当前位置:文档之家› 离散时间LTI系统的时域分析(1)

离散时间LTI系统的时域分析(1)

离散时间LTI系统的时域分析(1)
离散时间LTI系统的时域分析(1)

第3章 离散时间LTI 系统的时域分析

3.1 实验目的

● 学会运用MATLAB 求解离散时间系统的零状态响应; ● 学会运用MATLAB 求解离散时间系统的单位取样响应; ● 学会运用MATLAB 求解离散时间系统的卷积和。

3.2 实验原理及实例分析

3.2.1 离散时间系统的响应

离散时间LTI 系统可用线性常系数差分方程来描述,即

∑∑==-=-M

j j

N i i

j n x b i n y a 0

)()( (3-1)

其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。

MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。函数filter 的语句格式为

y=filter(b,a,x)

其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。

【实例3-1】 已知某LTI 系统的差分方程为

)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y

试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n

=时,该系统的零状态响应。

解:MATLAB 源程序为

>>a=[3 -4 2]; >>b=[1 2]; >>n=0:30; >>x=(1/2).^n; >>y=filter(b,a,x); >>stem(n,y,'fill'),grid on

>>xlabel('n'),title('系统响应y(n)')

程序运行结果如图3-1所示。

3.2.2 离散时间系统的单位取样响应

系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。MATLAB 求解单位取样响应可利用函数filter ,并将激励设为前面所定义的impDT 函数。例如,求解实例13-1中系统的单位取样响应时,MATLAB 源程序为

>>a=[3 -4 2]; >>b=[1 2]; >>n=0:30; >>x=impDT(n); >>h=filter(b,a,x); >>stem(n,h,'fill'),grid on

>>xlabel('n'),title('系统单位取样响应h(n)')

程序运行结果如图3-2所示。

图3-1 实例3-1系统的零状态响应

图3-2 实例13-1的系统单位取样响应

MATLAB另一种求单位取样响应的方法是利用控制系统工具箱提供的函数impz来实现。impz函数的常用语句格式为

impz(b,a,N)

其中,参数N通常为正整数,代表计算单位取样响应的样值个数。

【实例3-2】已知某LTI系统的差分方程为

)1

(

2

)

(

)2

(

2

)1

(

4

)

(

3-

+

=

-

+

-

-n

x

n

x

n

y

n

y

n

y

利用MATLAB的impz函数绘出该系统的单位取样响应。

解:MATLAB源程序为

>>a=[3 -4 2];

>>b=[1 2];

>>n=0:30;

>>impz(b,a,30),grid on

>>title('系统单位取样响应h(n)')

程序运行结果如图3-3所示,比较图3-2和图3-3,不难发现结果相同。

3.2.3 离散时间信号的卷积和运算

由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。离散时间信号的卷积定义为

∑∞-∞=-

= =

m

m

n

h

m

x

n

h

n

x

n

y)

(

)

(

)

(

*)

(

)

((3-2)

可见,离散时间信号的卷积运算是求和运算,因而常称为“卷积和”。

MATLAB求离散时间信号卷积和的命令为conv,其语句格式为

y=conv(x,h)

图3-3 系统单位取样响应

其中,x 与h 表示离散时间信号值的向量;y 为卷积结果,它默认序列从n =0开始。但是如果序列是从一负值开始,即

{}{}

():12():12x n nx n nx h n nh n nh ≤≤≤≤

如果nx1<0或nh1<0就不能直接采用conv 函数。其卷积结果序列为{():1122}y n nx nh n nx nh +≤≤+,这样就可以构成一个新的卷积函数conv_m 。如下所示:

function[y,ny]=conv_m(x,nx,h,nh)

ny1=nx(1)+nh(1);ny2=nx(length(x))+nh(length(h)); ny=[ny1:ny2]; y=conv(x,h)

值得注意的是用MA TLAB 进行卷积和运算时,无法实现无限的累加,只能计算时限信号的卷积。

【实例3-3】 已知某系统的单位取样响应为()()()[]88.0--=n u n u n h n ,试用MATLAB 求当激励信号为)4()()(--=n u n u n x 时,系统的零状态响应。

解:MATLAB 中可通过卷积求解零状态响应,即)(*)(n h n x 。由题意可知,描述)(n h 向量的长度至少为8,描述)(n x 向量的长度至少为4,因此为了图形完整美观,我们将)(n h 向量和)(n x 向量加上一些附加的零值。MATLAB 源程序为

nx=-1:5; %x(n)向量显示范围(添加了附加的零值) nh=-2:10; %h(n)向量显示范围(添加了附加的零值) x=uDT(nx)-uDT(nx-4);

h=0.8.^nh.*(uDT(nh)-uDT(nh-8)); [y,ny]=conv_m(x,nx,h,nh); subplot(311)

stem(nx,x,'fill'),grid on xlabel('n'),title('x(n)') axis([-4 16 0 3]) subplot(312)

stem(nh,h','fill'),grid on xlabel('n'),title('h(n)') axis([-4 16 0 3]) subplot(313)

stem(ny,y,'fill'),grid on xlabel('n'),title('y(n)=x(n)*h(n)') axis([-4 16 0 3])

程序运行结果如图3-5所示。

3.3 编程练习

1.

