当前位置:文档之家› 共射放大电路的特性分析与仿真

共射放大电路的特性分析与仿真

共射放大电路的特性分析与仿真
共射放大电路的特性分析与仿真

长春理工大学

国家级电工电子实验教学示范中心学生实验报告

_________ 学年第_________ 学期

实验课程 ___________________________ 实验地点___________________________ 学院__________________________

专业__________________________

学号_________________________

姓名_________________________

实验项目共射放大电路的特性分析与仿真

实验时间实验台号

预习成绩报告成绩

一、实验目的

1、借助PSpice软件平台,通过实例分析更进一步理解静态工作点对放大器动态性能的影响。

2、了解晶体管等器件的参数对放大电路的高频响应特性的影响。

3、熟悉并掌握放大电路主要性能指标的测量与估算方法。

二、实验原理

1、产生仿真曲线,改变静态工作点,对放大器动态性能进行测量。

【例1】共发射极放大电路如图1-1所示。设晶体管的3 =100,「bbv80Q

(1)调节R B使I C Q~ 1mA,求此时输出电压u 0的动态范围。

(2)调节R B使I CQ~ 2.5mA,求此时输出电压u 0的动态范围。

(3)为使u 0的动态范围最大,I CQ应为多少mA ?

此时R B为何值?

图1-1单管共发射极放大电路

2、产生仿真曲线,测量放大器的高频参数。

【例2】图1-2所示为单管共发射极放大电路的原理

图。设晶体管的参数为:

3 =100, r bb =80 Q , C b'c=1.25PF, f T=400MHZ , V A=R。

调解偏置电压 V BB使I CQ~ 1mA。

(1)计算电路的上限截止频率f H和

增益-带宽积G?BW。

(2)将山‘改为200 Q,其它参数不变,重复(1)中的计算。

(3)将R s改为1K Q,其它参数不变,重复(1)的计算。

(4)将C b C改为4.5PF,其它参数不变,重复(1)的计算。

图1-2共发射级放大电路的原理图

、预习内容

1、复习共射放大器的工作原理及高频响应特性与各参数的关系;

2、熟悉用PSpice进行电路静态分析和动态性能分析的描述方法;

3、了解利用Probe绘图曲线估算电路的性能指标的方法。

四、实验内容

1、对例1写出进行静态工作点调整和放大器动态范围测量的输入网单文件;

2、对例1进行电路的静态、动态的仿真分析,并用数据回答有关问题;

3、对例2写出进行频率特性分析的输入网单文件;

4、对例2进行电路的频率特性的仿真分析,并用数据回答有关问题。

五、实验步骤

【例1】参考的输入网单文件如下:

ACEAMP1

C11220U

RB24RMOD1

RRB24450K IC=2.5MA

RRB24562.5K IC=2MA

RRB241.128MEG IC=1MA

RC344K 输入正弦信号,f=1kHz。

'■C十也

<+UV)

H C + 12V)

基本共射极放大电路

《基本共射极放大电路》教学设计 课题:第10章放大电路和集成运算放大器 10.1 共发射极单管放大电路 执教人:黄笑颜时间:2013年5月9日星期四上午第一节课 班级:高二(1)班(机电专业) 地点:安庆市第一职业教育中心高二(1)教室 课题:10.1 基本放大电路(第十章放大电路和集成运放)课时:1 课时 课型:新授型 一、教学目标: 1. 知识目标 (1)了解基本共射极放大电路直流通路工作情况。 (2)掌握静态工作点的计算方法。 (3)了解放大电路动态工作原理。 2.能力目标 通过讲解、演示,循序渐进地从简单的放大电路引入,引导学生运用所有电器元件的基本特性逐一分析出放大电路的工作原理。 3. 情感目标 本节内容在第十章里起到开篇的作用,课本第十章介绍的都是模拟电子电路的知识,后面的分压式放大电路,差分放大电路,OCL功率放大电路都是在此基础上慢慢的展现,所以基本共射极放大电路这一开篇电路对于学生学习模拟电路很重要! 二、教学分析: 1、教材分析: 本节内容的作用和地位: 这一节内容比较抽象,但对于参加对口高考的中职学生来说,这一章又至关重要,对于电子部分来说,放大电路将是所有模拟电路的一个起点。 2、学情分析 我们的学生是中等职业机电学生,对电的认识和理解非常有限,想象力也是非常有限的,只有将复杂的东西简单化,抽象变

