当前位置:文档之家› MW凝汽器低加轴加说明书修改版

MW凝汽器低加轴加说明书修改版

MW凝汽器低加轴加说明书修改版
MW凝汽器低加轴加说明书修改版

CCLN1000-25/600/600型汽轮机辅机部分说明书

CCH02.000.4SM-4

第全册

中华人民共和国

哈尔滨汽轮机厂有限责任公司

2010

CCLN1000-25/600/600型汽轮机辅机部分说明书

CCH02.000.4SM-4

第全册

编制王铁2010.2.12

校对王琨2010.2.12

审核张俊芬2010.2.12

标准检查张俊芬2010.2.12

审定武君2010.2.12

2010年2月

CCH02.000.4SM-4 共1页第1页

目录

1凝汽器说明书( N477.00SM)------------------------------------------ -----------1

R579.00SM-1

2 低压加热器说明书(R580.00SM-1)--------------------------------12

R581.00SM-1

3 减温减压器说明书(WY73.00SM) ---------------------------------------------21 4汽封冷却器说明书(QL52.00SM)--------------------------------------------25 5压差形成器说明书(Y09.00SM)--------------------------------------------------28 6气动式止逆阀及控制装置说明书(FK267.00SM)------- -------- ------------30 7阴极保护装置说明书(YJ03.00SM)---------------------------------------------33 更改页----------------------------------------------------------------------------------36

1凝汽器说明书

凝汽器的作用是将汽轮机排汽凝结成水,并保证在汽轮机排汽口建立起一定真空度的重要辅助设备。

N-55000-1型凝汽器采用双壳体、双背压、双进双出、单流程、横

向布置结构, 采用从东芝公司引进的AT型管束排列。

其主要部件有凝汽器上部、凝汽器下部、前水室、后水室、凝结

水聚集器、死点座、背包式疏水扩容器等。

凝汽器刚性地座落在水泥基础上,壳体板下部中心处设有固定死点,运行时以死点为中心向四周自由膨胀,凝汽器与排汽缸之间设有不锈钢补偿节,补偿相互间的胀差。循环水连通管设有支架支撑,并且允许自由滑动,以适应凝汽器自身的膨胀。后水室处的管板与壳体间布置有波形补偿节,用以补偿壳体与冷却管纵向热膨胀的差值,同时也改善了冷却管的振动情况,并减少了凝汽器冷却管与管板间的焊口处所承受的拉力或压力。

凝汽器主凝结区安装30332根?31.75×0.508,L=15.335米的TP316L钢管,5840根?31.75×0.711,L=15.335米的TP316L钢管安装

在空冷区、顶部三排及通道外侧,管子两端胀焊在复合管板上,借助中

间管板支撑。冷却管由前水室侧向后水室侧呈抬高形式布置,以减少运

行中的振动,停机时冷却水因冷却管的倾斜而流出。

凝汽器的冷却管排列呈带状,低压缸排出的蒸汽进入凝汽器后,迅

1

速分布在冷却水管全长上,通过管束间的通道和两侧通道使蒸汽全面地沿冷却管表面进行换热并凝结成凝结水,部分蒸汽则由管束两侧通道流向管束的下面,对淋下的凝结水进行回热,每个管束中心区为空气冷却区,用挡板与主凝结区隔开。不凝结气体与蒸汽经过空气冷却区时,使蒸汽能够大量的凝结下来,剩下少部分蒸汽随同不凝结气体进入抽空气管,被抽真空设备抽出。

每个凝汽器下部有四只小支撑座和四只大支撑座,呈对称布置,在每个支撑座下面布置有调整垫铁。每个凝汽器下部正中央布置凝汽器的死点座。

前水室上布置有冷却水的进水口、出水口、放气口,前、后水室上布置有铰链式快开人孔,供检修用。水室为钢板焊接结构,前水室、后水室为柱状。

凝汽器热井有较大的存水空间,可储TMCR工况下3分钟的凝结水量。凝结水集水箱为矩形,位于高压侧凝汽器下部壳体的底部,其上装有凝结水出水口及检修排水口,检修排水口上装有真空隔离门,该隔离门能在1小时内排出正常水位下的全部凝结水。

每个凝汽器壳体上部布置有7#、8#共壳体的低压加热器一台,一台减温减压器。还布置有抽汽管组,经过凝汽器上部引出,在每一根抽汽管道上都装有补偿节。凝汽器上部与低压缸之间采用不锈钢制成的补偿节,以补偿凝汽器与低压缸的相对膨胀。

凝汽器本身带有两个背包式疏水扩容器,汇集汽机热力系统中不同压力、不同温度、不同数量的疏水,这些疏水在进入疏水扩容器后将闪蒸出的蒸汽排往凝汽器的喉部,其余未闪蒸的疏水经水封由疏水扩容器底部排往凝汽器,高能疏水进入联箱后,经过扩容膨胀、喷水降温使蒸汽的焓值降低,然后进入凝汽器。

在凝汽器安装过程中,应按凝汽器接口装置图开孔,并焊好防冲击护板后再进行冷却管的安装。

本机组凝汽器上部采用模块化设计。每个凝汽器上部分为四个模块,各模块在制造厂均进行了预装配,并做好边界组装标记。凝汽器在电厂组装和安装过程中应严格遵守凝汽器图纸上的“凝汽器与低压缸的连接须知”和“安装凝汽器须知”进行。

凝汽器安装完毕后,与汽轮机排汽口和其它管道连接处的焊缝应严格检查其严密性。

凝汽器在额定工况下的工作参数:

型号:N-55000-1

冷却面积:55000m2

冷却水量:97490t/h

冷却水入口温度:20.5℃

凝汽器平均背压:0.0049MPa(a)

水室设计压力:0.5MPa(g)

冷却管总根数:36172根=主凝结区30332+空冷区5840

冷却管材质:TP316L

冷却管规格:?31.75×0.711(顶部三排及通道外侧、空冷区)

?31.75×0.508(主凝结区)

凝汽器净重:1236t

运行时的重量:1028t

汽侧充满水时的重量:3117t

凝汽器尺寸:15.9m(深度)* 9.3m(宽度)

6.76 mm/t 凝结水

在汽轮机启动以前,应先将凝汽器投入运行并投入主抽气器,使凝汽器内形成一定真空,启动前应关闭凝汽器上所有放水阀门,打开水室上部的放气阀再向水室内充水。为了启动凝结水泵,凝汽器的汽侧应预先灌入由储水箱来的软化水到高水位计的1/2或3/4处,并进行凝结水再循环。凝汽器运行中可通过磁浮液位计来观测凝汽器的水位变化,通过磁浮液位计预测是否冷却管已浸入凝结水中,当发现浸入情况时应尽快查找原因,采取措施消除这种现象。当停机后长期停运时,必须把凝汽器内的冷却水、凝结水排净,防止生锈腐蚀。

