当前位置:文档之家› 控制系统的频率特性

控制系统的频率特性

控制系统的频率特性
控制系统的频率特性

用MATLAB分析闭环系统的频率特性(1)

用MATLAB 分析闭环系统的频率特性 1、等M 圆图与等N 圆图原理 1.1设有单位系统如图1示。其闭环频率特性G B (j )与开环频率特性G K (j )的关系为 )(j G 1)(j G )(j X )(j X )(j G K K i 0B ωωωωω+== (1) 图 1 可将其开环频率特性G K (j )写成 G K (j )=U ()+jV() (2) 则闭环频率特性为 )(j B )e M(jV U 1jV U )G (j 1)G (j )(j G ωαωωωω=+++=+= (3) 式中 M()——闭环的幅频特性 ()——闭环的相频特性 闭环的幅频特性为 2 12222V )U (1V U |jV U 1||jV U |M ??????++++++= (4) 所以 222 22 V U)(1V U M +++= (5) 则有 2 22 2222 1)-(M M V )1-M M (U =++ (6) 显然,式(6)是一个元的方程,他表明了开环的实频U 、虚频V 和闭环的幅频M 之间 G K (j ) X i (j ) X 0(j )

的的关系,该圆方程的圆心坐标为(1M M 22--,j0),半径为|1-M M |2。当M 取不同的值时,便可以得到一簇圆,如图1,该图称为等M 圆图(邮称为等幅值轨迹图)。 有闭环的相频特性为 )V U U V (tg )U 1V (tg )U V (tg )jV U 1jV U (221-1-1-++=+=+++∠=-α (7) 令22V U U V tg N ++==α,上式可改为 22224N 1N )2N 1(V )21(U +=+++ (8) 可见式(8)也是一个圆方程,他表明了U 、V 与N 之间的关系。该圆方程的圆心坐标为 |。-,半径为|-1N )2N 1j ,21(2当N 取不同的值时,可画出一簇圆,如图2所示。该 方法复杂,也不准确,我们用一个具体的力来说明一下用MATLAB 解决这类问题的方

通信原理第四章(数字基带传输系统)习题及其答案

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12) () s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ =-∞ = =-+--=-+ --=-+-? ∑ ?∑ ?? ∑ ? ----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

开环系统频率特性曲线的绘制方法

开环系统频率特性曲线的绘制方法 (一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞ 1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω); 11211222 1 1 2 2 1 2 1 1 2 2 1 2 1121 12221 1221 2 1 1 2 2 1 2 22222 2 2 2(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2] m m m m j k j k k k j k j k k k k v n n n n i l i l l l i l i l l l j T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωω ω+-+---= +-+---∏∏∏∏∏∏∏∏ (1) 式中:分子多项式中最小相位环节的阶次和为111212m m m =+, 分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+, 分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。 注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、 11Ts -、2 2 121 n n s s ξωω+-、22 21n n s s ξωω+-等非最小相位环节。 2、求N 氏曲线的起点 当ω→0+时,(1)式可近似为: 0lim ()()k v k G j j ωωω+ →→ (2) 于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。 ① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点: 0k >时,沿着角度()2 v π?ω=-?起始于无穷远点; 0k <时,沿着角度()2 v π?ωπ=--?起始于无穷远点。 ③ 当0v <时,N 氏曲线起始于原点: 0k >时,沿着角度()2 v π?ω=?起始于原点; 0k <时,沿着角度()2 v π?ωπ=-+?起始于原点。 3、求N 氏曲线的终点 当ω→+∞时,(1)式中各环节的相角分别为:

数据传输速率的定义

数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N) 可得,S/N=1000。若带宽B=3000Hz,则Rmax≈30kbps。香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。它表示对于带宽只有3000Hz的通信信道,信噪比在30db时,无论数据采用二进制或更多的离散电平值表示,都不能用越过0kbps的速率传输数据。 因此通信信道最大传输速率与信道带宽之间存在着明确的关系,所以人们可以用“带宽”去取代“速率”。例如,人们常把网络的“高数据传输速率”用网络的“高带宽”去表述。因此“带宽”与“速率”在网络技术的讨论中几乎成了同义词。 频带就是指频率范围 带宽的两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通信频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。 对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识,对此我们就