的具体才能让学生去认识与接受。 三、过程与方法 1.教学方法设计: 利用多媒体方式,将基本共发射机电路波形特点展示给学生,通过讲解、图形收集、网络资料,建立长期记忆模式。 2.教学流程设计思路: 复习前面放大电路知识→导入新课→基本放大电路的组成→基本放大电路的直流通路→基本放大电路的静态工作点计算→→小结→作业 四、教学重点与难点 2.教学重点和难点: 重点:基本共发射极放大电路的直流通路图。 难点:基本共发射机放大电路的静态工作点的计算。 教学过程: 知识回顾: 1、放大电路的核心元件是什么?那么晶体管的作用是什么? (找学生回答):核心元件是晶体管。起到电流放大作业。 2、晶体管电流放大作用的原理是什么? (找学生回答):以较小的基极电流控制较大的集电极电流的变化。 3、看FLASH动画,回顾晶体管在放大状态时偏置情况。 集电结反偏,发射结正偏 导入新课: 前面我们已经接触了晶体管放大电路中的多种状态,今天我们要仔细的了解放大电路的元件名称和作用,了解晶体管放大电路静态工作状态和动态工作模式。 新课讲授 对于单管共射极放大电路而 言,其结构包括以下几个部分 首先,给整个放大电路供电的 直流电源

Multisim在基本放大电路分析中的应用

¥ Multisim 在基本放大电路分析中的应用 一、实验目的 (1)初步掌握使用Multisim 软件对直流电路进行分析。 (2)验证验证二极管的单向导电性。 (3)学会测量放大电路的A v 、i R 、o R 、通频带BW 的方法。 (4)观测放大电路的动态性能。。 二、预习要求 (1)阅读关于Multisim 10软件的介绍。 (2)阅读教材中关于二极管的伏安特性、单向导电性等内容。 (3)阅读教材中关于静态工作点Q ,电压增益A v 、输入电阻i R 、输出电阻o R 和通频带BW 等内容。 三、实验电路及内容 (一)、二极管参数测试仿真实验 1. 在实验电路工作区搭建测量二极管正向伏安特性的实验电路,如图¥.1所示。依次设置滑动电阻器W R 触点至下端间的电阻值(拨动鼠标箭头显示的电位器拨动游标),调整二极管两端的电压。启动仿真开关,将测得的D v 、D i 及计算得到的D r 数据填入表¥.1。 图¥.1 测试二极管正向伏安特性实验电路 2. 在实验电路工作区搭建测量二极管反向伏安特性的实验电路,如图¥.2所示。依次设置滑动电阻器W R 触点至下端间的电阻值,调整二极管两端的电压。进行仿真实验,将测得的D v 、D i 及计算得到的D r 数据填入表¥.2。 表¥.1 二极管正向伏安特性测量数据记录表

图¥.2 测试二极管反向伏安特性实验电路 表¥.2 二极管反向伏安特性测量数据记录表 (二)、基本放大电路仿真实验 1. 静态工作点的测试 (1)阻容耦合放大电路由电阻、电容和三极管等元器件构成。在实验电路工作区搭建如图¥.3所示的阻容耦合放大电路,并存盘。 + Vs _ 图¥.3 单管分压式偏置放大电路 (2)启动Multisim 10界面菜单【Simulate】菜单中Analyses下的DC operating Point 命令,在弹出的对话框中的Output variables页将节点3、4、5、6、7节点作为仿真分析节