运行时冷却水由循环水泵分别打入低压侧凝汽器的两个前水室下部

的冷却水进口,进入低压侧凝汽器,流经低压侧凝汽器的两个管束区后,

4 CCH02.000.4SM-4(N477.00SM)共11页第5页

由两个后水室流出,经连通管进入高压测凝汽器的两个后水室,流经高压侧凝汽器的两个管束区后,进入高压侧凝汽器前水室,最后排出,在冷却水进口、出口管道上均装有双金属温度计以测量冷却水进、出口温度。

低压缸排出的蒸汽进入凝汽器后,迅速地分布在冷却水管的全长上,通过管束间的通道和两侧通道使蒸汽全面地沿冷却管表面进行热交换并被凝结成水,部分蒸汽则由管束两侧的通道流向管束下面,对淋下的凝结水进行回热,剩余未凝结的少量蒸汽和被冷却了的空气汇集到空冷区的抽空气管内进入真空系统的设备中排出。

在运行中,不允许冷却管浸入凝结水中,以免发生凝结水的过冷现象,并定期检查凝汽器水侧和汽侧的严密性,以及凝结水的含氧量、含盐量、硬度、碱度等数值,严防冷却管内微生物的腐蚀发生。

在汽轮机正常运行或机组检修后,或当凝汽器真空偏离设计给定值时,均应进行真空下降速度试验。

在汽轮机运行中,可在带满负荷的情况下对两个壳体内的换热管进行胶球清洗,也可以在带60%~70%负荷的情况下对单个壳体内的换热管进行清洗和检修,此时真空度有所降低,运行时间应小于24小时,否则应停机处理。

凝汽器外形图见1-1、1-2,特性曲线见图1-3-1、1-3-2,水阻曲线

5 CCH02.000.4SM-4(N477.00SM)共11页第6页

为了观察凝汽器工作的情况应对下表1-1各项进行测量。

当凝汽器采用胶球清洗设备时,每班至少投运一次,每次应大于半小时。

6

图1-1 N-55000-1型凝汽器

7

图1-2 N-55000-1型凝汽器

8

图1-3-1 N-55000-1型凝汽器高压侧特性曲线

CCH02.000.4SM-4(N477.00SM)共11页第10页

1-3-2 N-55000-1型凝汽器低压侧特性曲线

10 CCH02.000.4SM-4(N477.00SM)共11页第11页

插图

图1-4 N-55000-1型凝汽器水阻曲线

11

CCH02.000.4SM-4 R579.00SM-1

共9页第1页

R581.00SM-1

2低压加热器说明书

2.1低压加热器是汽轮机回热系统中,从汽轮机抽出一定数量作过部分功的蒸汽来加热主凝结水的辅助设备。低压加热器外形见图2-1、图2-2、图2-3。

2.1.1主要技术数据列于表2-1、表2-2

表2-1

12

CCH02.000.4SM-4

R579.00SM-1

共9页第2页(R580.00SM-1)

R581.00SM-1

表2-2

2.1.2低压加热器由水室、管系(带内置式疏水冷却段)、壳体等组成,其中JD-1680-3型和JD-1680-4型低压加热器位于汽轮机中间层平台,JD-880/1165-2型低压加热器是将JD-880-2型低压加热器和JD-1165-2

13

R581.00SM-1

型低压加热器组装在同一壳体内共用一个水室。面对水室向后看,JD-880-2型在右半侧,JD-1165-2型在左半侧,壳体装焊在凝汽器喉部。

主凝结给水由JD-1165-2型低加的主凝结水进口管流入水室左半侧的下部,流经由不同长度的U型不锈钢管(换热管规格:?16×0.9,管材为TP304)所组成的管系,在内置式疏水冷却段被本级疏水加热后又经过凝结段继续被蒸汽加热,然后回到水室右半侧的上部,穿过两块隔板间的窄通道,流到水室左半侧的下部,再经过JD-880-2型低压加热器管系的内置式疏水冷却段,被本级疏水加热后,又经过凝结段继续被蒸汽加热,最后流到水室右半侧上部。经由JD-880-2型的低加主凝结水出口管流出。

由JD-880-2型低加来的主凝结给水然后顺序流过JD-1680-4型低加和JD-1680-3型低加,并重复疏水冷却段、凝结段的流动,最后被加热的主凝结给水流向除氧器。

加热蒸汽由汽侧壳体上部的蒸汽入口管进入壳体内部,蒸汽与加热管内的主凝结给水通过管壁进行热交换后被凝结为疏水。

四台低加均带有内置式疏水冷却段,均为淹没式结构,是由钢板组成的焊接结构密封腔室,疏水冷却段的内部以定距管把若干块中间折流板定位,低加的本级疏水经由尾部的疏水入口进入本级疏水冷却段,经由中间折流板呈左、右蛇形流动,先与进入本级的主凝结给水进行热交换,由此提高了主凝结给水进入凝结段的温度,降低了温度的疏水最后

14

R581.00SM-1

经疏水出口由壳体前端的下面流出本级低压加热器,由于设置了内置式疏水冷却段,从而提高了机组的热效率降低了机组的热耗。

低压加热器内进行热交换后遗留下来的少量未凝结的蒸汽及空气由位于管系中央部位的空气抽出管抽出。

各低加水室采用封头形式,并配有人孔(为检修时用),管板两侧分别焊接有水室筒体和壳体筒体,为方便检修在壳体侧筒体靠近管板处采用法兰螺栓连接结构。

在水室及汽侧壳体上装有压力表、温度计和安全阀等。在汽侧壳体上还装有磁浮液位计、压差形成器等连接的法兰接口。

管系上装有滑动滚轮,使得管系可以支撑在壳体内侧的导轨上,又可以在检修时在导轨上移动,然后以检修支架来支撑管系。

JD-1680-3型和JD-1680-4型低加在汽侧壳体下部靠近管板处设有固定支座,在汽侧壳体下方设置两个支座式滚轮以备检修时移动壳体。在低加投入运行时,中间的活动支座滚轮应卸下,但当低加解体检修时应再将中间活动支座滚轮装上,检修时只允许移动壳体,不允许直接起吊管系。

位于凝汽器上部的共壳体的JD-880/1165-2型低加也装有滑动滚轮,但由于壳体焊在凝汽器上部所以检修时只能沿壳体内侧的导轨向外移动管系,并以检修支架来支撑被抽出的管系,但不允许直接起吊管系。