自动控制原理控制系统的频率特性实验报告

肇庆学院 工程学院 自动控制原理实验报告 12 年级 电气一班 组员:王园园、李俊杰 实验日期 2014/6/9 姓名:李奕顺 学号:201224122130老师评定 ________________ 实验四:控制系统的频率特性 一、实验原理 1.被测系统的方块图:见图4-1 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化, 并施加于 被测系统的输人端[r(t)],然后分别测量相应的反馈信号 [b(t)]和误差信号[e(t)]的对数幅 值和 相位。频率特性测试仪测试数据经相关运算器后在显示器中显示。 根据式(4 — 3)和式(4 — 4)分别计算出各个频率下的开环对数幅值和相位, 在半对数座标 纸上作出实验曲线:开环对数幅频曲线和相频曲线。 系统(或环节)的频率特性 幅值和相角: G (j 3)是一个复变量,可以表示成以角频率 3为参数的 G(j 3)= G(j 3)|/G(j 3) (4 — 1) 本实验应用频率特性测试仪测量系统或环节的频率特牲。 图4-1所示系统的开环频率特性为: G 1(j 3)G 2(j 3) B(j 3) 」 B(j 3) E(j 3) E(j 3) E(j 3) (4—2) 采用对数幅频特性和相频特性表示,则式( 20lgG1(j 3) G2(j 3)H(j 3)= 2 叫鵲 = 20lgB(j 3) -20lg E(j 3) (4— 3) G 1(j 3)G 2(j 3)H(j 3) 二 B(j 3)- . E(j 3) (4—4) 图4-1 被测系统方块图 4— 2 )表示 为:

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转 角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特牲(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频 (相 对于转角频率)时不等于-90 ° (q —p)[式中p和q分别表示传递函数分子和分母的阶次], 那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 2.被测系统的模拟电路图:见图4-2 图4-2被测系统 二、实验内容 (1)将U21 DAC单元的OUT端接到对象的输入端。 ⑵将测量单元的CH1 (必须拨为乘I档)接至对象的输出端。 ⑶将Ul SG单元的ST和S端断开,用排线将ST端接至U26控制信号单元中的PB0。(由于在每次测量前,应对对象进行一次回零操作,ST即为对象锁零控制端,在这里,我们用8255的PB0 口对ST进行程序控制) ⑷在PC机上分别输入角频率为1, 10,100,300,并使用“ +”、“―”键选择合适的幅值,按ENTER键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得到相应的幅值和相位,得到的实验波形图如图4-3到图4-10所示: 图4-3输入频率为1的波形图1

