小知识。 好氧生物处理的原理 微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。另,在充足供氧条件下,好氧段自养菌的硝化作用将NH3-N(NH4+)氧化为NO3- ,进而为厌氧异养菌提供NO3-。 影响好氧生物处理的主要因素 ①溶解氧(DO):约1~2mg/l;

② 水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度 15~30°C;40°C 或10°C后,会有不利影响。 ③ 营养物质:细胞组成中,C、H、O、N约占90~97%;其余3~10%为无机元素,主要的是P;生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N和P;其它无机营养元素:K、Mg、Ca、S、Na等;微量元素:Fe、Cu、Mn、Mo、Si、硼等; ④pH值:一般好氧微生物的最适宜pH在6.5~8.5之间;pH 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。

⑤有毒物质(抑制物质):重金属;氰化物;H2S;卤族元素及其化合物;酚、醇、醛等; ⑥有机负荷率:污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物; ⑦氧化还原电位:好氧细菌:+300 ~ 400 mV,至少要求大于+100 mV;厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则-100 mV,甚至-300 mV。

废水生物处理技术

第四章废水生物处理技术 第六节废水好氧生物处理工艺(3) ——其它工艺主要内容 ●第一节氧化沟工艺 ●第二节A—B(吸附—生物降解)法工艺 ●第三节序批式间歇活性污泥法(SBR)工艺 ●第四节膜生物反应器(MBR)工艺 ●第五节曝气生物滤池(ABF)工艺 第一节氧化沟(Oxidation Ditch)工艺 ●又称氧化渠或循环曝气池,是活性污泥法的一种变形; ●50年代,荷兰,Pasveer; ●早期:适用于5000m3/d以下,城市污水; ●目前:各种规模的城市生活污水或工业废水 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 2、氧化沟的特征 ●1)构造上的特征 ①池体狭长;池深较浅,一般在2~5m左右; ②曝气装置多用表面机械曝气器, 竖轴曝气器,如:低速曝气叶轮; 横轴曝气器,如:曝气转刷、曝气转盘; ③进、出水装置简单。 ●2)工艺上的特征 ①氧化沟内的流态呈循环混合态; ●沟内混合液呈推流式快速流动(0.4~0.5m/s); ●进水流量与沟内流量相比很小,完全混合的; ②有机负荷很低,相当于延时曝气法,出水水质好; ③抗冲击负荷能力强,对水温、水质、水量等的变动有适应性; ④污泥产率低,剩余污泥产量少;污泥龄长,可达15~30d; ⑤具有生物脱氮的功能。 二、典型的氧化沟工艺 ●Carrousel氧化沟 ●Orbal氧化沟 ●交替工作式氧化沟 ●曝气—沉淀一体化氧化沟 1、Carrousel 氧化沟 ●平行多渠形氧化沟; ●60年代末,荷兰DHV公司; ●采用竖轴低速表面曝气器; ●水深4~4.5m,沟内流速0.3~0.4m/s; ●混合液在沟内每5~20min循环一次; ●沟内混合液总量是进水量的30~50倍; ●BOD5去除率可达95%以上;

2 好氧生物处理(原理与工艺)

异氧微生物 第二章 好氧生物处理(原理与工艺) 2.1 基本概念 2.1.1 好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类; 所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 好氧生物处理过程的生化反应方程式: ● 分解反应(又称氧化反应、异化代谢、分解代谢) CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量 (有机物的组成元素) ● 合成反应(也称合成代谢、同化作用) C 、H 、O 、N 、S + 能量 C 5H 7NO 2 ● 内源呼吸(也称细胞物质的自身氧化) C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量 在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系: 1) 二者不可分,而是相互依赖的; a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础; b .分解过程是一个产能过程,合成过程则是一个耗能过程。 2) 对有机物的去除,二者都有重要贡献; 3)合成量的大小, 对于后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的 微生物 异氧微生物

40~50%)。 不同形式的有机物被生物降解的历程也不同: 一方面: ● 结构简单、小分子、可溶性物质,直接进入细胞壁; ● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液 化成小分子有机物,再进入细胞内。 另一方面:有机物的化学结构不同,其降解过程也会不同: 如: 糖类 脂类 蛋白质 2.1.2 影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一, a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快; b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不 可逆的破坏; 最适宜温度 15~30?C ; >40?C 或< 10?C 后,会有不利影响。 3)营养物质: 细胞组成中,C 、H 、O 、N 约占90~97% 其余3~10%为无机元素,主要的是P 。 生活污水一般不需再投加营养物质; 而某些工业废水则需要, 一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N 和P 。 其它无机营养元素:K 、Mg 、Ca 、S 、Na 等; 微量元素: Fe 、Cu 、Mn 、Mo 、Si 、硼等; 4)pH 值: 一般好氧微生物的最适宜pH 在6.5~8.5之间; pH < 4.5时,真菌将占优势,引起污泥膨胀; 另一方面,微生物的活动也会影响混合液的pH 值。 5)有毒物质(抑制物质) 主要有: 重金属 蛋白质的沉淀剂(变性;与-SH 结合而失活) 氰化物 H 2S 卤族元素及其化合物 酚、醇、醛 使蛋白质变性或脱水 染料等; 活性污泥系统中有毒物质的最高允许浓度: TCA 循环