低压加热器的汽侧壳体上的蒸汽进口和疏水进口处装有防冲击用的

15

R581.00SM-1

不锈钢防冲挡板。位于凝汽器上部的JD-880/1165-2型低加汽侧壳体外尚包覆有不锈钢制成的防冲刷罩。

2.2低压加热器的运行

2.2.1汽轮机启动时,当汽轮机带有一定负荷后低压加热器应按其顺序由低压抽汽向高压抽汽依次投入运行。

2.2.1.1缓慢打开进水阀门,开启水室上的放气阀,待放气阀向外溢水时将其关闭,然后缓慢开启出水阀门。关闭旁路阀门。

2.2.1.2抽汽管道逆止阀门前后的疏水阀门全开。

2.2.1.3空气抽出管道上的阀门全开。

2.2.1.4当低加出现水位后,应保持其有一定的水位,同时检查疏水调节系统及逆止阀系统的灵敏性和信号装置。

2.2.2 在正常运行过程中:

2.2.2.1 定期观察加热器水位。

2.2.2.2加热器水位升高时须正确判断升高的原因,若传热管破裂或是疏水冷却段疏水阻塞不畅时,应采用事故疏水系统,必要时应开启主凝结给水的旁路阀门,切断水侧和汽侧,并在不使其它级低压加热器的运行受到影响的情况下,关闭这一级加热器疏水管道上的阀门和空气抽出管道上的阀门,停止此加热器的运行。

位于凝汽器上部的JD-880/1165-2型低压加热器,当其中任一级事故切换时,两级皆同时停运。

16

联轴器的装配和拆卸方法

联轴器的装配和拆卸方法 联轴器的装配和拆卸方法 联轴器的装配,在机械检修中属于比较简单的检修工艺。在联轴器装配中关键要掌握轮毂在轴上的装配、联轴器所联接两轴的对中、零部件的检查及按图纸要求装配联轴器等环节。 1)轮毂在轴上的装配方法 轮毂在轴上的装配时联轴器安装的关键之一。轮毂与轴的配合大多为过盈配合,联接分为有键联接和无键联接,轮毂的轴孔又分为圆柱形轴孔与锥形轴孔两种形式。装配方法有静力压入法、动力压入法、温差装配法及液压装配法等。 (1)静力压入法 这种方法是根据轮毂项轴上装配时所需压入力的大小不同、采用夹钳、千斤顶、手动或机动的压力机进行,静力压入法一般用于锥形轴孔。由于静力压入法收到压力机械的限制,在过盈较大时,施加很大的力比较困难。同时,在压入过程中会切去轮毂与轴之间配合面上不平的微小的凸峰,使配合面受到损坏。因此,这种方法一般应用不多。 (2)动力压入法 这种方法是指采用冲击工具或机械来完成轮毂向轴上的装配过程,一般用于轮毂与轴之间的配合使过渡配合或过盈不大的场合。装配现场通常用手锤敲打的方法,方法是在轮毂的端面上垫放木块、铅块或其他软材料作缓冲件,依靠手锤的冲击力,把轮毂敲入。这种方法对用铸铁、淬过火的钢、铸造合金等脆性材料制造的轮毂,有局部损伤的危险,不宜采用。这种方法同样会损伤配合表面,故经常用于低速和小型联轴器的装配。 (3)温差装配法 用加热的方法是轮毂受热膨胀或用冷却的方法使轴端受冷收缩,从而使轮毂轴孔的内径略大于轴端直径,亦即达到所谓的"容易装配值",不需要施加很大的力,就能方便地把轮毂套装到轴上。这种方法比静力压入法、动力压入法有较多的优点,对于用脆性材料制造的轮毂,采用温差装配法是十分合适的。 温差装配法大多采用加热的方法,冷却的方法用的比较少。加热的方法有多种,有的将轮毂放入高闪点的油中进行油浴加热或焊枪烘烤,也有的用烤炉来加热,装配现场多采用油浴加热和焊枪烘烤。油浴加热能达到的最高温度取决于油的性质,一般在200℃以下。采用其他方法加热轮毂时,可以使轮毂的温度高于200℃,但从金相及热处理的角度考虑,轮毂的加热温度不能任意提高,钢的再结晶温度为430℃。如果加热温度超过430℃,会引起钢材内部组织上的变化,因此加热温度的上限必须小于为430℃。为了保险,所定的加热温度上限应在为400℃以下。至于轮毂实际所需的加热温度,可根据轮毂与轴配合的过盈值和轮毂加热后向轴上套装时的要求进行计算。 (4)装配后的检查 联轴器的轮毂在轴上装配完后,应仔细检查轮毂与轴的垂直度和同轴度。一般是在轮毂的端面和外圆设置两块百分表,盘车使轴转动时,观察轮毂的全跳动(包括端面跳动和径向跳动)的数值,判定轮毂与轴的垂直度和同轴度的情况。不同转速的联轴器对全跳动的要求值不同,不同型式的联轴器对全跳动的要求值也各不相同,但是,轮毂在轴上装配完后,必须使轮毂全跳动的偏差值在设计要求的公差范围内,这是联轴器装配的主要质量要求之一。

一级直齿圆柱齿轮减速器输出轴的轴系部件设计(上海大学机械设计2大作业)

机械设计大作业 设计题目:一级直齿圆柱齿轮减速器输出轴的轴系部件设计 内装: 1.设计任务书1份 2.设计计算说明书1份 3.装配工作图1张 学院机电工程及自动化 专业机械工程及自动化 学号 11121112 设计者华爆会 指导教师傅燕鸣 完成日期 2014年2月9日 成绩

机械设计大作业计算说明书 设计题目:一级直齿圆柱齿轮减速器输出轴的轴系部件设计 学院机电工程及自动化 专业机械工程及自动化 学号 11121112 设计者华爆会 指导教师傅燕鸣 完成日期 2014年2月9日

一、确定齿轮结构尺寸,计算作用在齿轮上的作用力 1.1选择齿轮的结构型式 根据《机械设计课程设计手册》第16章第5节,确定齿轮结构为齿轮轴。 1.2计算输出轴的转矩T m N 25.1871530 .39550T 2 n P 95502?=?= = 1.3计算作用在齿轮上的圆周力、径向力 N 72.1104)113003.0/(25.1872)z m /(T 2d /T 2F 2222t =??=?== N 09.40220tan 72.1104tan F F 2t 2r =?=α?= 二、选择轴的材料 因传递的功率不大,并对质量及结构尺寸无特殊要求,所以初选轴的材料为45钢,并经过调质处理。查《机械设计课程设计手册》表16-1,得:轴材料的硬度为 217~225HBW ,抗拉强度极限MPa 640B =σ,屈 服强度极限 MPa 355s =σ,弯曲疲劳极限 MPa 2751=σ-,剪切疲劳极限MPa 1551=τ-, 许用弯曲应力 MPa 60][1=σ-;查表16-2,得 103~126A 0=。 m N 25.187T 2?= N 72.1104F 2t = N 09.402F 2r = MPa 640B =σ MPa 355s =σ MPa 2751=σ- MPa 1551=τ- MPa 60][1=σ- 103~126A 0=