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

共射极基本放大电路解读

实验一共射极基本放大电路 一、实验目的 1、掌握放大器静态工作点的调试及其对放大性能的影响。 2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。 二、实验环境 1、Electronics Workbench5.12软件 2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器 三、实验内容 图1.1为一共射极基本放大电路,按图连接好电路 . . 图1.1 共射极基本放大电路 1、静态分析 选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。 . 图1.2 共射极基本放大器的静态工作点 2、动态分析 用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。

图1.3共射极放大电路的输入、输出波形 由上图可得: 放大器的放大倍数:Av=801.54mv/4.97mv=161.3 理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4 (其中R L′为RL与Rc的并联值,β的值约为250) 实验结果与理论值基本相符 3、频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。分析结果如图2.4所示。 图1.3 共射极基本放大电路的频率响应 由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。 1、测量放大器的输入、输出电压: (1)输入电阻的测量 在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。 (2)、输出电阻的测量 用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro 将上述测量及计算填入下表:

共射极基本放大电路分析汇总讲解

教案首页

一、组织教学(3分钟) 二、复习旧课5分钟) 三、导入新课(5分钟) 1.检查学生出勤情况、安全文明生产情况; (包括工作服,绝缘鞋等穿戴情况) 2.课前安全教育;按操作规程要求正确操作电器设备的运行。 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是 为了避免产生非线性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎 样计算放大器的放大能力呢? 引入新课题:必须学习如何分析放大电路。 课题:§2-2共发射极低频电压放大电路的分析 强调 安全用电 线 路 板 接 通 电 源 连 接 示 波 器 调 R B 观察示波器中输出电压的波形是否失真, 思考,回答 思 考 , 回 答 讲 授 法 讲 授 法 讲 授 法 稳定课堂秩序,准备上课。 巩固已学知识,为本次课程学习新知识作铺垫。 通过实际生产中的问题引入课程内容,激发学生的求知欲望,达到更好的教学效果。 +U CC + + V C 1 C 2 R B R C u i u o 放大电路的分析方法: 近似估算法; 图解分析法 教师活动 教学方法 设计目的 教学内容与过程 学生活动

四、讲授新课(20分钟) 1、分析静态工作点的估算。 (1) 静态工作点要估算的物理量。 提问:什么是静态工作点? 回答:当静态时,直流量I B 、I C 、U CE 在晶体管输出特性曲线上 所对应的点称为静态工作点。 提问:要确定静态工作点,必须要计算什么量? 回答:I B 、I C 、U CE 。 (2) 计算静态工作点的解题步骤。 启发提问:怎样计算I B 、I C 、U CE 呢? 以例2.1为例子,具体讲解静态的分析解题步骤。 ① 学生阅读例题;(例2.1) ② 画图:共发射极基本放大电路; ③ 提问:什么是直流通路? 回答:直流电流通过的路径。 ④画出放大器的直流通路。 方法:电容视为开路,其余不变 画图:放大器的直流通路 ⑤ 计算I B ; 适度引导板书课 题 讲解 学生阅读例题; 学生自己画出直流通路 +U CC V R B R C I CQ I BQ U BEQ U CEQ

模电实验共射放大电路Multisim仿真

Multisim模拟电路仿真实验 1.Multisim用户界面及基本操作 1.1Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件与仪器集合为一体,就是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真与设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5、0版本,在EWB5、x版本之后,从EWB6、0版本开始,IIT对EWB 进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim 经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机与LabVIEW虚拟仪器的仿真与应用。 下面以Multisim10为例介绍其基本操作。图1-1就是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。 图1-1 Multisim10用户界面 菜单栏与Windows应用程序相似,如图1-2所示。