试用MATLAB 命令求解以下离散时间系统的单位取样响应。 (1))1()()2()1(4)(3-+=-+-+n x n x n y n y n y (2))()2(10)1(6)(2

5

n x n y n y n y =-+-+ 2.

已知某系统的单位取样响应为()()()[]10)8

7(--=n u n u n h n

,试用MATLAB 求当激励

信号为)5()()(--=n u n u n x 时,系统的零状态响应。

图3-5 利用卷积和法求解系统的零状态响应

第4章 z 变换及离散时间LTI 系统的z 域

分析

4.1 实验目的

● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点;

● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ●

学会运用MATLAB 进行离散时间系统的频率特性分析。

4.2 实验原理及实例分析

4.2.1 z 正反变换

序列()n x 的z 变换定义为

()()[]()∑∞

-∞

=-=

=n n

z

n x n x z X Z (4-1)

其中,符号Z 表示取z 变换,z 是复变量。相应地,单边z 变换定义为

()()[]()∑∞

=-==0

n n z n x n x z X Z (4-2)

MATLAB 符号数学工具箱提供了计算离散时间信号单边z 变换的函数ztrans 和z 反变换函数iztrans ,其语句格式分别为

Z=ztrans(x) x=iztrans(z)

上式中的x 和Z 分别为时域表达式和z 域表达式的符号表示,可通过sym 函数来定义。

【实例4-1】 试用ztrans 函数求下列函数的z 变换。

(1))()cos()(n u n a n x n

π=; (2))(])2(2[)(11

n u n x n n ----=。

解:(1)z 变换MATLAB 源程序为

>>x=sym('a^n*cos(pi*n)'); >>Z=ztrans(x);

>>simplify(Z) %对Z 进行简化运算 ans=

z/(z+a)

(2)z 变换MA TLAB 源程序为

>>x=sym('2^(n-1)-(-2)^(n-1)');

>>Z=ztrans(x); >>simplify(Z) ans=

z^2/(z-2)/(z+2)

【实例4-2】 试用iztrans 函数求下列函数的z 反变换。

(1)65198)(2+--=z z z z X (2)3

2)2)(1()

12112()(--+-=z z z z z z X

解:(1)z 反变换MA TLAB 源程序为

>>Z=sym('(8*z-19)/(z^2-5*z+6)'); >>x=iztrans(Z); >>simplify(x) ans=

-19/6*charfcn[0](n)+5*3^(n-1)+3*2^(n-1)

其中,charfcn[0](n)是)(n δ函数在MA TLAB 符号工具箱中的表示,反变换后的函数形式为

)()2335()(6

19

)(11n u n n x n n --?+?+-

=δ。 (2)z 反变换MATLAB 源程序为

>>Z=sym('z*(2*z^2-11*z+12)/(z-1)/(z-2)^3'); >>x=iztrans(Z); >>simplify(x) ans=

-3+3*2^n-1/4*2^n*n-1/4*2^n*n^2

其函数形式为)()24

1241233()(2n u n n n x n

n n

--

?+-=。

如果信号的z 域表示式)(z X 是有理函数,进行z 反变换的另一个方法是对)(z X 进行部分分式展开,然后求各简单分式的z 反变换。设)(z X 的有理分式表示为

)()

(1)(221122110z A z B z

a z a z a z

b z b z b b z X n

n m m =++++++++=------ (4-3) MATLAB 信号处理工具箱提供了一个对)(z X 进行部分分式展开的函数residuez ,其语句格式为

[R,P,K]=residuez(B,A)

其中,B ,A 分别表示X(z)的分子与分母多项式的系数向量;R 为部分分式的系数向量;P 为极点向量;K 为多项式的系数。若X(z)为有理真分式,则K 为零。

1

111

()(1)(2)()()...(1)(2)...()1(1)1(2)1()B z r r r N Y z k k z A z p z p z p N z

----=

=++++++--- 从

()(1)[(1)]()(2)[(2)]()...()[()]()(1)()(2)(1)...