二级减速器 课程设计 轴的设计

轴的设计 图1传动系统的总轮廓图 一、轴的材料选择及最小直径估算 根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB=。 按扭转强度法进行最小直径估算,即初算轴径,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 值由表26—3确定:=112 1、高速轴最小直径的确定 由,因高速轴最小直径处安装联 轴器,设有一个键槽。则,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取,为

电动机轴直径,由前以选电动机查表6-166:, ,综合考虑各因素,取。 2、中间轴最小直径的确定 ,因中间轴最小直径处安装滚动 轴承,取为标准值。 3、低速轴最小直径的确定 ,因低速轴最小直径处安装联轴 器,设有一键槽,则,参 见联轴器的选择,查表6-96,就近取联轴器孔径的标准值。 二、轴的结构设计 1、高速轴的结构设计 图2 (1)、各轴段的直径的确定 :最小直径,安装联轴器 :密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封), :滚动轴承处轴段,,滚动轴承选取30208。 :过渡轴段,取 :滚动轴承处轴段

(2)、各轴段长度的确定 :由联轴器长度查表6-96得,,取 :由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定 :由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度确定,取 2、中间轴的结构设计 图3 (1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,,滚动轴承选30206 :低速级小齿轮轴段 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段 (2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度确定 :轴环宽度 :由高速级大齿轮的毂孔宽度确定

各种减速器说明书及装配图完整版

一、设计题目:二级直齿圆柱齿轮减速器 1.要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。 2.工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。 3.知条件:运输带卷筒转速19/min r, 减速箱输出轴功率 4.25 P=马力, 二、传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均 匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设 置在高速级。其传动方案如下: 三、选择电机 1.计算电机所需功率d P:查手册第3页表1-7: η-带传动效率:0.96 1 η-每对轴承传动效率:0.99 2 η-圆柱齿轮的传动效率:0.96 3 η-联轴器的传动效率:0.993 4 η—卷筒的传动效率:0.96 5 说明: η-电机至工作机之间的传动装置的总效率:

2确定电机转速:查指导书第7页表1:取V带传动比i=2 4 二级圆柱齿轮减速器传动比i=840所以电动机转速的可选范围是: 符合这一范围的转速有:750、1000、1500、3000 根据电动机所需功率和转速查手册第155页表12-1有4种适用 的电动机型号,因此有4种传动比方案如下: 综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下: 四确定传动装置的总传动比和分配传动比:

总传动比:96050.5319 n i n = ==总卷筒 分配传动比:取 3.05i =带 则1250.53/3.0516.49i i ?== ()121.31.5i i =取121.3i i =经计算2 3.56i =1 4.56i = 注:i 带为带轮传动比,1i 为高速级传动比,2i 为低速级传动比。 五 计算传动装置的运动和动力参数: 将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴 01122334,,,ηηηη——依次为电机与轴 1,轴1与轴2,轴2与轴3,轴3与 轴4之间的传动效率。 1. 各轴转速:1960 314.86/min 3.05 m n n r i == =带 2各轴输入功率:101 3.670.96 3.52d p p kW η=?=?= 3各轴输入转矩: 3.67 9550955036.5.960 d d w p T N m n ==? = 运动和动力参数结果如下表: 六 设计V 带和带轮: 1.设计V 带

联轴器的安装及校正

如何进行泵和电机联轴器的找正、对中 1、泵对中的重要性泵和电机的联轴器所连接的两根轴的旋转中心应严格的同心,联轴器在安装时必须精确地找正、对中,否则将会在联轴器上引起很大的应力,并将严重地影响轴、轴承和轴上其他零件的正常工作,甚至引起整台机器和基础的振动或损坏等。因此,泵和电机联轴器的找正是安装和检修过程中很重要的工作环节之一。 2、联轴器找正是偏移情况的分析在安装新泵时,对于联轴器端面与轴线之间的垂直度可以不作检查,但安装旧泵时,一定要仔细地检查,发现不垂直时要调整垂直后再进行找正。一般情况下,可能遇到的有以下四种情形。 1)S1=S2,a1=a2 两半靠背轮端面是处于既平行又同心的正确位置,这时两轴线必须位于一条直线上。 2)S1=S2,a1≠a2 两半靠背轮端面平行但轴线不同心,这时两轴线之间有平行的径向位移e=(a2-a1)/2。

3)S1≠S2,a1=a2 两半靠背轮端面虽然同心但不平行,两轴线之间有角向位移α。 4)S1≠S2,a1≠a2 两半靠背轮端面既不同心又不平行,两轴线之间既有径向位移e又有角向位移α。 联轴器处于第一种情况是我们在找正中致力达到的状态,而第 二、三、四种状态都不正确,需要我们进行调整,使其达到第一 种情况。在安装设备时,首先把从动机(泵)安装好,使其轴线处于水平位置,然后再安装主动机(电机),所以找正时只需要调整主动机,即在主动机(电机)的支脚下面加调整垫面的方法来调节。 3、找正时测量调节方法下面主要介绍在检修过程中常用的 两种测量调整方法,根据测量工具不同可分为: 1)利用刀形尺和塞尺测量联轴器的不同心和利用楔形间隙轨或

一级直齿圆柱齿轮减速器输入轴组合结构设计计算说明书

一级直齿圆柱齿轮减速器输入轴 组合结构 设计计算说明书

题目1:一级直齿圆柱齿轮减速器输入轴组合结构设计(见图1) 图1 1-大带轮;2-轴承;3-齿轮;4-轴 原始数据见表1-1。 表1-1 设计方案及原始数据 项目 设计方案 3 轴输入功率KW P/ 3.3 轴转速() m in / /r n 750 齿轮齿数 3 Z25 齿轮模数mm m/ 3 齿轮宽度mm B/80 大带轮直径mm D/160 带型号 A 带根数Z 4 mm l/160 mm s/100 带传动轴压力N Q/ 950 轴承旁螺栓直径mm d/12 1、设计目标 经过完成轴系部分大作业,要求掌握: (1)轴结构设计过程; (2)轴强度计算方法; (3)轴承选型设计和寿命计算; (4)轴承组合结构设计方法和过程。 2、设计步骤 (1)依据已知条件计算传动件作用力。 ①选择直齿圆柱齿轮材料: 传动无特殊要求,为便于制造采取软齿面齿轮,由表5-1,大齿轮采取 45#钢正火,162~217HBS; P137 表5-1 P=3.3Kw n=750r/min z3=25