好氧生物处理的基本生物过程

一、好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类; 所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 好氧生物处理过程的生化反应方程式: ①分解反应(又称氧化反应、异化代谢、分解代谢) 异氧微生物 CHONS + O2 CO2 + H2O + NH3 + SO42- +?+能量 (有机物的组成元素) ②合成反应(也称合成代谢、同化作用) C、H、O、N、S+ 能量C5H7NO2 ③内源呼吸(也称细胞物质的自身氧化) 微生物 C5H7NO2 + O2CO2+ H2O + NH3 + SO42- +?+能量 在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3 分解与合成的相互关系: 1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。 2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。 不同形式的有机物被生物降解的历程也不同: 一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。 另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质 二、影响好氧生物处理的主要因素 ①溶解氧(DO):约1~2mg/l; ②水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度15~30?C;>40?C或< 10?C后,会有不利影响。

高效生物处理技术

高效生物处理技术作为有机废水二级处理的重要手段,广泛应用在工业废水处理和生活污水处理工艺中。随着研究的深入和新工艺、新技术的不断引入,废水生物处理的发展方向也逐渐明朗。江苏瑞达科技致力于为客户提供从清洁化生产、“三废”治理、资源综合利用等方面的项目规划,提供系统、实用的解决方案。江苏瑞达科技给大家介绍一下高效生物处理技术。 高效生物处理技术主要是利用微生物的代谢作用除去废水中有机污染物的一种方法,分需氧生物处理法和厌氧生物处理法两种。好氧处理包括:稳定塘(氧化塘),土地处理,生物滤池,生物转盘,氧化沟工艺,活性污泥工艺等。厌氧处理包括:UASB、厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器等。 在同一反应器中复合好氧和厌氧生化过程,并使微生物的悬浮生长和附着生长相结合,

可维持反应器内微生物的多样性,提高生物处理法去除有机污染物的效率。 开发具有高密度生物群、高传质速度的生物反应器,比如深井曝气法等,与传统工艺相比有机负荷可增加到几十倍,提高了设备处理有机物的负荷能力。 发展各种耐水量、水质、毒物、酸碱冲击能力强的工艺,提高出水水质的稳定性,比如AB工艺、SBR 工艺和固定化微生物法等,都在耐冲击负荷能力方面有大的改进。 开发生物处理的细菌系列,对不同污染物寻求高效特性菌,在组合工艺中每一阶段培植特征菌,尽可能提高设备中主体单元的菌浓度,是实施生物处理法的关键所在。 与物理化学方法相结合发展多元组合工艺,比如活性炭生物膜法、生物絮凝法、A/O 工艺和活性生物滤池等,在去除难降解物质和生物脱氮方面都有比较理想的效果。 设备发展的新理念主要体现在传统设备的改进、新材料的应用、设备的集成化和自动控制技术的提高等方面,新设备在结构上有很多的突破,在关键的部件上应用了许多新材料,并且各类设备在自动控制技术方面具有极大的提高,在新型设备中应用各种流量计、浓度计、粒度测量仪和各种传感器,使设备成为动态仪器化处理装置,大大提高了设备的自动化程度和工作效率。在许多关键设备上以小型高效设备取代传统大型设备,还使微生物处理、加药混合化学处理、凝聚与沉降、浓缩和过滤成为一体,用小巧紧凑的模块式组合设备取代传统设备用于水处理中。 由于生物处理工艺的内容和范围很广,而且发展也很迅速,国内外许多行业开发出生物处理工艺新技术和新产品,尤其是研究开发了对高浓度有机废水、生物难降解物质、氮磷营养物质等能够实现有效去除的新工艺和新方法,是当今废水处理领域的热点。生物处理技术因其独特的优点,将在今后进一步得以充实和完善。