基本共射极放大电路电路分析

基本共射极放大电路电路分析 3.2.1基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加 强 。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载 。 ■■童■ B r - - ■ :必)iy, :信号 慷: I ■ t>A 放大电路 !?! 2.电路组成:(1)三极管T; (2)VCC :为JC提供反偏电压,一般几?几十伏; (3)RC :将IC的变化转换为Vo的变化,一般几K?几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB :为发射结提供正偏。 (习R十一般为儿1 K - JLT- Rb 一般,程骨V開=e7V 当%*宀只£时; ,V B, I B A (6)Cb1,Cb2 :耦合电容或隔直电容, (7)Vi :输入信号 (8)Vo :输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公 共端之间的电位差。图中各电压的极性是参考极性,电流的参 考方向如图所示。 其作用是通交流隔直流。

V ⑵输入电阻Ri I £黒 b ZC Kt 亡 /〒气 V.V 2^ 3.共射电路放大原理 f' h : 11 12V 峠变化% %变化 7变化 % 尸%-叫好变化 > %变化 SOOK A 4K TH l/cc /jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址4 4.放大电路的主要技术指标 放大倍数/输入电阻Ri /输出电阻Ro /通频带 (1)放大倍数 放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电 ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

单管放大器的设计与仿真及误差分析

课程设计报告 题目:单管放大器的设计与仿真 学生姓名: 学生学号: 系别: 专业:电子信息工程 届别: 指导教师: 电气信息工程学院制 2013年3月

目录 引言……………………………………………………………1任务与要求…………………………………………………2系统方案制定………………………………………………3系统方案设计与实现………………………………………4系统仿真和调试……………………………………………5数据分析……………………………………………………6总结…………………………………………………………7参考文献……………………………………………………8附录…………………………………………………………

单管放大器的设计与仿真 学生: 指导教师: 电气信息工程学院电子信息工程专业 引言:放大现象存在于各种场合中,例如,利用放大镜放大微小的物体,这是光学中的放大;利用杠杆原理用小力移动重物,这是力学中的放大;利用变压器将低电压变换为高电压,这是电学中的放大。而作为电子电路中的放大晶体管放大器是放大电路的基础【1】,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容涉及方面广泛。本文已常见的作为集成运放电路的中间级的共射放大电路为讨论对象,一方面,对具体包括模拟电路的一般设计步骤、单管共射放大电路设计方案的拟定、静态工作点的设置与电路元件参数的选取、放大电路性能指标的测量、稳定静态工作点的措施等做阐述。本文采用的是分压式电流负反馈偏置电路设计成的共发射极放大器,对分压式电流负反馈偏置电路能稳定静态工作点的原理作了说明,并将对晶体管放大器静态工作点的设置与调整方法、放大电路的性能指标与测试方法、放大器的调试技术做阐述。介绍模拟电子电路的一般设计方法和思路,以及Multsim 和Matlab软件的一些基本操作和仿真功能。

共射极基本放大电路分析教(学)案

共射极基本放大电路分析 教学容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”:近 似估算静态工作点、电压放大倍数。 教学对象及分析:1、基础知识:学生已基本掌握了共发射极低频电压放大电路 组成及工作原理。 2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。 教学目的: 1、了解、掌握放大电路的分析方法:近似估算法; 2、培养学生分析问题的能力。 3、培养学生耐心调试的科学精神。 教学方法:演示法、启发法、讲练结合法 教具准备:分压式偏置放大电路实验板、示波器、万用表。 教学重点: 1、共射极放大电路的静态工作点的估算; 2、放大器的电压放大倍数的估算。 教学难点:静态工作点的估算。 教学过程: 一、复习及新课引入: 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线 性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎样计算放大器的放 大能力呢? 引入新课题:必须学习如何分析放大电路。

板书设计: §2—2 共发射极放大电路的分析

一、近似估算法 1.静态工作点的估算。 2.电压放大倍数的估算: (1) 目的:计算I B 、I C 、U CE 。 (1)目的:计算A u 、R i 、R o 。 (2) 步骤: (2)步骤: ①画直流通路。 ①画交流通路。 ②计算I B 、I C 、U CE 。 ②计算A u 。 改进措施:强调三极管的非线性,分析非线性元件电量计算的特点。 u o i c +U CC I +U CC 2 放大电路的分析方法: 近似估算法; 图解分析法