② 直齿轮所受转矩n P T 6 1055.9?==9.55×106×3.3/750=42020N.mm ; ③ 计算齿轮受力: 齿轮分度圆直径:d=mz 3=3×25=75mm 齿轮作用力:圆周力F t =2T/d=2×42020/75=1121N 径向力F r =F t tan α=1120.5×tan20°=408N ; (2)选择轴材料,写出材料机械性能: 选择轴材料:该轴传输中小功率,转速较低,无特殊要求,故选择45优质 碳素结构钢调制处理, 其机械性能由表8-1查得:σB =637MPa,σs =353MPa, σ-1=268MPa, τ-1=155MPa 由表1-5查得:轴关键承受弯曲应力、扭转应力、表面状态为车削状态,弯 曲时: 34.0=σψ,扭转时: 34.0=τψ; (3)进行轴结构设计: ① 按扭转强度条件计算轴最小直径d min ,然后按机械设计手册圆整成标准 值: 由式(8-2)及表8-2[τT ]=30MPa ,A 0=118 得d min =A 0=118×=19.34mm, 圆整后取d min =20.0mm 计算所得为最小轴端处直径,因为该轴段需要开一个键槽,应将此处轴径增大3%~5%,即d min =(1+5%)d=21.0,圆整后取d min =25.0mm ; ② 以圆整后轴径为基础,考虑轴上零件固定、装拆及加工工艺性等要求, 设计其它各轴段直径长度以下: 1) 大带轮开始左起第一段: 带轮尺寸为:d s =25mm ,宽度L=65mm 并取第一段轴端段长为l 1=63mm ; 2) 左起第二段,轴肩段: 轴肩段起定位作用,故取第二段轴径d 2=30mm 。由l 2=s-l/2-10=57.5mm ,取l 2=57.5mm ; 3) 左起第三段, 轴承段: 初步轴承型号选择,齿轮两侧安装一对6207 型(GB297-84)深沟球轴承。其宽度为17mm ,左轴承用轴套定位,右轴承用轴肩定位。 该段轴径d 3= 35mm ; 4) 左起第四段,齿轮轴段: 取轴径d 4=38mm ,齿轮宽度B=80mm ,则取l 4=78mm ; 5) 左起第五段,轴环段: 取轴径d 5=44mm ,l 5=10mm ; 6) 左起第六段,轴肩段: 取轴径d 6=40mm ; 7) 左起第七段,轴承段: 取轴径d 7=35mm ,l 7=20mm ; 8) 确定l 3,l 6,轴套尺寸: m=3mm α=20° d=75mm F t =1121N F r =408N P232表8-1 d min =25.0mm D=160mm 带型号为A 型 带根数z=4 l=160mm s=100mm d 1 =25.0mm l 1=63mm d 2=30mm l 2=57.5mm d 3= 35mm l 3=52mm d 4=38mm l 4=78mm d 5=44mm l 5=10mm d 6=40mm l 6=21.5mm d 7=35mm l 7=20mm

减速器输出轴说明书

斜齿圆柱齿轮减速器结构设计说明 机械工程系机械工程及自动化专业 机械12-7 班 设计者林键 指导教师王春华

2014 年 12 月 26 日 辽宁工程技术大学题目二:二级展开式斜齿圆柱齿轮减速器输出轴结构简图及原始数据 轴系结构简图 二、根据已知条件计算传动件的作用力 1.计算齿轮处转矩T、圆周力F t、径向力F r、轴向力F a及链传动轴压力Q。 已知:轴输入功率P=,转速n=150r/(min)。 转矩计算: 6 T? P n N mm 9 . 550 10 / 10 . 550 6 96 ? = ? ? = =7 . 1 / 150 . 388366分度圆直径计算:

mm z m d n 3.4324368cos /1074cos /21='''?=?= β 圆周力计算: N d T F t 7.17963.432/7.3883662/21=?== 径向力计算: N F F n t r 6.6604368cos /20tan 7.1796cos /tan ='''?== βα 轴向力计算: N F F t a 2564368tan 7.1796tan ='''?== β 轴压力计算: 计算公式为:) 100060/(10001000?= = npz P K v P K Q Q Q 由于转速小,冲击不大,因此取K Q =,带入数值得: N Q 3975) 100060/(294.251501 .62.11000=?????= 轴受力分析简图 2.计算支座反力 (1)计算垂直面(XOZ )支反力 N l a l R s l Q R r y 6.6238215 ) 80215(6.660)100215(3975)()(2=-?++?=-?++?=N R Q R R r y y 16036.66039756.623821=--=--= (2)计算垂直面(XOY )支反力 N l a l R R t z 2.1128215 ) 80215(7.1796)(2=-?=-= N R R R z t z 5.6682.11287.179621=-=-= 三、初选轴的材料,确定材料机械性能 Q

减速器装配图大齿轮零件图和输出轴零件图

第1章初始参数及其设计要求保证机构件强度前提下,注意外形美观,各部分比例协调。初始参数:功率P=,总传动比i=5

第2章 电动机 电动机的选择 根据粉碎机的工作条件及生产要求,在电动机能够满足使用要求的前提下,尽可能选用价格较低的电动机,以降低制造成本。由于额定功率相同的电动机,如果转速越低,则尺寸越大,价格越贵。粉碎机所需要的功率为kw P 8.2=,故选用Y 系列(Y100L2-4)型三相笼型异步电动机。 Y 系列三相笼型异步电动机是按照国际电工委员会(IEO )标准设计的,具有国际互换性的特点。其中Y 系列(Y100L2-4)电动机为全封闭的自扇冷式笼型三相异步电动机,具有防灰尘、铁屑或其它杂务物侵入电动机内部之特点,B 级绝缘,工作环境不超过+40℃,相对温度不超过95%,海拔高度不超过1000m,额定电压为380V,频率50HZ,适用于无特殊要求的机械上,如农业机械。 Y 系列三相笼型异步电动具有效率高、启动转矩大、且提高了防护等级为IP54、提高了绝缘等级、噪音低、结构合理产品先进、应用很广泛。其主要技术参数如下: 型号:42100-L Y 同步转速:min /1500r 额定功率:kw P 3= 满载转速:min /1420r 堵转转矩/额定转矩:)/(2.2m N T n ? 最大转矩/额定转矩:)/(2.2m N T n ? 质量:kg 3.4 极数:4极 机座中心高:mm 100 该电动机采用立式安装,机座不带底脚,端盖与凸缘,轴伸向下。

电机机座的选择 表2-1机座带底脚、端盖无凸缘Y系列电动机的安装及外型尺寸(mm)

第3章 传动比及其相关参数计算 传动比及其相关参数的分配 根据设计要求,电动机型号为Y100L2-4,功率P=3kw ,转速n=1420r/min 。输出端转速为n=300r/min 。 总传动比: 73.4300 14401 === n n i ; (3-1) 分配传动比:取3=D i ; 齿轮减速器: 58.13 73 .4=== D L i i i ; (3-2) 高速传动比: 5.158.14.14.112=?==L i i ; (3-3) 低速传动比: 05.15 .158 .11223=== i i i L 。 (3-2) 运动参数计算 3.2.1 各轴转速 电机输出轴: min /1420r n n D == 轴I : min /33.4733 1420 1r i n n D === (3-4) 轴II : min /6.3155 .133.4731212r i n n === (3-4) 轴III :