废水处理的生物强化技术

生物强化技术--废水处理 1 生物强化技术的提出 随着现代合成工业的发展,大量异生化合物(Xenobiotics)进入了工业废水和城市污水中,由于其本身具有结构复杂性和生物陌生性,因此很难在短时间内被常规生物处理系 统中的微生物分解氧化。为了解决难降解有机废水的处理问题,国外学者提出了生物强化技术(Bioaugmentation)的概念。生物强化技术是指在生物处理系统中,通过投加具有特定功能的微生物、营养物或基质类似物,达到提高废水处理效果的手段和方法。 2 作用机制 2.1高效菌种的直接作用 这种作用机制首先需要通过驯化、筛选、诱变和基因重组等生物技术手段得到1株以目标降解物质为主要碳源和能源的高效微生物菌种,再经培养繁殖后,投放到具有目标降解物质的废水处理系统中。因此,当原处理系统中不含高效菌种时,如果投入一定量的高效菌种,则可有针对性地去除废水中的目标降解物;当原处理系统中只存在少量高效菌种时,那么投加高效菌种后,可大大缩短微生物驯化所需要的时间。在水力停留时间不变的情况下,能达到较好的去除效果。 2.2 微生物的共代谢作用 所谓微生物的共代谢作用是指只有在初级能源物质存在时,才能进行的有机化物的生物降解过程。共代谢过程不仅包括微生物在正常生长代谢过程中对非生长基质的共同氧化,而且也包括了休止细胞(resting cells)对不可利用基质的氧化代谢。微生物的共代谢作用可分为:①以易降解的有机物为碳源和能源,提高共代谢菌的生理活性;②以目标污染物的降解产物、前体作为酶的诱导物,提高酶的合成;③不同微生物之间的协同作用。 共代谢虽然能提高难降解有机物的去除效果,但机理十分复杂,迄今有很多问题尚处于研究阶段。一些学者曾针对共代谢现象提出了各种假设。Foster认为微生物不能在某种基质上生长的原因并不是由于微生物无法分解代谢该物质,而是由于微生物本身缺乏吸收、同化其氧化产物的能力。Hughes提出卤代芳烃化合物的共代谢可能是由于微生物无法从苯环上脱去卤素取代基,并把芳香环基质导向碳吸收同化的节点。Tranter和Cain 把具有氧化代谢卤代芳烃化合物功能的细菌不能在该基质上生长的原因归结于有毒产物的积累。但目前提出的各种假设都不能圆满地解释实际工程中所发生的各种共代谢现象。 许多难降解有机物的去除是通过共代谢途径进行的。例如在氧化塘处理焦化废水的系统中,投加生活污水可大大提高COD的去除率,其主要原因就是生活污水中含有多种营养元素,加强了生物的共代谢作用。瞿福平等在对氯代芳香烃化合物的研究中发现,氯苯类同系物共存时,对氯苯的生物降解性有一定程度的影响。邻二氯苯,间二氯苯的共存有利于整个体系的降解,但氯苯的耗氧速率有所降低。Adriaens等研究发现,一株Acinetbacter sp.生长在含有4-氯苯甲酸盐(4CB)的基质上时,可以将原来不能利用的3,4-二氯苯甲酸盐(3,4-DCB)转化成3-氯-4-羟基苯甲酸盐,毫无疑问共代谢在其中发挥了重要的作用。 3 实施途径 3.1投加高效降解微生物 该技术得以实施的前提是获得能作用于目标降解物的高效菌株,从理论上讲,对于天

好氧生物处理详细介绍比较

好氧生物处理部分 一、处理说明............................................................................................................................ - 0 - 二、好氧降解反应过程汇总.................................................................................................... - 0 - 三、活性污泥法的基本原理.................................................................................................... - 0 - 四、去除有机物过程................................................................................................................ - 0 - 五、活性污泥法的运行方式.................................................................................................... - 1 - 1 推流式活性污泥法.......................................................................................................... - 1 - 2 完全混合式活性污泥法.................................................................................................. - 1 - 3 接触稳定(吸附再生)法.............................................................................................. - 2 - 4 延时曝气法(完全氧化活性污泥法) ............................................................................ - 3 - 5 氧化沟法.......................................................................................................................... - 3 - 5.1 Carrousel式氧化沟 ............................................................................................... - 4 - 5.2 Orbal氧化沟.......................................................................................................... - 4 - 5.3 交替工作氧化沟................................................................................................... - 5 - 5.4 曝气沉淀一体化氧化沟....................................................................................... - 5 - 5.5 氧化沟的设计参数............................................................................................... - 5 - 6 吸附-生物降解活性污泥法(AB法).......................................................................... - 6 - 6.1 AB法的工艺流程及特征 ..................................................................................... - 6 - 6.2 AB法的主要特点 ................................................................................................. - 6 - 6.3 AB法中A段的特征............................................................................................. - 6 - 6.4 AB法中B段的特征............................................................................................. - 7 - 6.5 AB法的主要设计参数 ......................................................................................... - 7 - 7 序批式活性污泥法(SBR法) ..................................................................................... - 7 - 7.1 SBR的工作原理 ................................................................................................... - 7 - 7.2 SBR的工艺流程 ................................................................................................... - 7 - 7.3 SBR工艺的主要特征 ........................................................................................... - 8 - 7. 4 SBR工艺的设计 .................................................................................................. - 8 - 8 膜生物反应器(MBR)工艺----Membrane Biological Reactor ................................... - 9 - 8.1 膜生物反应器的工作原理................................................................................... - 9 - 8.2 膜生物反应器的主要类型................................................................................... - 9 - 8.3 一体式膜生物反应器........................................................................................... - 9 - 8.4 分离式膜生物反应器......................................................................................... - 10 - 8.5 隔离式膜生物反应器......................................................................................... - 10 - 8.6 膜生物反应器的主要特点................................................................................. - 11 - 六、曝气设备.......................................................................................................................... - 11 - 七、进水水质要求.................................................................................................................. - 11 - 八、活性污泥降解污水中有机物过程及效率说明.............................................................. - 12 - 九、好氧生物处理技术.......................................................................................................... - 13 - 5.1 HCR-一种高效好氧生物处理技术............................................................................ - 13 - 1 HCR工艺的主要特点........................................................................................... - 13 - 2 应用实例及其效果.............................................................................................. - 15 - 3 HCR工艺在中国的应用前景分析....................................................................... - 18 - 4 几点认识.............................................................................................................. - 18 -