模拟电子电路multisim仿真(很全 很好)

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1. 静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2. 动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3. 参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失

真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4. 频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器) 图7.1-7为一共集电极基本放大电路,用仪器库的函数发生器为电路提供正弦输入信号VI(幅值为1V,频率为10 kHz)采用与共射极基本放大电路相同的分析方法获得电路的静态工作点分析结果。用示波器测得电路的输出,输入电压波形,选用交流频率分析项分析出电路的频率响应曲线及相关参数。

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真 姓名: 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻:

Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:

则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

模拟电子电路仿真

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

单管共射放大电路地仿真实验报告材料

单管共射放大电路的仿真 : 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻: Ri=0.86kΩRo≈9.56 kΩ 输入电压:输出电压: 则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

基本共射极放大电路电路分析

基本共射极放大电路电路分析 基本共射放大电路 1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2.电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC,VCC同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公

共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。 3.共射电路放大原理 4.放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带 (1)放大倍数

(2)输入电阻Ri (3)输出电阻Ro

(4)通频带 问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100Hz~10kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 放大电路的图解分析法 1.直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路

基本放大电路仿真实验

实验报告四 一、实验目的 1、通过仿真电路掌握单管共射电路的静态分析和动态分析; 2、通过对共射电路的仿真实验,分析静态工作点队对电路输出的影响; 二、实验内容 1.测量NPN管分压偏置电路的静态工作点并与估算值进行比较; 2.测量放大电路性能指标; 3.分析放大电路交流特性; 4.通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 三、实验环境 计算机、MULTISIM仿真软件 四、实验电路 1.实验电路 1.1静态分析 静态工作点仿真结果: 从仿真结果可知:

544127 = 1.7991.1690.63=5.21.16()=8.52BQ EQ BEQ BQ EQ BQ b b CC CQ C CEQ CC CQ c e V V V V V V V V V V V I A R R V V I mA R V V I R R V μ==-=-=--= =≈-+因此: 动态分析: 由仿真所得的数据可得: ip 421.405 ==-38.710.896 op v V A V = - 仿真波形: 1、

因此:ip i sp ip 10.642 = (1) 3.04814.13310.642 s V R R K K V V ≈?Ω≈Ω-- 2、oLp V 仿真 op V 仿真 因此:op oLp 836.417 =( 1)( 1)2 1.967421.691 o L V R R K K V -≈-?Ω≈Ω 放大电路交流仿真分析

3、通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 在电路图中放入探针 从图中可以得出,此时:919 A ==42.521.6 V 打开示波器,图形显示: 从图中的显示数据可以知道,输出波形已有部分失真 ; 1、增大b R (增大至75K )

基本共射极放大电路电路分析

基本共射极放大电路电路分析 3.2.1 基本共射放大电路 1. 放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。 a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。 b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。 2. 电路组成:(1)三极管T; (2)VCC:为JC提供反偏电压,一般几~ 几十伏; (3)RC:将IC的变化转换为Vo的变化,一般几K~几十K。 VCE=VCC-ICRC RC ,VCC 同属集电极回路。 (4)VBB:为发射结提供正偏。 (6)Cb1,Cb2:耦合电容或隔直电容,其作用是通交流隔直流。 (7)Vi:输入信号 (8)Vo:输出信号 (9)公共地或共同端,电路中每一点的电位实际上都是该点与公 共端之间的电位差。图中各电压的极性是参考极性,电流的 参考方向如图所示。

3. 共射电路放大原理 4. 放大电路的主要技术指标 放大倍数/输入电阻Ri/输出电阻Ro/通频带(1) 放大倍数 (2) 输入电阻Ri

(3) 输出电阻Ro (4) 通频带

问题1:放大电路的输出电阻小,对放大电路输出电压的稳定性是否有利? 问题2:有一个放大电路的输入信号的频率成分为100 Hz~10 kHz,那么放大电路的通频带应如何选择?如果放大电路的通频带比输入信号的频带窄,那么输出信号将发生什么变化? 3.2.2 放大电路的图解分析法 1. 直流通路与交流通路 静态:只考虑直流信号,即Vi=0,各点电位不变(直流工作状态)。 动态:只考虑交流信号,即Vi不为0,各点电位变化(交流工作状态)。 直流通路:电路中无变化量,电容相当于开路,电感相当于短路。 交流通路:电路中电容短路,电感开路,直流电源对公共端短路。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 直流通路 交流通路

