运筹学课后习题答案
- 格式:doc
- 大小:1.96 MB
- 文档页数:76
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
(1)max 12z x x =+51x +102x £50 1x +2x ³1 2x £4 1x ,2x ³0 (2)min z=1x +1.52x 1x +32x ³3 1x +2x ³2 1x ,2x ³0 (3)max z=21x +22x 1x -2x ³-1 -0.51x +2x £2 1x ,2x ³0 (4)max z=1x +2x 1x -2x ³0 31x -2x £-3 1x ,2x ³0 解:(1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。
(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-2 1x +2x +33x -4x £14 -21x +32x -3x +24x ³2 1x ,2x ,3x ³0,4x 无约束无约束(2)max kk z s p =11nmk ik ik i k z a x ===åå11(1,...,)mikk xi n =-=-=åik x ³0 (i=1(i=1……n; k=1,…,m) (1)解:设z=-z ¢,4x =5x -6x , 5x ,6x ³0 标准型:标准型:Max z ¢=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t . -41x +2x -23x +5x -6x +10x =2 1x +2x +33x -5x +6x +7x =14 -21x +32x -3x +25x -26x -8x +9x =2 1x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ³0 初始单纯形表: j c ® 3 -4 2 -5 5 0 0 -M -M i qB C B Xb 1x 2x 3x 5x6x7x 8x9x10x-M 10x 2 -4 1 -2 1 -1 0 0 0 1 2 0 7x14 1 1 3 -1 1 1 0 0 0 14 -M 9x2 -2 [3] -1 2 -2 0 -1 1 0 2/3 -z ¢4M 3-6M 4M-4 2-3M 3M-5 5-3M 0 -M 0 0 (2)解:加入人工变量1x ,2x ,3x ,…n x ,得:,得: Max s=(1/kp )1n i=å1m k =åik a ik x -M 1x -M 2x -…..-M n xs.t. 11mi ik k x x =+=å(i=1,2,3(i=1,2,3……,n) ik x ³0, i x ³0, (i=1,2,3(i=1,2,3……n; k=1,2….,m) M 是任意正整数是任意正整数 初始单纯形表:初始单纯形表: jc-M -M … -M 11k a p 12k a p… 1mk ap (1)n k a p 2n k a p …mnkapi qB C BXb 1x2x … n x11x12x … 1mx … 1n x2n x… nmx -M 1x1 1 0 … 0 1 1 … … 0 0 … 0 -M 2x 1 0 1 … 0 0 … … 0 0 … 0 … … … … … … … … … … … … … … … … -M n x 1 0 0 … 1 0 0 … 0 … 1 1 … 1 -s n M 0 0 … 0 11k a M p +12ka Mp + … 1mk a M p + (1)n k aM p +2n k a M p +…mnk a M p +1.3在下面的线性规划问题中找出满足约束条件的所有基解。
第四版运筹学部分课后习题解答篇一:运筹学基础及应用第四版胡运权主编课后练习答案运筹学基础及应用习题解答习题一 P46 (a)41的所有?x1,x2?,此时目标函数值2该问题有无穷多最优解,即满足4x1?6x2?6且0?x2?z?3。
(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
(a) 约束方程组的系数矩阵?1236300A??81?4020??30000?1最优解x??0,10,0,7,0,0?T。
(b) 约束方程组的系数矩阵?1234?A2212?????211?最优解x??,0,,0?。
5??5T(a)(1) 图解法最优解即为??3x1?4x2?935?3?的解x??1,?,最大值z?5x?2x?822??2?1(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?10x1?5x2?0x3?0x4?3x?4x2?x3? ?1?5x1?2x2?x4?8则P3,P4组成一个基。
令x1?x2?0得基可行解x??0,0,9,8?,由此列出初始单纯形表 ?1??2。