常用联轴器

TL(LT)型弹性套柱销联轴器 特点及应用场合:具有一定补偿两轴线相对偏移和减振、缓冲性能,结构简单,制造容易,不需润修方便,径向尺寸较大,适用于安装底座刚性好,对中精度较高,冲击载荷不大,对减振要求不高的轴,适用范围广泛,是我国最早通用标准联轴器。不适用于高速和低速重载工况条件。 TL(LT)型--基本型; TLL(LTZ)型--带制动轮型;

L(LT)型弹性套柱销联轴器参数及主要尺寸:(GB/T4323-84<2002>)mm 2.短时过载不得超过公称扭矩值的2倍。 3.轴孔型式及长度L、L1可根据需要选取。 4.转动惯量为近似值。

ML(LM)型梅花形弹性联轴器 特点及应用场合:具有补偿两轴相对偏移、减振、缓冲性能、径向尺寸小,结构简单、不用润滑、承载能力较高,维护方使、更换弹性元件需轴向移动(MLS型除外),适用于联接同轴线,起动频繁,正反转变化,中速、中等转矩传动轴系和要求工作可靠性高的工作部位。不适用于重载、低速及轴向尺寸受艰制,更换弹性元件后两轴对中困难的部位。 ML型--基本型; MLL-II型--分体式制动轮型; MLL-I型--整体式制动轮型; MLZ型--单法兰盘; MLS型--双法兰盘;

ML(LM)型梅花形弹性联轴器的参数及主要尺寸:(GB/T 5272-2002)mm

HL,HLL(LX,LXZ)弹性柱销联轴器 特点及应用场合:具有微量补偿性能,结构简单,容易制造,更换柱销方便,可靠性极差,适用于有轴向窜动,起动频繁,正反转的轴系传动,不适用于工作可靠性要求精度高的部位,不宜用于高速、重载及有强烈冲击振动的轴系传动,安装精度低的轴系亦不应选用。 HL(LX)型--基本型; HLL(LXZ)型--带制动轮型; ;

二级圆柱齿轮减速器输入轴设计及校核

输入轴设计及校核 高速级:,,, ?z 1121?z 1263?b 1150mm ?b 1242mm 低速级:,, , ?z 2131?z 2285?b 2170mm ?b 2262mm ,?m 2.0mm ?α20deg 1.求输入轴上的功率、转速和转矩P 1n 1T 1 ,?P 1 2.16kW ,?n 1940rpm ?T 121.94N·m 2.求作用在齿轮上的力 由已知高速级小齿轮的分度圆直经为 ?d 11=?m z 1142mm ?F t =――2T 1d 11???1.045103 ??N ?F r =?F t tan (α)380.262N 圆周力,径向力的方向如图15-24所示。 F t F r 3.初步确定轴的最小直径 按P366式15-2初步计算轴的最小直径。选取轴的材料为45钢,调质处理。根据P366表15-3,,取,于是得 ≥≥25MPa τT 45MPa ?τT 30MPa ? d min = ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄3 ―――― P 1 ?0.2τT n 1 15.407mm ?A 0120? d min =? ̄ ̄ ̄ ̄3 ――2.16 940 A 015.835输出轴的最小直径显然是安装联轴器处轴的直经(图15-26)。为d 1_2了使所选直经与联轴器的孔经适应,故需同时选取联轴器的型号。 d 1_2查P347表14-1,考虑到转矩变化很小,故取,则:?K A 1.5?T ca =?K A T 1???3.291104 ???N mm 根据计算转矩应小于公称转矩的条件,查标准GB/T5014-2003或手册,选用LT4型弹性套柱销联轴器,其公称转矩为。半联轴?63000N mm 器的孔径,故取,半联轴器长度?d 120mm ?d 1_220mm ,半联轴器与轴配合的毂孔长度?L 52mm ?L 138mm 4.轴的结构

联轴器的应用

国产化联轴器在风力机组中的应用 一.前言 任何设备,在设计过程中,都要根据设备实际的运行工作环境,考虑设备使用寿命,但设备实际的运行寿命与设计寿命,存在很大差距,作为风力发电机组一般设计寿命为20年,是一个比较笼统的设计概念,一九八九年在我场安装的BOUNS150千瓦风机,至今已经运行15年,整机运行良好,但是,许多机械及电气零部件已经趋于老化,需要定期检查、更换,增加了运行维护费用,因此,为了保证机组正常运行并尽可能较长的延长机组的寿命,除了考虑整机设计达到比较高的可靠度外,风力机组其它机械零部件的设计同样也要可靠,特别是在能量传递过程中起到主要作用传动部件。 在风力发电初期,我国主要是引进国外风力机组,风机运行至今,部分零部件已经趋于老化,需要更换,如果继续使用国外生产的零部件,首先,国外厂家对有些零部件已经停止生产,其次,购买费用较贵,因此,用国产化风力机组零部件代替国外风力机组零部件,不仅,可以对我们进一步掌握老外在设计风力机组时的设计理念有帮助,而且,可以节省购买费用。 二.联轴器在风力发电机组中的主要应用形式 风力机组在传递能量工程中,由于叶轮吸收的能量是随着风能的大小在时刻改变,因此经常会产生不稳定的力作用在齿轮箱和发电机上,一部分能量被齿轮箱和发电机支撑底座吸收,另一部分,则被连接齿轮箱和发电机的联轴器吸收,因此风力机组联轴器不仅可以实现

能量传递,而且可以起到减震作用。 在风力发电机组中,联轴器应用较为广泛,它主要作用是联接两轴或回转件,在传递运动和转矩过程中一同回转而不脱开的一种装置,在传动过程中不改变转动方向和转矩的大小,这是各类联轴器的共性功能,风力发电机组中常采用刚性联轴器、扰性联轴器和安全联轴器(或万向联轴器)三种方式。 ?刚性联轴器是由刚性传动件构成,各联接件之间不能相对运动,因此不具备补偿两轴线相对偏移的能力,只适用于被联接的两轴在安装时对中性好工作时不产生两轴相对偏移的场合,刚性联轴器无弹性元件,不具备减震和缓冲功能,一般只适用于载荷平稳并无冲击振动的工况条件。 ?扰性联轴器根据所用材料不同分为无弹性元件、金属弹性元件和非金属弹性元件三种。风力发电机组常用非金属弹性元件扰性联轴器,它具有弹性模量变化范围大,容易得到不同的刚度,可用硫化方法使橡胶与金属表面牢固地粘结,能用小型、形状简单的弹性元件构成大型扰性联轴器;内摩擦大、质量小、单位体积储存的变形能大,阻尼性能好,因此可以补偿两轴相对偏移,不同程度的减震和缓冲,更重要的是弹性联轴器可以吸收轴系回外部负载的波动而产生的额外能量,另外应用于风力发电机组的扰性弹性联轴器还应该具备以下几点: ?强度高,承载能力大。由于风力发电机组的传动轴系有可能发 生瞬时尖峰载荷,故要求联轴器的许用瞬时最大转矩为许用长