n n n y n r p u n r p u n r N p N u n k n k n δδ=+++++-+

【实例4-3】 试用MATLAB 命令对函数3

21431818)(-----+=z z z z X 进行部分分式

展开,并求出其z 反变换。

解:MATLAB 源程序为

>>B=[18]; >>A=[18,3,-4,-1]; >>[R,P,K]=residuez(B,A) R= 0.3600 0.2400 0.4000 P= 0.5000 -0.3333 -0.3333 K= []

从运行结果可知,32p p =,表示系统有一个二重极点。所以,X(z)的部分分式展开为

2

111)3330.314.03333.0124.05.0136.0)(---++

++-=

z z z z X ( 因此,其z 反变换为

)(])3333.0)(1(4.0)3333.0(24.0)5.0(36.0[)(n u n n x n n n -++-?+?=

4.2.2 系统函数的零极点分析

离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即

)

()

()(z X z Y z H =

(4-4) 如果系统函数)(z H 的有理函数表示式为

1

1211

121)(+-+-++++++++=

n n n n m m m m a z a z a z a b z b z b z b z H (4-5) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到。 1, roots 的格式语句为:p=roots(A),其中A 为待求根的多项式的系数构成的行向量,返回向量p 则包含该多项式所有的根位置列向量。 2,tf2zp 的语句格式为

[Z,P,K]=tf2zp(B,A)

其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。它的作用是将)(z H 的有理分式表示式转换为零极点增益形式,即

)

())(()

())(()(2121n m p z p z p z z z z z z z k

z H ------= (4-6)

【实例4-4】 已知一离散因果LTI 系统的系统函数为

16

.032

.0)(2

+++=

z z z z H 试用MATLAB 命令求该系统的零极点。

解:1,用roots 函数求系统的零极点: a=[1 0.32]; b=[1 1 0.16]; r=roots(a) r =

-0.3200 p=roots(b) p =

-0.8000 -0.2000

2,用tf2zp 函数求系统的零极点,MATLAB 源程序为

>>B=[1,0.32]; >>A=[1,1,0.16]; >>[R,P,K]=tf2zp(B,A) R= -0.3200 P= -0.8000 -0.2000 K= 1

因此,零点为0.32z =-,极点为10.8p =-与20.2p =-。

若要获得系统函数)(z H 的零极点分布图,可直接应用zplane 函数,其语句格式为

zplane(B,A)

其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量。值注意的是:求系统函数零极点时,离散系统的系统函数可能有两种形式,一种是分子分母多项式按z 的降幂次序排列,另一种是按1

z -的升幂次序排列。若是以z 的降幂次序排列,则系数向量一定要由多项

式的最高幂次开始,一直到常数项,缺项要用0补齐;若以1

z -的升幂次序排列,则分子分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则零点或极点有可能被漏掉。

【实例4-5】 已知一离散因果LTI 系统的系统函数为

22

2120.3610.36() 1.520.681 1.520.68z z H z z z z z -----==

-+-+

试用MATLAB 命令绘出该系统的零极点分布图。

解:用zplane 函数求系统的零极点,MA TLAB 源程序为

>>B=[1,0,-0.36]; >>A=[1,-1.52,0.68]; >>zplane(B,A),grid on >>legend('零点','极点') >>title('零极点分布图')

程序运行结果如图14-1所示。可见,该因果系统的极点全部在单位圆内,故系统是稳定的。

4.2.3 系统函数的零极点分布与其时域特性的关系

与拉氏变换在连续系统中的作用类似,在离散系统中,z 变换建立了时域函数)(n h 与z 域函数)(z H 之间的对应关系。因此,z 变换的函数)(z H 从形式可以反映)(n h 的部分内在性质。我们仍旧通过讨论)(z H 的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。

【实例14-6】 试用MATLAB 命令画出现下列系统函数的零极点分布图、以及对应的时域单位取样响应)(n h 的波形,并分析系统函数的极点对时域波形的影响。

(1)8.0)(1-=

z z z H (2)8.0)(2+=z z z H (3)72

.02.1)(23+-=z z z

z H

图4-1 零极点分布图

(4)1)(4-=z z z H (5)1

6.1)(25+-=z z z z H (6)2.1)(6-=z z s H (7)36

.12)(27+-=z z z

z H

解:MATLAB 源程序为

>>b1=[1,0]; >>a1=[1,-0.8]; >>subplot(121) >>zplane(b1,a1)

>>title('极点在单位圆内的正实数') >>subplot(122)

>>impz(b1,a1,30);grid on; >>figure >>b2=[1,0]; >>a2=[1,0.8]; >>subplot(121) >>zplane(b2,a2)

>>title('极点在单位圆内的负实数') >>subplot(122)