??min?,89??53?8 5?2?0,??min??218?3,??142?2?335?1,?2?0,表明已找到问题最优解x1?1, x2?,x3?0 , x4?0。
最大值 z*?22(b)(1) 图解法6x1?2x2x1?x2?最优解即为??6x1?2x2?2417?73?的解x??,?,最大值z?2?22??x1?x2?5(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式max z?2x1?x2?0x3?0x4?0x5?5x2?x3?15??6x1?2x2?x4?24?x?x?x?5?125则P3,P4,P5组成一个基。
令x1?x2?0得基可行解x??0,0,15,24,5?,由此列出初始单纯形表?1??2。
??min??,??245?,??461?3?3?15,24,??2?2?5?2?0,??min?新的单纯形表为篇二:运筹学习题及答案运筹学习题答案第一章(39页)用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
第一章 线性规划1、由图可得:最优解为 2、用图解法求解线性规划: Min z=2x 1+x 2 解:由图可得:最优解x=1.6,y=6.4 3用图解法求解线性规划:Max z=5x 1+6x 2 解:由图可得:最优解Max z=5x 1+6x 2, Max z= +4用图解法求解线性规划:Maxz = 2x 1 +x 2由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.6将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0 Max z ’=-x 1+2x 2-3x 3’+3x 3’’7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3解:令Z’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
x 2’=-x 2 x 3=x 3’-x 3’’ Z’ = -min Z = -x 1-2x 2-3x 39用单纯形法求解线性规划问题:Max Z =70x 1+120x 2解: Max Z =70x 1+120x 2 单纯形表如下Max Z =3908.11.解:(1)引入松弛变量X 4,X 5,X 6,将原问题标准化,得max Z=10X 1+6X 2+4X 3 X 1+X 2+X 3+X 4=100 10 X 1+4X 2+5X 3+X 5=600 2 X 1+2X 2+6X 3+X 6=300 X 1,X 2,X 3,X 4,X 5,X 6≥0 得到初始单纯形表:(2)其中ρ1 =C 1-Z 1=10-(0×1+0×10+0×2)=10,同理求得其他 根据ρmax =max{10,6,4}=10,对应的X 1为换入变量,计算θ得到, θmin =min{100/1,600/10,300/2}=60,X 5为换出变量,进行旋转运算。
(3)重复(2)过程得到如下迭代过程ρj ≤0,迭代已得到最优解,X *=(100/3,200/3,0,0,0,100)T, Z *=10×100/3+6×200/3+4×0 =2200/3。
12解:(1)引入松弛变量X 3,X 4,X 5将原问题标准化,得max Z=2X 1+X 2 5X 2+X 3=15 6X 1+2X 2+ X 4=24 X 1+2X 2+ X 5=5 X 1,X 2,X 3,X 4,X 5≥0 得到初始单纯形表:(2)其中ρ1 =C 1-Z 1=2-(0×1+0×10+0×2)=2,同理求得其他 根据ρmax =max{2,1,0}=2,对应的X 1为换入变量,计算θ得到, θmin =min{-,24/6,5/1}=4, X 4为换出变量,进行旋转运算。
(3)重复(2)过程得到如下迭代过程ρj ≤0,迭代已得到最优解,X *=(7/2,3/2,0,0,0)T, Z * =2×7/2+3/2 =17/2。
13解:引入松弛变量X 3、X 4,约束条件化成等式,将原问题进行标准化,得: Max Z=2.5X 1+X 2 3X 1+5X 2+X 3 =15 5X 1+2X 2 +X 4=10 X 1,X 2,X 3,X 4≥0(1) 确定初始可行基为单位矩阵I=[P 3,P 4],基变量为X 3,X 4,X 5,非基变量为X 1,X 2,则有: Max Z=2.5X 1+3X 2 X 3=15-3X 1-5X 2 s.t X 4=10-5X 1-2X 2 Xi ≥0,j=1,2,3,4 将题求解过程列成单纯形表格形式,表1 由上述可得,将1x 替换为4x表2,单纯形迭代过程由表2可得,将2x 替换为3x 表3 最终单纯形表非基变量检验数3σ=0,4σ=1-2,得到该线性规划另一最优解,*x =(2019,4519,0,0),*z =5, 该线性规划具有无穷多个解 14.用单纯形法求解线性规划问题: 解:(1)将原问题转化为标准形式,得 (2)建立单纯性,并进行迭代运算C j21θ(3)得到最优解X*=(195,65,9 ,0 ,0 )T,Z*=44515.用单纯形法求解线性规划问题:解:(1)将原问题转化为标准形式,得(2)建立单纯性,并进行迭代运算本例第二个单纯形表中,非基变量X2对应的检验数σ 0,并且对应的变量系数ai,20(i=1,2,3),根据无界解判定定理,该线性规划问题有无界解(或无最优解)。