扩声系统一级标准

语言扩声系统声学特性指标 平均声压级:≥90dB(250~4000Hz) 传输频率特性:250~4000Hz(+4~-6dB) 声场不均匀度:≤8dB(中心频率为1000Hz,4000Hz) 传声增益:≥-12dB(250Hz~4000Hz) 总噪声级:≤NR30 音乐与语言兼用扩声系统声学特性指标 平均声压级:≥98dB(125~4000Hz) 传输频率特性:125~4000Hz(+4~-4dB) 声场不均匀度:≤8dB(中心频率为1000Hz,4000Hz) 传声增益:≥-8dB(125Hz~4000Hz) 总噪声级:≤NR30? 音乐扩声系统声学特性指标 平均声压级:≥103dB(100~6300Hz) 传输频率特性:100~6300Hz(+4~-4dB) 声场不均匀度:100Hz≤8dB;≤8dB(中心频率为1000~6300Hz)传声增益:≥-8dB(100Hz~6300Hz)(音乐);平均≥-4dB(戏曲) 总噪声级:≤NR25 体育馆扩声系统声学特性指标 (仅供固定安装扩声系统设计时使用) 最大声压级:≥105dB 传输频率特性:125~4000Hz(+4~-4dB) 声场不均匀度:≤8dB(中心频率为1000Hz~4000Hz) 传声增益:≥-10dB(125Hz~4000Hz) 系统噪声:扩声系统不产生明显可察觉的噪声干扰(如交流噪声等) 体育场扩声系统声学特性指标 (仅供固定安装扩声系统设计时使用) 最大声压级:≥98dB 传输频率特性:以250~4000Hz的平均声压级为0dB,允许+4 dB~-6 dB的变化声场不均匀度:中心频率1000Hz,4000Hz时,大部分区域≤10dB 传声增益:250Hz~4000Hz? ≥-12dB 系统噪声:扩声系统不产生明显可察觉的噪声干扰(如交流噪声等) 歌舞厅扩声系统声学特性指标 最大声压级:≥103dB(100~6300Hz) 传输频率特性:80~8000Hz(+4~—4dB) 声场不均匀度:≤8dB(中心频率为1000Hz~6300Hz)≤10dB(中心频率为100Hz)

第三章 系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

系统开环频率特性的绘制

5.3 系统开环频率特性的绘制 对自动控制系统进行频域分析时,通常是根据开环系统的频率特性来判断闭环系统的稳定性和估算闭环系统时域响应的各项性能指标,或者根据开环系统的频率特性绘制闭环系统的频率特性,然后再分析及估算时域性能指标。因此,掌握开环系统的频率特性曲线的绘制和特点是十分重要的。 5.3.1 开环幅相曲线的绘制 开环系统的幅相频率特性曲线简称为开环幅相曲线。准确的开环幅相曲线可以根据系统的开环幅频特性和相频特性的表达式,用解析计算法绘制。显然,这种方法比较麻烦。在一般情况下,只需要绘制概略开环幅相曲线,概略开环幅相曲线的绘制方法比较简单,但是概略曲线应保持准确曲线的重要特征,并且在要研究的点附近有足够的准确性。 下面首先介绍幅相频率特性曲线的一般规律与特点,然后举例说明概略绘制开环幅相曲线的方法。 设系统开环传递函数的一般形式为 ) 1()1()()(11 ++= ∏∏-==s T s s K s H s G j v n j v m i i τ )(m n ≥ (5-49) 式中,K 为开环增益;v 为系统中积分环节的个数。 则系统的开环频率特性为 ) 1() ()1()()(1 1∏∏-==++= v n j j v m i i T j j j K j H j G ωωωτωω (5-50) 1.开环幅相曲线的起点 在低频段当0→ω时,由式(5-50)可得 )90(0 lim ) (lim )()(lim ??-→→→==v j v v e K j K j H j G ω ωωωωωω (5-51) 由式(5-51)可知,当0→ω时,开环幅相曲线的起点取决于开环传递函数中积分环节的个数v 和开环增益K ,参见图5-23(a )。 0型(v =0)系统,开环幅相曲线起始于实轴上的)0,(j K 点。 Ⅰ型(v =1)系统,开环幅相曲线起始于相角为?-90的无穷远处。当+ →0ω时,曲线渐近于与虚轴的平行的直线,其横坐标

自动控制原理实验-控制系统频率特性的测试..