减速器低速轴设计及加工工艺

J20型减速器低速轴的设计及加工工艺 1 设计要求 原始资料:根据成都卡帕特科技有限公司要求,设计一减速器低速轴,传递的功率P=3.42kW,主动轮转速n=60r/min,载荷平稳,单向运转,预期寿命10年(每天按300天计),单班制工作,原动机为电动机。 设计应完成的任务:设计出一个符合上述要求的轴,画出零件图,根据轴的工作条件及性能要求确定轴的加工步骤,并写出轴的加工工艺。 2 轴的结构设计 2.1最小轴径的设计 按扭矩初算最小轴径本轴是属于中、小轴,在减数器重工作时要承受各种负荷和冲击载荷并且要具有较高的耐疲劳性能和较好的耐磨性能,因此该轴材料选用45钢即可满足其要求。所以选用45#调质,硬度217-255HBS.根据文献P26514.4表,取c=118, 又因为设计要求P=3.42,n=60 所以, d≥(P/N)1/3118 =(3.42/60)1/3mm=46mm考虑有键槽,将直径增大5%,则d=46(1+5%)mm=48.3 mm∴选d=50mm 2.2 轴的结构设计 2.2.1轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和套筒定位,则采用过渡配合固定。 2.2.2 确定轴各段直径和长度 为了使计算方便、易懂,现画草图如下(图上的阶梯轴从左到右依次是I段、II段、III段、Ⅳ段、Ⅴ段、Ⅵ段)

2.1 轴的草图 I段:d 1=50mm 长度取L 1 =47mm∵h=2c c=1.5mm II段:取轴肩高3.5mm,作定位用,∴d 2 =57mm 初选用一对6213型角滚动轴承,其内径为65mm,宽度为23mm. 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为50mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm, 故II段长:L 2 =85mm III段直径d 3=65mm, L 3 =55mm 根据轴承安装要求,轴肩高h=2.5 mm Ⅳ段直径d 4=70mm, L 4 =80mm Ⅴ段直径d 5=82mm. 长度L 5 =9mm Ⅵ段直径d 6=65 mm,长度L 6 =23 mm 由上述轴各段长度可算得轴支承跨距L=299mm 2.2.3 按弯矩复合强度计算 1.求分度圆直径:已知d=3×Z 1 =27mm 2.求转矩:已知T 1 =544350N·mm 3.求圆周力:Ft 根据参考文献P267得 Ft=2T 1/d 1 =2×544350/324=3360N 4.求径向力Fr 根据参考文献P267得Fr=Ft·tanα=3360×tan200=1220N

二级齿轮减速器轴的设计检验

五.轴的设计 5.1轴的材料选择及最小直径估算 根据工作条件,小齿轮的直径较小(1d =77.4mm ),采用齿轮轴结构,选用45钢,正火。 按扭转强度法进行最小直径估算,即 min d A =若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 0A 值由表26—3确定: 0A =120 1、高速轴最小直径的确定 由mm n P A d o 77.25720 128.71201133 min ===,因高速轴最小直径处安装联轴器,设有一个键槽。则()()' 1min 1min 17%25.7717%27.57d d mm =+=?+=, 由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不得相差太大,否则难以选择合适的联轴器,取 1min 0.8m d d =,m d 为电动机轴直径,由前以选电动机查表:38m d mm =, 1min 0.83830.4d mm =?=,综合考虑各因素,取1min 35d mm =。 2、中间轴最小直径的确定 '2min 12041.5d A mm ===,因中间轴最小直径处安装滚动轴承,取为标准值 2min 45d mm =。 3、低速轴最小直径的确定 '3min 10352.7d A mm ===,因低速轴最小直径处安装联轴器,设有一键槽,则()()' 3min 3min 17%17%52.756.4d d mm =+=+?=,参见 联轴器的选择,查表,就近取联轴器孔径的标准值 3min 60d mm =。 5.2轴的结构设计 1、高速轴的结构设计

图2 (1)、各轴段的直径的确定 11d :最小直径,安装联轴器 111min 35d d mm == 12d :密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表 (采用毡圈密封),1245d mm = 13d :滚动轴承处轴段,1355d mm =,滚动轴承选取7211C 。 14d :14d =齿顶圆直径,取 1482.4d mm = 15d :滚动轴承处轴段 151245d d mm == (2)、各轴段长度的确定 11l :由联轴器长度查表得,取 1145l mm = 12l :由箱体结构、轴承端盖、装配关系确定 1280l mm = 13l :由滚动轴承确定 1339l mm = 14l :由装配关系及箱体结构等确定 14209l mm = 15l :由滚动轴承、挡油盘及装配关系确定 1539l mm = 2、中间轴的结构设计 图3

减速机输出轴 课程设计说明书

机械与电子工程系 机械制造基础课程设计任务书 题目:减速机输出轴机械加工工艺规程设计专业班级:_________________________学生姓名:_________________________学号:_________________________ 指导教师:_________________________时间:_________________________

目录 一、输出轴的零件图和技术要求........... 二、毛坯的选择......................... 1、选择材料........................ 2、选择毛坯........................ 三、输出轴的表面分析................... 1、主要加工表面.................... 2、次要加工表面.................... 四、定位基准的选择..................... 五、各表面加工方案的确定............... 六、加工阶段的划分..................... 1、划分的原因...................... 2、阶段的划分...................... 七、热处理工序的安排................... 八、确定加工工艺路线................... 九、选择机床与工艺设备................. 1、机床设备的选用.................. 2、工艺装备的选用.................. 十、各表面加工余量和工序尺寸的确定..... 十一、确定切削用量及时间定额........... 十二、参考文献.........................