如果从方程角度看,第二个表格还原线性方程也即:令3x=0,则此时,若2x进基,则1x,4x,5x会和基变量2x同时增加,同时目标函数值无限增长,所以本题无解。
16解:(1)引入松弛变量X3,X4,X5将原问题标准化,得max Z=2X1+4X2+0X3+0X4+0X5X1+2X2+X3=8X 1+X4=4X 2+X5=3X 1,X2,X3,X4,X5≥0(1)得到初始单纯形表:(2)重复(1)过程得到如下迭代过程ρ5 = 0,ρ3 < 0,因此有无穷多解,其中一个解为X1=2 X2=3max Z = 16 17、Max z=3x1+5x2 Maxz=3x1+5x2x1+ x3=4 x1 ≤4 标准化并且引入松弛变量2x2+ x4=12 2x2≤12 3x1+2x2+ x5=18 3x1+2x2≤18 x1,x2,x3,x4,x5≥x1≥0 x2≥0非基变量σj ≤0,得到最优解,其中x1=0,x2=6,x3=4.x4=0,x5=6最优解Max Z=3*0+5*6=30其中,有非基变量σ1=0,所以有无穷多个解18、解:化为标准形式:MaxZ’=-5X1-2X2-4X33X1+X2+2X3-X4=46X1+3X2+5X3-X5=10X1,x2,x3,x4,x5>=0增加人工变量x6,x7,得到:MaxZ’=-5X1-2X2-4X3-MX6-MX7 3X1+X2+2X3-X4+X6=46X1+3X2+5X3-X5+X7=10X1,x2,x3,x4,x5>=0大M法求解过程如下:最优解为X1*=2/3,X2*=2,X3*=0最优目标函数值minZ=22/319、解:化为标准形式:maxZ=-540x1-450x2-720x33x1+5x2+9x3-x4=709x1+5x2+3x3-x5=30X1,x2,x3,x4,x5>=0增加人工变量x6,x7,得到:maxZ=-540x1-450x2-720x3-Mx6-Mx7 3x1+5x2+9x3-x4+x6=709x1+5x2+3x3-x5+x7=30X1,x2,x3,x4,x5>=0大M法求解过程如下:最优解为X*=(0,2,20/3,0,0) 最优目标函数值minZ=5700 20解:先将其化成标准形式,有max z = −31x + 3x +04x +05x 1x +2x +3x +4x =4 (a ) -21x +2x -3x -5x =1 (b ) 32x +3x =9 (c ) 1x ,2x ,3x ,4x ,5x 0这种情况可以添加两列单位向量6P ,P 7 ,连同约束条件中的向量P 4构成单位矩阵P 4 P 6 P 71 0 00 1 00 0 1P 6,P 7是人为添加上去的,它相当于在上述问题的约束条件(b )中添加变量6x ,约束条件(c )中添加变量7x ,这两个变量相应称为人工变量。
由于约束条件(b )(c )在添加人工变量前已是等式,为使这些等式得到满足,因此在最优解中人工变量取值必须为零。
为此,令目标函数中人工变量的系数为任意大的负数,用“-M ”代表。
添加人工变量后数学模型变为max z = −31x + 3x +04x +05x −M 6x −M 7x1x +2x +3x +4x =4-21x +2x -3x -5x +6x =1 32x +3x +7x =9 1x ,2x ,3x ,4x ,5x ,6x ,7x ≥0得到初始可行解()0(0,0,0,4,0,1,9)X =,并列出初始单纯形表。
在单纯形法迭代运算中,M 可当作一个数学符号一起参加运算。
检验数中含M 符号的,当M 的系数为正时,该检验数为正;当M 的系数为负时,该检验数为负。
求解过程见下表最优解为(0,5/2,3/2)21、解:将原问题转化为标准型Maxz=3x1+2x22x1+x2+x3=2s.t. 3x1+4x2-x4=12Xi≥0,i=1,2,3,4然后添加人工变量x5,将原线性规划问题变为Maxz=3x1+2x2-Mx52x1+x2+x3=2s.t. 3x1+4x2-x4+x5=12Xi≥0,i=1,2,3,4,5取基变量为x3,x5,建立单纯形表,迭代过程如下:在单纯形表中,非基变量的检验值都是小于0,而人工变量仍不为0,则该线性规划无最优解。