实验四 控制系统频率特性的测试 1、实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 2、实验装置 (1)PC586微型计算机。 (2)自动控制实验教学系统软件。 3、实验步骤及数据处理 (1)首先确定被测对象模型的传递函数G (S ),根据具体情况,先自拟三阶 系统的传递函数, )12)(1()(22221+++= s T s T s T K s G ξ,设置好参数K T T ,,,21ξ。 要求:1T 和2T 之间相差10倍左右,1T <2T 或2T <1T 均可,数值可在0.01秒 和10秒之间选择,ξ取0.5左右,K ≤10。 设置T1=0.1,T2=1,ξ =0.5,K=5。 (3)设置好各项参数后,开始作仿真分析,首先作幅频特性测试。 ①根据所设置的1T ,2T 的大小,确定出所需频率范围(低端低于转折频率小者10倍左右,高端高于转折频率高者10倍左右)。 所需频率范围是:0.1rad/s 到100rad/s 。 ②参考实验模型窗口图,设置输入信号模块正弦信号的参数,首先设置正弦信号幅度Amplitude,例如设置Amplitude=1,然后设置正弦频率Frequency ,单位为rads/sec 。再设置好X 偏移模块的参数,调节Y 示波器上Y 轴增益,使在所取信号幅度下,使图象达到满刻度。 ③利用Y 示波器上的刻度(最好用XY 示波器上的刻度更清楚地观察),测试输入信号的幅值(用2m X 表示),也可以参考输入模块中设置的幅度,记录于表7--2中。此后,应不再改变输入信号的幅度。 ④依次改变输入信号的频率(按所得频率范围由低到高即ω由小到大慢慢改变,特别是在转折频率处更应多测试几点,注意:每次改变频率后要重新启动Simulation|Start 选项,观察“李沙育图形” 读出数据),利用Y 示波器上的刻度(也可以用XY 示波器上的刻度更清楚地观察,把示波器窗口最大化,此时格数增多更加便于观察),测试输出信号的幅值(用2m Y 表示),并记录于表7--2 (本表格不够,可以增加)。注意:在转折频率,特别是11T 和21T 附近应多测几点。 由题意知传递函数的两个转折频率为1rad/s 和10rad/s,所以选取的频率为0.5rad/s 、0.7rad/s 、0.98rad/s 、0.99rad/s 、1rad/s 、1.2rad/s 、4rad/s 、7rad/s 、9rad/s 、9.8rad/s 、9.9rad/s 、10rad/s 、10.1rad/s 、10.2rad/s 、14rad/s 、20rad/s 、40rad/s 、80rad/s 、100rad/s 以下是在不同频率下李沙育图及幅频特性和相频特性的分析情况

控制系统频率特性实验

实验名称控制系统的频率特性 实验序号实验时间 学生姓名学号 专业班级年级 指导教师实验成绩 一、实验目的: 研究控制系统的频率特性,及频率的变化对被控系统的影响。 二、实验条件: 1、台式计算机 2、控制理论计算机控制技术实验箱系列 3、仿真软件 三、实验原理和内容: .被测系统的方块图及原理被测系统的方块图及原理: 图—被测系统方块图 系统(或环节)的频率特性(ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。 本实验应用频率特性测试仪测量系统或环节的频率特性。 图—所示系统的开环频率特性为: 采用对数幅频特性和相频特性表示,则式(—)表示为: 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施

加于被测系统的输入端[()],然后分别测量相应的反馈信号[()]和误差信号[()]的对数 幅值和相位。频率特性测试仪测试数据经相关器件运算后在显示器中显示。 根据式(—)和式(—)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸 上作出实验曲线:开环对数幅频曲线和相频曲线。 根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的 频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。如果测量所得的相位 在高频(相对于转角频率)时不等于-°(-)[式中和分别表示传递函数分子和分母 的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 .被测系统的模拟电路图被测系统的模拟电路图:见图- 注意:所测点()、()由于反相器的作用,输出均为负值,若要测其正的输出点, 可分别在()、()之后串接一组的比例环节,比例环节的输出即为()、()的 正输出。 四、实验步骤: 在此实验中,利用型系统中的转换单元将提供频率和幅值均可调的基准正弦信 号源,作为被测对象的输入信号,而型系统中测量单元的通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作 为对象的输入,可测得相应的环节输出,并在机屏幕上显示,我们可以根据所测得的 数据正确描述对象的幅频和相频特性图。具体实验步骤如下: ()将转换单元的端接到对象的输入端。 ()将测量单元的(必须拨为乘档)接至对象的输出端。 ()将信号发生器单元的和端断开,用号实验导线将端接至单元中的。 (由于在每次测量前,应对对象进行一次回零操作,即为对象锁零控制端,在这里,我们用的口对进行程序控制) ()在机上输入相应的角频率,并输入合适的幅值,按键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得 到相应的幅值和相位。 ()如需重新测试,则按“”键,系统会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。 ()根据测量在不同频率和幅值的信号源作用下系统误差()及反馈()的幅值、相 对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。 实验数据处理及被测系统的对数幅频曲线和相频曲线 表实验数据(ωπ)