联轴器介绍及其装配大全

联轴器介绍及其装配大全 1 概述 一般机械都是由原动机、传动机和工作机构组成,这三部分必须联接起来才能工作,而联轴器就是把它们联接起来的一种重要装置。联轴器主要用于两轴之间的联接,它也可用于轴和其它零件(卷筒、齿轮、带轮等)之间的联接。它的主要任务是传递扭矩。 根据被联接两轴的相对位置关系,联轴器可分为刚性、弹性和液力三种。刚性联轴器用在两轴能严格对中,并在工作时不发生相对位移的地方;弹性联轴器用在两轴有偏斜或工作中有相对位移的地方;液力联轴器是用液体动能来传递功率,用在需要保护原动机不遭过载损坏而又可空载起动的地方。 各种联轴器的特性比较见表14.6-1。

2一般介绍: (1)刚性联轴器: 套筒、刚性凸缘、立式夹壳式、纵向可拆式、齿轮、浮动(十字滑块)、铰链(万向)联轴器 ,共7种。 a. 套筒联轴器: 制造容易,纵向尺寸小。装拆时需轴向移动。通常用于传递扭矩小于1000kgf.m ,转速低于250r/min ,轴径小于100mm 。它分为平键套筒联轴器、圆柱销套筒联轴器、圆锥销联轴器共三种。如图示: 图14.6-1 圆柱销套筒联轴器 图14.6-2 圆锥销套筒联轴器 图14.6-3 平键套筒联轴器 图14.6-4 刚性凸缘联轴器

1-圆盘(一)2-圆盘(二)3-螺母 4-螺栓5-垫圈6-螺钉 b. 刚性凸缘联轴器:它是两个带凸缘的半联轴器组成,中间用螺栓将两个半联轴器联成一体。 c. 立式夹壳式联轴器:它是由两个半圆筒形的夹壳以及联接它们的螺栓组成。拆装方便,不需要作轴向移动。多用于直径小于200mm的轴。为可靠,中间加一平键。 图14.6-5 立式夹壳式联轴器 d. 纵向可拆式联轴器:基本与c相似。 e. 齿轮联轴器:它是由两个内齿圈1、2和外齿圈3、4组成。并且内齿圈1、2用螺栓联接,外齿圈用键联接。 它的优点:有较多齿工作,可以传递很大的扭矩,并且允许综合位移,故在重型、高速机械中得到广泛应用。因此它制造精度高,成本也高。 f. 浮动联轴器(十字滑快联轴器):它是由两个端面带槽的半联轴器1和3以及一个两面具有凸肩的中间盘2组成,两凸肩互相垂直并并分别嵌在两半联轴器之间。 图14.6-11 浮动联轴器 1-半联轴器Ⅰ 2-中间盘 3-半联轴器Ⅱ 这种联轴器由于凸肩可在两凹槽中滑动,可允许有一定的径向位移和角位移。这种联轴器结构简单、价廉。缺点会产生很大的离心力和磨损。一般只适宜于低速轴上应用。 我公司煅烧炉普遍应用这种联轴器。 g. 铰链联轴器(万象联轴器)它主要由分别装在两轴端的叉行半联轴器1和2,用十字元件3联接起来,以传递扭矩。 最大特点:可在较大偏斜角下工作,偏斜角可达450

一级减速器设计说明书

机械设计课程设计说明书设计题目:一级直齿圆柱齿轮减速器班级学号: 学生姓名: 指导老师: 完成日期:

设计题目:一级直齿圆柱齿轮减速器 一、传动方案简图 二、已知条件: 1、有关原始数据: 运输带的有效拉力:F=1.47 KN 运输带速度:V=1.55m/S 鼓轮直径:D=310mm 2、工作情况:使用期限8年,2班制(每年按300天计算),单向运转,转速误差不得超过±5%,载荷平稳; 3、工作环境:灰尘; 4、制造条件及生产批量:小批量生产; 5、动力来源:电力,三相交流,电压380/220V。 三、设计任务: 1、传动方案的分析和拟定 2、设计计算内容 1) 运动参数的计算,电动机的选择; 3) 带传动的设计计算; 2) 齿轮传动的设计计算; 4) 轴的设计与强度计算; 5) 滚动轴承的选择与校核; 6) 键的选择与强度校核; 7) 联轴器的选择。 3、设计绘图: 1)减速器装配图一张; 2)减速器零件图二张;

目录 一、传动方案的拟定及说明.......................................... 二、电机的选择 .................................................................... 1、电动机类型和结构型式....................................................... 2、电动机容量................................................................. P.......................................................... 3、电动机额定功率 m 4、电动机的转速 ............................................................... 5、计算传动装置的总传动....................................................... 三、计算传动装置的运动和动力参数.................................. 1.各轴转速................................................................... 2.各轴输入功率为(kW) ........................................................ 3.各轴输入转矩(N m) ........................................................ 四、传动件的设计计算.............................................. 1、设计带传动的主要参数....................................................... 2、齿轮传动设计............................................................... 五、轴的设计计算.................................................. 1、高速轴的设计............................................................... 2、低速轴的设计............................................................... 六、轴的疲劳强度校核.............................................. 1、高速轴的校核............................................................... 2、低速轴的校核............................................................... 七、轴承的选择及计算.............................................. 1、高速轴轴承的选择及计算..................................................... 2、低速轴的轴承选取及计算..................................................... 八、键连接的选择及校核............................................ 1、高速轴的键连接............................................................. 2、低速轴键的选取............................................................. 九、联轴器的选择.................................................. 十、铸件减速器机体结构尺寸计算表及附件的选择...................... 1、铸件减速器机体结构尺寸计算表............................................... 2、减速器附件的选择 (22) 十一、润滑与密封.................................................. 1、润滑....................................................................... 2、密封.......................................................................

最新二级展开式斜齿轮减速器输出轴组合结构设计

二级展开式斜齿轮减速器输出轴组合结构 设计

斜齿圆柱齿轮减速器结构设计说明 机械工程及自动化 班 设计者 指导教师 2014 年 12 月 26 日 辽宁工程技术大学

一、设计任务书及原始数据 题目:二级展开式斜齿圆柱齿轮减速器输出轴组合结构设计 轴系结构简图 二、根据已知条件计算传动件的作用力 2.1计算齿轮处转矩T、圆周力F t、径向力F r、轴向力F a及链传动轴压力Q。 已知:轴输入功率P=4.3kW,转速n=130r/(min)。

转矩计算: mm N n P T ?=??=?=6.315884130/3.410550.9/10550.966 分度圆直径计算: mm z m d n 1.4164368cos /1034cos /21='''?=?= β 圆周力计算: N d T F t 3.15181.416/6.3158842/21=?== 径向力计算: N F F n t r 2.5584368cos /20tan 3.1518cos /tan ='''?== βα 轴向力计算: N F F t a 2164368tan 3.1518tan ='''?== β 轴压力计算: 计算公式为:) 100060/(10001000?= = npz P K v P K Q Q Q 由于转速小,冲击不大,因此取K Q =1.2,带入数值得: N Q 3233) 100060/(294.251303 .42.11000=?????= 轴受力分析简图 2.2计算支座反力 1、计算垂直面(XOZ )支反力 N l a l R s l Q R r y 2.5087215 ) 80215(2.558)100215(3233)()(2=-?++?=-?++?= N R Q R R r y y 12962.55832332.508721=--=--= 2、计算垂直面(XOY )支反力 N l a l R R t z 4.953215 ) 80215(3.1518)(2=-?=-= N R R R z t z 9.5644.9533.151821=-=-= 3、计算垂直面(YOZ )支反力 Ra=0N 三、初选轴的材料,确定材料机械性能 t

相关主题
文本预览
相关文档 最新文档