>>impz(b2,a2,30);grid on; >>figure >>b3=[0,1,0]; >>a3=[1,-1.2,0.72]; >>subplot(121) >>zplane(b3,a3)

>>title('极点在单位圆内的共轭复数') >>subplot(122)

>>impz(b3,a3,30);grid on; >>figure >>b4=[1,0]; >>a4=[1,-1]; >>subplot(121) >>zplane(b4,a4)

>>title('极点在单位圆上为实数1') >>subplot(122) >>impz(b4,a4);grid on; >>figure >>b5=[0,1,0]; >>a5=[1,-1.6,1]; >>subplot(121) >>zplane(b5,a5)

>>title('极点在单位圆上的共轭复数') >>subplot(122)

>>impz(b5,a5,30);grid on;

>>figure

>>b6=[1,0];

>>a6=[1,-1.2];

>>subplot(121)

>>zplane(b6,a6)

>>title('极点在单位圆外的正实数')

>>subplot(122)

>>impz(b6,a6,30);grid on;

>>figure

>>b7=[0,1,0];

>>a7=[1,-2,1.36];

>>subplot(121)

>>zplane(b7,a7)

>>title('极点在单位圆外的共轭复数')

>>subplot(122)

>>impz(b7,a7,30);grid on;

程序运行结果分别如图14-2的(a)、(b)、(c)、(d)、(e)、(f)、(g)所示。

(a)

(b)

(c)

(d)

(e)

(f)

(g)

从图14-2可知,当极点位于单位圆内时,)(n h 为衰减序列;当极点位于单位圆上时,

)(n h 为等幅序列;当极点位于单位圆外时,)(n h 为增幅序列。若)(n h 有一阶实数极点,

则)(n h 为指数序列;若)(n h 有一阶共轭极点,则)(n h 为指数振荡序列;若)(n h 的极点位于虚轴左边,则)(n h 序列按一正一负的规律交替变化。

4.2.4 离散时间LTI 系统的频率特性分析

对于因果稳定的离散时间系统,如果激励序列为正弦序列)()sin()(n u n A n x ω=,则系

图4-2 系统函数的零极点分布与其时域特性的关系

统的稳态响应为)()](sin[|)(|)(n u n e H A n y j ss ω?ωω+=。其中,()j H e ω通常是复数。离散时间系统的频率响应定义为

)(|)(|)(ω?ωωj j j e e H e H = (14-7)

其中,|)(|ωj e H 称为离散时间系统的幅频特性;)(ω?称为离散时间系统的相频特性;

)(ωj e H 是以s ω(T

s π

ω2=

,若零1=T ,πω2=s )为周期的周期函数。因此,只要分析)(ωj e H 在πω≤||范围内的情况,便可分析出系统的整个频率特性。

MATLAB 提供了求离散时间系统频响特性的函数freqz ,调用freqz 的格式主要有两种。一种形式为

[H,w]=freqz(B,A,N) 其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量,值得注意的是,B ,A 采用1

z

-的升次幂形式;N 为正整数,默认值为512;返回值w 包含],0[π范围内的N 个频率等分点;返回值H 则是离散时间系统频率响应)(ωj e H 在π~0范围内N 个频率处的值。另一种形式为

[H,w]=freqz(B,A,N,’whole ’)

与第一种方式不同之处在于角频率的范围由],0[π扩展到]2,0[π。

【实例4-6】 用MATLAB 命令绘制系统8109

.056.19028

.096.0)(22+-+-=z z z z z H 的频率响应曲线。

解:利用函数freqz 计算出)(ω

j e

H ,然后利用函数abs 和angle 分别求出幅频特性与相

频特性,最后利用plot 命令绘出曲线。MATLAB 源程序为

>>b=[1 -0.96 0.9028]; >>a=[1 -1.56 0.8109];

>>[H,w]=freqz(b,a,400,'whole'); >>Hm=abs(H); >>Hp=angle(H); >>subplot(211) >>plot(w,Hm),grid on

>>xlabel('\omega(rad/s)'),ylabel('Magnitude') >>title('离散系统幅频特性曲线') >>subplot(212) >>plot(w,Hp),grid on

>>xlabel('\omega(rad/s)'),ylabel('Phase') >>title('离散系统相频特性曲线')

程序运行结果如图4-2所示。

4.3 编程练习

1.

试用MATLAB 的residuez 函数,求出12

18153332

5644162)(234234-+-+++++=z z z z z z z z z X 的部分分

式展开和。

2.

试用MATLAB 画出下列因果系统的系统函数零极点分布图,并判断系统的稳定性。

(1)48

.096.15.29

.06.12)(2

32-+---=z z z z z z H (2)z

z z z z z H 873.065.09.01

)(2

34+---=

3.