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

线性系统的频率特性

线性系统的频率特性 一、实验原理 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性非时变系统。线性非时变系统的基本特性是其次性、叠加性、时不变性、微分性以及因果性。线性非时变系统的分析,是对系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号为 () in v t ,其频谱为 () in V j ω;系统的单位冲激响应为()h t ,系统的频率特 性为()H j ω;输出信号为 () out v t ,其频谱为() out V j ω,则时间域中输入与输出的关系为 ()()() out in v t v t h t =* 频率域中输入与输出的关系为 ()()() out in V j V j H j ωωω=* 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法更简便和直接。 二、实验方法简述 1、输入信号的选取 这里输入信号选取周期矩形信号,并且要求 K τ 不为整数。这是因为周期矩形信号具有丰 富的谐波分量,可通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量,由于测量频率点的数目有限,因此需要排除 谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是K T τ Ω ,其中K=1、2、3……。 2、线性系统的系统函数幅度频率特性分析 通过傅里叶变换将信号由时域变换为频域来观察研究,用波特计研究当输入交流信号时高通电路与低通电路不同的过滤特性,研究输入方波信号时输出的频域响应。 1)低通网络的系统函数的频率特性为 ()()() out in R V j L H j R V j j L ωωωω= = + 2)高通网络的系统函数的频率特性为 ()()1() out in V j j H j V j j RL ωωωωω= = +

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

第五章 频率特性分析法

五 频域分析法 2-5-1 系统单位阶跃输入下的输出)0(8.08.11)(94≥+-=--t e e t c t t ,求系统的频率特 性表达式。 【解】: 9 8 .048.11 )]([L )(1++ +-==-s s s t c s C 闭环传递函数 )9)(4(36 198 .048.11)()()(++=++ +-==s s s s s s s R s C s G ) 9 tg 4 (tg 221 181 1636 )9)(4(36)(ωω ωωωωω--+-+?+=++=j e j j j G 2-5-2 环系统时,系统的稳态输出 (1))30sin()(0+=t t r ; (2))452cos(2)(0+=t t r ; (3))452cos(2)30sin()(00--+=t t t r 。 【解】:求系统闭环传递函数 5 tg 2125 4 )5(4)(5 4)(1)()()()(1 4 )(ω ωωω--+=+=+= +== += j B K K B K e j j G s s G s G s R s C s G s s G 根据频率特性的定义,以及线性系统的迭加性求解如下: (1)?===30,1,11θωr A ? --=== =-3.115 1tg )1(178.0264)1()(1 j j j B e e e A j G θωω [])7.18sin(78.0)1(sin )1()sin()(12?+=++=+=t t A A t A t c r c s θθθ (2)?===45,2,21θωr A