反馈放大电路的特性分析与仿真要点

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2016 —— 2017 学年第一学期 实验课程反馈放大电路的特性分 析与仿真 实验地点 学院 专业 学号 姓名

图2-1 电流并联负反馈放大电路 ,输出信号电流为i0=i C2。电阻R6,R4组成反馈网 所示的反馈放大电路分解成基本放大电路和反馈网络两部分,根据前面所述的两 所示。图中直流电压V3、直流电流I E2均为保证直流工作

图2-2 电路的基本放大电路 三、预习内容 、预习用PSPICE进行电路频率特性分析的语句描述方法。 、熟悉反馈放大器所对应的基本放大器的等效原则。 四、实验内容 、根据题目要求编写输入网单文件,运行程序,分别获得负反馈电路和对应的基本放大器的电流增益、电压增益、输入电阻、输出电阻的频率特性仿真波形。

图2-4 开环电压增益的幅频特性图2-3 开环电流增益的幅频特性 )理论上,因为电流反馈系数F i≈-R6/(R4+R6),所以反馈深度D=1+A iM F i。 按方框图法,可计算闭环电流增益A if=A iM/D,把这个结果与对图2-1所示电路直接计算所得结果进行比较,看两者是否很接近。闭环源电压增益A VSf=υ0/υs =-i0R L′/[(R S+R if)i i]=- A if R L′/(R S+R if),输Rif由下面的图2-8分析获得,则计算出的| A VSf|(上面的计算忽略了Q2管的r Ce的影响),与图计算所得结果是否接近。 图2-5 闭环电流增益的幅频特性图2-6 闭环电压增益的幅频特性

图 2-7 开环输入阻抗特性 图2-8 闭环输入阻抗特性 (4)输出电阻 所示为开环输出阻抗特性曲线。其中图(a)是由晶体管Q2集电极看进去的阻抗特性(不包 ,该值较大其原因是基本放大电路中Q射极下接有负反

PS软件仿真练习(一)——单级共射放大电路(DOC)

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:PS软件仿真练习(一)——单 级共射放大电路 院(系):自动化学院 指导教师:汪小燕 2014 年4月3 日 PS软件仿真练习(一)——单级共射放大电路 一.实验目的 电子电路CAD技术现已广泛被应用到科学研究、产品设计、电子电路分析与设计等许多领域中,采用CAD技术和工具已成为工程技术人员对电子电路进行设计、分析必不可少的方法和手段。为了培养学生使用CAD技术的能力,全面提高学生的素质和创新能力,就必须掌握电子电路的仿真方法。为此,本实验力图达到以下目的: 1.了解电子电路CAD技术的基本知识,熟悉仿真软件PSpice的主要功能。 2.学习利用仿真手段,分析,设计电子电路。 3.初步掌握用仿真软件PSpice分析,设计电路的基本方法和技巧。

二.实验条件 计算机,PSpice仿真软件。 三、预习要求 1.认真阅读本书附录A,详细了解PSpice软件的功能,仿真步骤及使用方法。 2.熟悉单极共射放大电路的静态工作点,输入,输出电阻及幅频特性,相频特性等。 四.实验说明 PSpice用于电子电路的仿真分析,除了可以对模拟电路,数字电路进行仿真分析外,还可以对模拟混合电路进行分析,具有优化设计的功能。它主要包括Capture(电子原理图设计)、PSpiceA/D(模数混合仿真)、PSpice Optimizer(电路优化)和Layout Plus(PCB 设计)等组件。根据电子技术基础课程的教学要求,本实验以单级共射放大电路为例,简要介绍Capture和PSpice A/D两部分软件的仿真步骤及使用方法。 单级共射放大参考电路的仿真步骤如图4.1.1所示,三极管型号为Q2N222( =50),试 分析: (1)放大电路的工作点。 (2)当输入电压信号为幅值10mV,频率1kHz的正弦波时,仿真输入,输出波形。 (3)仿真该电路电压增益的幅频响应和相频响应曲线。 (4)仿真该电路的输入,输出电阻频率响应曲线。 图4.1.1 单级共射放大电路