生物强化处理技术介绍及应用实例

生物强化技术处理石油生物强化技术处理石油化工化工化工废碱液废碱液 和高浓度废水 技术技术与应用与应用与应用介绍介绍 北京中盛泓源环境科技开发有限公司

目录 1. 公司简介 (1) 2. 生物强化技术原理 (1) 3. 技术特点 (2) 4. 应用领域 (3) 5. 生物强化技术处理应用业绩介绍 (3) 6. 生物强化技术的处理成本 (7)

1.公司简介 北京中盛泓源环境科技开发有限公司是注册于北京中关村科技园区的高新技术企业,前身是隶属于中国集装箱控股集团公司的北京中集泓源环保科技开发有限公司,公司以技术为先导,与韩国SK公司等国际知名企业合作,在石油、化工、制药等领域提供污水处理、有机废气治理等技术服务工作。 2.生物强化技术原理 利用经过筛选后的特效微生物菌群、配合特定的工艺参数和维持生物活性的生物催化剂,快速、经济地处理传统的活性污泥法无法处理的高浓度、含毒性废水的全新概念的生物前处理工艺。 生物强化处理工艺的流程和普通的活性污泥处理工艺在表现形式上基本相同。 生物强化处理工艺与传统生物处理工艺的不同之处在于使用了特效微生物菌群和维持菌群活性的生物催化剂,以及与传统工艺不同的工艺设计参数。 使用生物强化技术处理炼油碱渣和高浓度有机废液可以使大大缩短处理工艺流程和工程投资,该技术在常温、常压条件下实施,避免了焚烧法、催化氧化法等存在的潜在的危险因素,不但在投资和运行费用上具有绝对优势,而且是真正意义上的环保处理技术,没有转移污染物,不会带来二次污染。该技术区别于传统的高效生物菌种需

要反复投加、成本昂贵等特点,它是一次性植入特效微生物,无需重复投加,降低了废水处理成本。可以广泛应用在石化、染料、农药等高浓度废水处理中,处理负荷是普通生物处理工艺的10倍以上。可以处理普通生物法不能处理的有毒废水和高浓度废水,对废水中的污染物浓度、pH、含盐量等指标的变化有很强的适应能力。该技术比传统生物处理系统的启动时间大大缩短,在植入特效微生物2~3天后即可以实现正常运行,与传统启动时间1~2个月相比,为企业的正常生产赢得了时间,同时可以改善污泥沉淀性能,抑制污泥膨胀,增强系统抗冲击负荷的能力,提高废水处理系统运行的稳定性。 3.技术特点 (1)对污染物进行彻底的生物降解,没有污染物转移和二次污染; (2)结合传统活性污泥法,BAT系统流程短、投资低; (3)特殊的选育技术,保证均群不退化,使用过程中不需要反复投加,降低了运行成本; (4)独特的运行参数设计,使得系统处理负荷是传统方式的10倍以上,实现了处理高效性; (5)拥有自主知识产权的微生物强化技术,保证了微生物在高浓度、高盐分的恶劣环境下的活性,使生物法处理高浓度、毒性工业污水成为可能; (6)系统启动周期短,具有创新性的调试方法使得系统启动时间是传统方法的十分之一;

相关主题
文本预览
相关文档 最新文档