22、解:假设甲、乙俩种产品产量分别为x1、x2,产品售后的最大利润为z,则根据题意可建立以下线性规划模型:Max=70x1+120x29x1+4x2≤360s.t. 4x1+6x2≤2003x1+10x2≤300 Xi ≥0,i=1,2 23 . 24.27.设生产四种产品分别为X 1,X 2,X 3X 4,则应满足的目标函数为max=2X 1+3X 2+X 3+X 4满足的约束条件为 0.5X 1+3X 2+X 3+0.5X 4≤18002X 1+X 2+X 3+ X 4≤2800 0.5X 1+0.5X 2+X 3+X 4≤1800 3X 1+X 2+2X 3+3X 4≤1800 X 1 ≥1000X 2≥600X 3≥500X 4≥40028.设X 1=A 出售的数量,X 2=A 在第二车间加工后的出售数量, X 3=B 的出售数量,X 4=B 在第三车间加工后的出售数量, X 5=第一车间所用的原料数量目标函数为maxZ=8X 1+9.5X 2+7X 3+8X 4—2.75X 5 满足的约束条件为 X 5≤1000003X 2+2X 4+1.5X 5 ≤200000 X 1+X 2—3X 5=0 X 3+ X 4 —2X 5=0 X 1,X 2,X 3,X 4≥029,解: 现在我们对本问题定义三种不同形式的决策变量,从而从不同的途径来构建模型.(1)设工厂第j 季度生产产品j x 吨首先,考虑约束条件:第一季度末工厂需交货20吨,故应有x1>=20;第一季度末交货后积余(x1-20)吨;第二季度末工厂需交货20吨,故应有x1-20+x2>=20;类似地,应有3034021≥+-+x x x ;第四季度末供货后工厂不能积压产品,故应有10704321=+-++x x x x ;又考虑到工厂每个季度的生产能力,故应有j j a x ≤≤0.其次,考虑目标函数:第一季度工厂的生产费用为15.01x ,第二季度工厂生产的费用包括生产费用142x 及积压产品的存贮费)20(2.01-x ;类似地,第三季度费用为)40(2.03.15213-++x x x ,第四季度费用为)70(2.08.143214-+++x x x x . 工厂一年的费用即为这四个季度费用之和. 整理后,得下列线性规划模型: min 268.145.154.146.154321-+++=x x x x z s.t. 21x x + 40≥30201≤≤x ,4002≤≤x ,2003≤≤x ,1004≤≤x .(2)设第j 季度工厂生产的产品为j x 吨,第j 季度初存贮的产品为j y 吨(显然,01=y ).因为每季度初的存贮量为上季度存贮量、生产量之和与上季度的需求量之差,又考虑到第四季度末存贮量为零,故有:2120y x =-, 32220y x y =-+, 43330y x y =-+, 1044=+x y ;同时,每季度的生产量不能超过生产能力:j j a x ≤;而工厂四个季度的总费用由每季的 生产费用与存贮费用组成,于是得线性规划:min 44332218.142.03.152.0142.00.15x y x y x y x z ++++++=s.t. 2021=-y x0≥j y , =j 2,3,4.(3) 设第i 季度生产而用于第j 季度末交货的产品数量为j i x 吨.根据合同要求,必须有:2011=x , 202212=+x x ,30332313=++x x x , 1044342414=+++x x x x .又每季度生产而用于当季和以后各季交货的产品数不可能超过该季工厂的生产能力, 故应有:3014131211≤+++x x x x , 40242322≤++x x x ,203433≤+x x , 1044≤x .第i 季度生产的用于第j 季度交货的每吨产品的费用)(2.0i j d c i ij -+=,于是,有线性规划模型:min z = 141312116.154.152.150.15x x x x +++ s.t. 2011=x0≥j i x =i 1,…,4;=j 1,…,4,i j ≥. 30,解 设ij x 为i #型飞机被派遣去j #工厂执行任务的架数.甲方的目标是希望事件“至少摧毁一个工厂”的概率最大. 这相当于希望事件“不摧毁任何工厂”的概率f 最小. 我们有: 它不是线性的,为此将上式改写为 于是,模型的目标函数为 关于燃料的约束条件为: 经过整理,即为48000480420400670580550232221131211≤+++++x x x x x x . 飞机数量约束:∑=≤31140j j x ,28312≤∑=j j x综上所述,本问题的线性规划模型为:max z = 1312110704.00969.00457.0x x x ++2322210554.00656.00362.0x x x +++ s.t. 48000480420400670580550232221131211≤+++++x x x x x x 0≥ij x , =i 1,2;=j 1,2,3.第二章 线性规划 1. 对偶问题和对偶变量的经济意义是什么?从经济学的角度来说,对偶变量反映的是对应的原变量的边际效应,即每增加一单位的原变量使目标函数变化的值,当原变量在目标函数取得最优解时没有用完的情况下,原变量的增加不会改变目标函数的值,此时原变量的边际效应为0,即对偶变量为0,这就是强对偶理论。