试用MATLAB 绘制系统8

143)(22

+

-=z z z z H 的频率响应曲线。

图4-3 离散系统频响特性曲线

离散时间系统特性分析

实验五实验报告 实验名称:离散时间系统特性分析

一、实验目的: 1 。深入理解单位样值响应,离散系统的频率响应的概念; 2。 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率 响应的方法。 二、实验原理: 对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误差在相对小一个范围里,可以忽略不计。 另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。 本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。 具体的方法是: 1 在给定系统方程的条件下,选取激励信号为δ(n),系统的起始状态为零 状态,通过迭代法,求得系统的单位样值响应h(n)(n=0,…,N )。 2 利用公式 其中Ω的取值范围为0~2π 。计算系统的频率响应。 三、实验内容 1 已知系统的差分方程为 利用迭代法求得系统的单位样值响应,取N =10。 2 利用公式 其中

#include #include #define N 10 #define M 20 #define pi 3.1415926 struct pinlv{ double fu; double xiang;}; double h[N+1],x[N+1]; struct pinlv PL(double w) { double a=0, b=0,fu,xiang; int k; struct pinlv FX; for(k=0;k<=N;k++){ a=a+h[k]*cos(-k*w); b=b+h[k]*sin(-k*w);} fu=sqrt(a*a+b*b); xiang=atan(b/a); if((a<0)&(b>0)) xiang=xiang+pi; if((a<0)&(b<0)) xiang=xiang-pi; FX.fu=fu; FX.xiang=xiang; return(FX); } main() { int i,j; double w0; struct pinlv FX[M+1]; FILE *fp1,*fp2; fp1=fopen("H:\\单位样值响应.txt","w"); fp2=fopen("H:\\频率特性.txt","w"); h[-1]=0;h[-2]=0; for(i=-1;i<=N;i++) x[i]=0; x[0]=1; for(i=0;i<=N;i++) h[i]=1.3*h[i-1]-0.4*h[i-2]+x[i-1]; printf("系统的单位样值响应为\n"); fprintf(fp1,"系统的单位样值响应(从x[0]开始)为\n"); fprintf(fp1,"激励x[i] 响应y[i]\n"); for(i=0;i<=N;i++)

大作业1(机电控制系统时域频域分析)

《机电系统控制基础》大作业一 基于MATLAB的机电控制系统响应分析 哈尔滨工业大学 2013年11月4日

1 作业题目 1. 用MATLAB 绘制系统2 ()25()() 425 C s s R s s s Φ== ++的单位阶跃响应曲线、单位斜坡响应曲线。 2. 用MATLAB 求系统2 ()25 ()()425 C s s R s s s Φ==++的单位阶跃响应性能指标:上升时间、峰值时间、调节时间和超调量。 3. 数控直线运动工作平台位置控制示意图如下: X i 伺服电机原理图如下: L R (1)假定电动机转子轴上的转动惯量为J 1,减速器输出轴上的转动惯量为J 2,减速器减速比为i ,滚珠丝杠的螺距为P ,试计算折算到电机主轴上的总的转动惯量J ; (2)假定工作台质量m ,给定环节的传递函数为K a ,放大环节的传递函数为K b ,包括检测装置在内的反馈环节传递函数为K c ,电动机的反电势常数为K d ,电动机的电磁力矩常数为K m ,试建立该数控直线工作平台的数学模型,画出其控制系统框图; (3)忽略电感L 时,令参数K a =K c =K d =R=J=1,K m =10,P/i =4π,利用MATLAB 分析kb 的取值对于系统的性能的影响。

2 题目1 单位脉冲响应曲线 单位阶跃响应曲线

源代码 t=[0:0.01:1.6]; %仿真时间区段和输入 nC=[25]; dR=[1,4,25]; fi=tf(nC,dR); %求系统模型 [y1,T]=impulse(fi,t); [y2,T]=step(fi,t); %系统响应 plot(T,y1); xlabel('t(sec)'),ylabel('x(t)'); grid on; plot(T,y2); xlabel('t(sec)'),ylabel('x(t)'); grid on; %生成图形 3 题目2 借助Matlab,可得: ans = 0.4330 0.6860 25.3826 1.0000 即