晶体管共射极单管交流放大电路实验报告

晶体管共射极单管交流放大电路 班别:_________ 学号:_________ 姓名:___________ 成绩:______________ 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; 2、掌握放大器电压放大倍数的测试方法; 3 、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验内容及步骤 1 ?实验电路 实验电路如图1所示。各电子仪器连接时,为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。 图1共射极单管放大器实验电路 2.调试静态工作点 (20分) (1)暂不接入交流信号,把一直流电源调到 12V; (2)将R調至最大,接入12V直流电源; (3)调节R W使1尸后,用直流电压表测量三极管B极、E极和C极对地电压U B、 U E、U C值,记入表1。 表1C 3?测量电压放大倍数(20分) (1)调节函数信号发生器,使其输出有效值为10mV频率为1KHz的正弦信号; (2)把上述调节好的的正弦信号加在放大器输入端(B与地),作为U i;

(3)用示波器观察放大器输出电压u o波形,在波形不失真的条件下用交流毫伏表测

量下述三种情况下的 U O 值,并用双踪示波器观察 u 。和U i 的相位关系,记入表 2,并计算电 路的相应电压放大倍数 A 。 表 i 4.观察静态工作点对电压放大倍数的影响 (20 分) (1) 置 F C =Q, R-=^, U=10mV (2) 用示波器监视输出电压波形, 在u 。不失真的条件下, 调节R ,使I C 分别为表3中 之值,用交流毫伏表 分别测出U 。值,计算电压放大倍数 A V ,记入表3。 表3实验数据表三 (条件: Ft =Q R L U i = 10 mV ) 5 .观察静态工作点对输出波形失真的影响 (20分) (1) 置 R^=Q, F L =Q; (2) 在未接入交流信号时,调节 R W 使 I C =,测出Ub E 值; (3) 接入交流信号,逐步加大输入信 号,使输出电压 U 0足够大但不失真。 然后保持 输 入信号不变,分别增大和减小 FW,使波形出现失真,绘出 U 0的波形,并用直流电流表和 直流电压表 分别测出失真情况下的I C 和U CE 值,记入表4中。 表4实验数据四 (条件:R C =Q R L =? U i = mV ) 三、实验总结 (每题 10分,共 20 分) 1、总结R C, R L 及静态工作点对放大器电压放大倍数的影响。

单级放大电路的设计与仿真

实验一单级放大电路的设计与仿真 一、实验目的 1、掌握放大电路的静态工作点的调整和测试方法。 2、掌握放大电路的动态参数的测试方法。 3 、观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验原理 当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三级管提供合适的静态工作点才能保证三极管工作在放大区,如果静态工作点不适合,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。 当静态工作点设置在合适的位置时,即保证三极管在交流信号的整个周期均工作在放大区时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大特性的交流参数有电压放大倍数,输入电阻,输出电阻。 由于电路中有电抗元件电容,另外三极管中的PN结有等效电容存在,因此,对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。 三、实验要求和实验步骤 (1)实验要求 1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载 电阻3.9kΩ,电压增益大于50。 2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试 对应的静态工作点值。 3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。在 此状态下测试: ①电路静态工作点值; ②三极管的输入、输出特性曲线和 、r be 、r ce值; ③电路的输入电阻、输出电阻和电压增益; ④电路的频率响应曲线和f L、f H值。

相关主题
文本预览
相关文档 最新文档