?--==+= -8.215 2tg 274.025 44)(1 j j B e e j G ωω )2.232cos(48.1)(?+=t t c s (3))8.662cos(48.1)7.18sin(78.0)(?--?+=t t t c s 2-5-3 试求图2-5-3所示网络的频率特性,并绘制其幅相频率特性曲线。 【解】:(1)网络的频率特性 1)(111 )(212212+++=+ ++ =ωωωωωC R R j C jR C j R R C j R j G (2)绘制频率特性曲线 ) tg (tg 2 221212111 1 )(1)(1 1 )(ωωωωωωωT T j e T T jT jT j G ---++= ++= 其中1221221,)(,T T C R R T C R T >+==。 起始段,?===0)(,1)(,0ωθωωA 。 中间段,由于12T T >,)(ωA 减小,)(ωθ先减小后增加,即曲线先顺时针变化,再逆时针变化。 终止段,?→<= ∞→∞ →0)(,1)(lim , 2 1 ωθωωωT T A 。 网络幅相频率特性曲线如题2-5-3解图所示。 【解】:系统闭环传递函数为 K s Ts K s G s G s R s C s G K K B ++=+== 2)(1)()()()( 10=ω时系统频率特性为 ()) (10010tg 210 210)(100 )100(10 100)()(1 ωθωωωω ωωj T K j e A e T K K j T K K j T K K j G =+-= +-= +-= --==- 题2-5-3图 1 R ++- - 题2-5-3解图

4.3电力系统的频率特性

4.3电力系统的频率特性 4.3.1发电机组自动调速系统工作原理 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统,特别是其中的调速器和调频器(又称同步器)。以下,就从自动调速系统的作用开始,讨论频率调整。 自动调速系统的种类很多,以下介绍的是一种相当原始的机械调速系统—离心飞摆式。这种调速系统比较直观,但它的调节机理又和新型调速系统(如电液式调速系统)没有很大差别。 离心飞摆式调速系统的示意图如图4-7。 图4-7离心飞摆式调速系统 其作用原理如下: 调速器的飞摆由套筒带动转动,套简则为原动机的主铀所带动。单机运行时,因机组负荷的增大,转速下降,飞摆由于离心力的减小,在弹簧的作用下向转轴靠拢,使A点向下移动到A``。但因油动机活塞两边油压相等,B点不动,结果使杠杆AB绕B点逆时针转动到A``B。在调频器不动作的情况下,D点也不动,因而在A点下降到A``时,杠杆DE绕D点顺时针转动到DE`,E点向下移动到E`。错油门活塞向下移动,使油管a、b的小孔开启,压力油经油管b进入油动机活塞下部,而活塞上部的油则经油管a经错油门上部小孔溢出。在油压作用下,油动机活塞向上移动,使汽轮机的调节汽门或水轮机的导向叶片开度增大,增加进汽量或进水量。 与油动机活塞上升的同时,杠杆AB绕A点逆时针转动,将连结点C从而错油门活塞提升,使油管a、b 的小孔重新堵住。油动机活塞又处于上下相等的油压下,停止移动。由于进汽或进水量的增加,机组转速上升,A点从A``回升到A`。调节过程结束。这时杠杆AB的位置为A`CB`。分析杠析AB的位置可见,杠杆上C 点的位置和原来相同,因机组转速稳定后错油门活塞的位置应恢复原状;B`位置较B高,A`的位置较A略低;相应的进汽或进水量较原来多,机组转速较原来略低。这就是频率的“一次调整”作用。 对应负荷的增大,发电机输出功率增加,频率略低于原来值;如果负荷降低,调速器调整作用将使输出功率减小,频率略高于原来值。这就是频率的一次调整,频率的一次调整由调速器自动完成的。调整的结果,频率不能回到原来值,因此一次调整为有差调节。 为使负荷增加后机组转速仍能维持原始转速,要求有“二次调整”。“二次调整”是借调频器完成的。调频器转动蜗轮、蜗杆,将D点抬高。D点上升时,杠杆DE绕F点顺时针转动,错油门再次向下移动,开启小孔。在油压作用下,油动机活塞再次向上移动,进一步增加进汽或进水量。机组转速上升,离心飞摆使A 点由A`向上升。而在油动机活塞向上移动时,杠杆AB又绕A逆时针转动,带动C、F、E点向上移动,再次堵塞错油门小孔,再次结束调节过程。如D点的位移选择得恰当,A点就有可能回到原来位置。这就是频率的“二次调整”作用。由于调整的结果,频率能回到原来值,因此二次调整为无差调节。 4.3.2发电机组的有功功率—频率静态特性

相关主题
文本预览
相关文档 最新文档