实验三___离散时间系统的时域分析

实验三 离散时间系统的时域分析 1.实验目的 (1)理解离散时间信号的系统及其特性。 (2)对简单的离散时间系统进行分析,研究其时域特性。 (3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。 2.实验原理 离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示: (1)线性系统 线性系统就是满足叠加原理的系统。如果对于一个离散系统输入信号为时,输出信号分别为,即:。 而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。 (2)时不变系统 如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即: 若,则。 通常我们研究的是线性时不变离散系统。 3.实验内容及其步骤 (1)复习离散时间系统的主要性质,掌握其原理和意义。 (2)一个简单的非线性离散时间系统的仿真 系统方程为: x = cos(2*pi*0.05*n); x1[n] = x[n+1] x2[n] = x[n] x3[n] = x[n-1] y = x2.*x2-x1.*x3; 或者:y=x*x- x[n+1]* x[n-1] 是非线性。 参考:% Generate a sinusoidal input signal clf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x]; % x3[n] = x[n-1]

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

第三章控制系统的时域分析法知识点

第三章 控制系统的时域分析法 一、知识点总结 1.掌握典型输入信号(单位脉冲、单位阶跃、单位速度、单位加速度、正弦信号)的拉氏变换表达式。 2.掌握系统动态响应的概念,能够从系统的响应中分离出稳态响应分量和瞬态响应分量;掌握系统动态响应的性能评价指标的概念及计算方法(对于典型二阶系统可以直接应用公式求解,非典型二阶系统则应按定义求解)。 解释:若将系统的响应表达成拉普拉氏变换结果(即S 域表达式),将响应表达式进行部分分式展开,与系统输入信号极点相同的分式对应稳态响应;与传递函数极点相同的分式对应系统的瞬态响应。将稳态响应和瞬态响应分式分别进行拉氏逆变换即获得各自的时域表达式。 性能指标:延迟时间、上升时间、峰值时间、调节时间、超调量 3.掌握一阶系统的传递函数形式,在典型输入信号下的时域响应及其响应特征;掌握典型二阶系统的传递函数形式,掌握欠阻尼系统的阶跃响应时域表达及其性能指标的计算公式和计算方法;了解高阶系统的性能分析方法,熟悉主导极点的概念,定性了解高阶系统非主导极点和零点对系统性能的影响。 tr tp ts td

4.熟悉两种改善二阶系统性能的方法和结构形式(比例微分和测速反馈),了解两种方法改善系统性能的特点。 5.掌握系统稳定性分析方法:劳斯判据的判断系统稳定性的判据及劳斯判据表特殊情况的构建方法(首列元素出现0,首列出现无穷大,某一行全为0);掌握应用劳斯判据解决系统稳定裕度问题的方法。了解赫尔维茨稳定性判据。 6.掌握稳态误差的概念和计算方法;掌握根据系统型别和静态误差系数计算典型输入下的稳态误差的方法(可直接应用公式);了解消除稳态误差和干扰误差的方法;了解动态误差系数法。 二、相关知识点例题 例1. 已知某系统的方块图如下图1所示,若要求系统的性能指标为: δδ%=2222%,tt pp=1111,试确定K和τ的值,并计算系统单位阶跃输入下的特征响应量:tt,tt。 图1 解:系统闭环传递函数为:Φ(s)=CC(ss)RR(ss)=KK ss2+(1+KKKK)ss+KK 因此,ωnn=√KK,ζζ=1+KKKK2√KK, δ%=e?ππππ?1?ππ2?ζζ=0.46, t pp=ππωωdd=1ss?ωdd=ωnn?1?ζζ2=3.14 ?ωnn=3.54 K=ωnn2=12.53,τ=2ζζωnn?1KK=0.18 t ss=3ζζωωnn=1.84ss

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

实验六 离散时间系统的时域分析

信号与系统实验报告 实验名:离散时间信号与系统的频域分析 实验六离散时间系统的时域分析 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、预习内容 1、离散时间信号的傅里叶变换与逆变换。 2、离散时间信号频谱的物理含义。 3、离散时间系统的频率特性。 4、离散时间系统的频域分析方法。 三、实验原理 1. 离散时间系统的频率特性

2. 离散时间信号傅里叶变换的数值计算方法 3.涉及到的Matlab 函数

四、实验内容 1、离散时间系统的时域分析 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤ 4π的离散时间傅里叶变换 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)

plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); yl abel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) x label(‘omega/\pi’); ylabel(‘以弧度为单位的相位’);

控制系统的时域分析

实验报告 实验名称:实验1:控制系统的时域分析 课程名称:自控控制原理 专业:电气工程及其自动化 班级:130037 学生姓名:施苏伟 班级学号:13003723 指导教师:杨杨 实验日期:2015 年10 月16日

一、实验目的 1.观察控制系统的时域响应; 2.记录单位阶跃响应曲线; 3.掌握时间响应分析的一般方法; 4.初步了解控制系统的调节过程。 二.实验步骤: 1.将‘实验一代码’这个文件夹拷贝到桌面上; 2.开机进入Matlab6.1 运行界面(其他版本亦可); 3.通过下面方法将当前路径设置为‘实验一代码’这个文件夹所在的路径 4.Matlab 指令窗>>后面输入指令:con_sys; 进入本次实验主界面。 5.分别双击上图中的三个按键,依次完成实验内容。

6.本次实验的相关Matlab 函数: 传递函数G=tf([num],[den])可输入一传递函数,其中num、den 分别表示分子、分母按降幂排列的系数。 三、仿真结果: (一)观察一阶系统G=1/(T+s)的时域响应: T=5s T=8s

T=13s 结果分析:一阶系统 G=1/(T+s)的,通过观察曲线发现,随着时间常数T的增大,同种响应要达到相同响应的时间增大,说明T越大,响应越慢。 (二)二阶系统的时域性能分析 (1)

结果分析:自然频率和阻尼比的适当时,通过调节相应的时间,阶跃响应可以得到稳定值。 (2)数据一:自然频率=5.96rad/sec 阻尼比=0.701

数据二:自然频率=8.2964rad/sec 阻尼比=0.701 结果分析:要达到既定范围,自然频率增大阻尼比要随之增大 (3)

控制系统的时域分析实验报告

课程名称:控制理论指导老师:成绩: 实验名称:控制系统的时域分析实验类型:冋组学生姓名: 、实验目的和要求 1用计算机辅助分析的办法,掌握系统的时域分析方法。 2. 熟悉SimUlink仿真环境。 二、实验内容和原理 (一)实验原理 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB中,提供了求取连 续系统的单位阶跃响应函数step,单位冲激响应函数impulse,零输入响应函数initial等等。 (二)实验内容 二阶系统,其状态方程模型为 U X I y = [1.9691 6.4493] +[0] U X2 1?画出系统的单位阶跃响应曲线; 2. 画出系统的冲激响应曲线; 3. 当系统的初始状态为x0=[1,0]时,画出系统的零输入响应; 4. 当系统的初始状态为零时,画出系统斜坡输入响应; (三)实验要求 1. 编制MATLAB程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; 2. 在SimUIink仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。 三、主要仪器设备 计算机一台以及matlab软件,SimUIink仿真环境 四、操作方法与实验步骤 1、程序解决方案: 在MATLAB 中建立文件shiyu.m ,其程序如下: %时域响应函数 fun ction G1 = shiyu( A,B,C,D)

离散系统的时域分析实验报告

实验2 离散系统的时域分析 一、实验目的 1、熟悉并掌握离散系统的差分方程表示法; 2、加深对冲激响应和卷积分析方法的理解。 二、实验原理 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应,则系统响应为如下的卷积计算式: 当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。 三、实验内容

1、用MATLAB 求系统响应 1) 卷积的实现 线性移不变系统可由它的单位脉冲响应来表征。若已知了单位脉冲响应和系统激励就 可通过卷积运算来求取系统响应,即)(*)()(n h n x n y 程序: x=input(‘Type in the input sequence=’); %输入x h=input(‘Type in the impulse response sequence=’); %输入h y=conv(x,h); % 对x ,h 进行卷积 N=length(y)-1; %求出N 的值 n=0:1:N; %n 从0开始,间隔为1的取值取到N 为止 disp(‘output sequence=’); disp(y); %输出y stem(n,y); %画出n 为横轴,y 为纵轴的离散图 xlabel(‘Time index n ’); ylable(‘Amplitude ’); % 规定x 轴y 轴的标签 输入为: x=[-2 0 1 -1 3] h=[1 2 0 -1] 图形: 2) 单位脉冲响应的求取 线性时不变因果系统可用MA TLAB 的函数filter 来仿真 y=filter(b,a,x); 其中,x 和y 是长度相等的两个矢量。矢量x 表示激励,矢量a ,b 表示系统函数形式 滤波器的分子和分母系数,得到的响应为矢量y 。例如计算以下系统的单位脉冲响应 y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3) 程序: N=input(‘Desired impuse response length=’); b=input(‘Type in the vector b=’); a=input(‘Type in the vector a=’); x=[1 zeros(1,N-1)]; y=filter(b,a,x);

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散LSI系统的时域分析.doc

. ... 实验二:离散LSI系统的时域分析 一、实验内容 1.知描述某离散LSI系统的差分方程为2y(n)-3y(n-1)+y(n-2)=x(n-1),分别用impz 和dstep函数、filtic和filter函数两种方法求解系统的单位序列响应和单位阶跃响应。 用impz和dstep函数求解系统的单位序列响应和单位阶跃响应如下 a=[1,-3/2,1/2]; b=[0,1/2,0]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 课程名称数字信号 实验成绩 指导教师实验报告.

... 010203000.10.20.0.0.0.0.0.0.1系统的单位序列响应h(n) n01020300112230系统的单位阶跃响应g(n)n 用函数filtic和filter求解离散系统的单位序列响应和单位阶跃

解:x01=0;y01=0; a=[1,-3/2,1/2]; b=[1/2,0,0]; N=32;n=0:N-1; xi=filtic(b,a,0); x1=[n==0]; hn=filter(b,a,x1,xi); x2=[n>=0]; gn=filter(b,a,x2,xi); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); . ... subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 01020300.550.60.650.70.750.80.850.90.951

实验6_离散时间系统的z域分析报告

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ?? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换 和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z = 由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k ΛΛ。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

实验二 离散时间系统的时域分析实验

实验二离散时间系统的时域分析实验

数字信号处理——实验二 武汉工程大学电气信息学院通信工程 红烧大白兔 一、实验目的 1、在时域中仿真离散时间系统,进而理解离散 时间系统对输入信号或延时信号进行简单运算处理,生成具有所需特性的输出信号的方法。 2、仿真并理解线性与非线性、时变与时不变等 离散时间系统。 3、掌握线性时不变系统的冲激响应的计算并 用计算机仿真实现。 4、仿真并理解线性时不变系统的级联、验证线 性时不变系统的稳定特性。 二、实验设备 计算机,MATLAB语言环境 三、实验基础理论 1、系统的线性 线性性质表现为系统满足线性叠加原理:若某一输入是由N个信号的加权和组成的,则输出就是由系统对这N个信号中每一个的响应的相应加权和组成的。设x1(n)和 x2(n)

分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即 Y1(n)=T[x1(n)], y2(n)=T[x2(n)] 若满足T[a1x1(n)+a2x2(n)]=a1y1(n)+a2y2(n) 则该系统服从线性叠加原理,或者称为该系统为线性系统。 2、系统的时不变特性 若系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,则称该系统为时不变系统。对于时不变系统, 若y(n)=T[x(n)] 则T[x(n-m)]=y(n-m) 3、系统的因果性 系统的因果性既系统的可实现性。如果系统n 时刻的输出取决于n时刻及n时刻以前的输入,而和以后的输入无关,则该系统是可实现的,是因果系统。系统具有因果性的充分必要条件是h(n)=0,n<0 4、系统的稳定性 稳定系统是指有界输入产生有界输出(BIBO)的系统。如果对于输入序列x(n),存在一个不变的正有限值M,对于所有n值满足|x(n)|

实验七 控制系统的时域分析方法

实验七 控制系统频域分析方法 1.实验目的 (1)熟练掌握Nyquist 图和Bode 图的绘制。 (2)熟练掌握利用Nyquist 图和Bode 图分析系统的性能。 2.实验仪器 (1)Matlab6.5应用软件安装版 一套 (3)PC 机 一台 3. 实验原理 依据MA TLAB 的建模指令,利用MATLAB 对系统仿真,分析系统的频率特性。 4. 实验步骤 (1)建立系统的MATLAB 模型,绘制系统Nyquist 图和Bode 图,分析系统稳定性 (2)求系统的幅值穿越频率和相位穿越频率,分析系统的稳定性。 (3)依据系统框图建立系统模型,利用LTI Viewer 分析系统的稳定性。 (4)绘制离散系统开环传递函数的Nyquist 图和Bode 图,绘制系统单位阶跃响应图。 5. 实验报告内容(选做其中三题) 1、绘制下列各单位反馈系统开环传递函数的Bode 图和Nyquist 图,并根据其稳定裕度判断系统的稳定性。(使用subplot 指令) ) 31)(2s 1)(s 1(10)s (G 1k s +++=)( )101)(s 1(s 10)s (G 2k s ++= )( ) 2.01)(s 1.01(s 10)s (G 32k s ++=)( )101)(s 1.01(s 10)s (G 42k s ++= )( 2、设单位反馈系统的开环传递函数为)12s (s K )s (G 2k ++=n n w s w ξ,其中无阻尼固有频率 Wn=90rad/s ,阻尼比ξ=0.2,试确定是系统稳定的K 的范围。 3、设系统如图7-22所示,试用LTI Viewer 分析系统的稳定性,并求出系统的稳定裕度及单位阶跃响应峰值. 4、设闭环离散系统结构如图7-23所示,其中) 1(10s +=s s G )(,1s =)(H ,绘制T=0.01s,1s 时离散系统开环传递函数的Bode 图和Nyquist 图,以及系统的单位阶跃响应曲线..

相关主题
文本预览
相关文档 最新文档