当前位置:文档之家› 人教版数学高二A版选修4-1课后导练第二讲第五节与圆有关的比例线段(1)

人教版数学高二A版选修4-1课后导练第二讲第五节与圆有关的比例线段(1)

人教版数学高二A版选修4-1课后导练第二讲第五节与圆有关的比例线段(1)
人教版数学高二A版选修4-1课后导练第二讲第五节与圆有关的比例线段(1)

课后导练

基础达标

1.圆内两条弦AB 和CD 交于P 点,AB=8,AB 把CD 分成3和4两部分,那么AP 等于( ) A.2 B.6 C.2或6 D.3或5 解析:设AP=x,则BP=8-x, 由相交弦定理得x(8-x)=3×4. ∴x=2或6. 答案:C

2.如图2-5-7,AD 为⊙O 直径,BC 切⊙O 于E 点,AB ⊥BC,DC ⊥BC,AB=4,DC=1,则AD 等于( )

图2-5-7

A.23

B.4

C.5

D.33 解析:连结DF 、OE,

∵AD 是直径,∴∠AFD=90°.

又AB ⊥BC,DC ⊥BC,∴四边形BCDF 是矩形. ∴BF=DC.由切割线定理得 BE 2=BF·BA=1×4=4,BE=2. ∵OE ⊥BC,DC ⊥BC,AB ⊥BC, ∴CD ∥OE ∥AB.O 为AD 中点, ∴E 为BC 中点. ∴BC=4.∴DF=4. 在Rt △ADF 中,AD=

22DF AF +=5.

答案:C

3.如图2-5-8,PAB 、PCD 为⊙O 的两条割线,若PA=5,AB=7,CD=11,则AC ∶BD 等于( )

图2-5-8

A.1∶3

B.5∶12

C.5∶7

D.5∶11 解析:由割线定理得PA·PB=PC·PD, ∴5×(5+7)=PC(PC+11). ∴PC=4或PC=-15(舍去). 又∵PA·PB=PC·PD,PB

PC

PD PA =,∠P=∠P, ∴△PAC ∽△PDB.

3

1

155===PD PA BD AC . 答案:A

4.如图2-5-9,AB 、CD 是⊙O 的两条平行切线,B 、D 为切点,AC 为⊙O 的切线,切点为E 点,若AB=4,CD=9,则⊙O 的半径为( )

图2-5-9

A.9

B.8

C.6

D.5 解析:连结OB,并作BO 的延长线,过A 作AF ⊥CD,F 为垂足. ∵AB 切⊙O 于B,∴OB ⊥AB. ∵AB ∥CD,∴BO ⊥CD.

∴BO 经过D 点.∴BD 为⊙O 直径. 又∵AF ⊥CD,

∴四边形ABDF 是矩形. 在Rt △ACF 中,AF=

22CF AC -.

由切线长定理得AB=AE,CE=CD.

∴AC=AE+CE=AB+CD=13,CF=CD-DF=CD-AB=5. ∴AF=22513-=12,OB=6.

答案:C

5.如图2-5-10,PA 切⊙O 于A,PB 切⊙O 于B,OP 交⊙O 于C,下列结论中错误的是( )

图2-5-10

A.∠1=∠2

B.AB ⊥OP

C.PA=PB

D.PA 2=PC·PO 解析:由切线定理知,A 、C 正确. 由等腰三角形三线合一知B 正确. D 无依据. 答案:D 综合运用

6.如图2-5-11,⊙O 中半径OB 垂直于直径AC,M 为OA 上一点,BM 延长线交⊙O 于N,过N 的切线交CA 的延长线于P 点. 求证:PM 2=PA·PC.

图2-5-11

证明:连结ON,∵PN 切⊙O 于N, ∴ON ⊥PN.

∴∠MNP+∠ONM=90°. ∵OA ⊥OB,

∴∠B+∠OMB=90°,∠OMB=∠PMN. ∴∠MNP=∠PMN.∴PM=PN. 由切割线定理得PN 2=PA·PC, ∴PM 2=PA·PC.

7.如图2-5-12,已知AB 是⊙O 的直径,CA 交弦BF 延长线于E,DE ⊥AC 于E,CB 交⊙O 于D 且AB=AC,求证:AE·EC=BE·EF.

图2-5-12 证明:连结OD 、AD,∵AB 是⊙O 的直径, ∴∠ADB=90°.∴AD=BC. ∵AB=AC,∴BD=DC. ∵BO=OA,∴OD ∥AC. ∵DE ⊥AC,∴DE ⊥OD.

∴DE 是⊙O 切线,∴DE 2=EF·EB.① 在Rt △ACD 中,DE ⊥AC, ∴DE 2=AE·EC.② ∴由①②得AE·EC=BE·EF.

8.如图2-5-13,已知AT 切⊙O 于T,ADB 是割线,BC 是直径,在AB 上截取AE=AT,过E 作AB 的垂线EF,交AC 延长线于F. 求证:AB·AC=AE·AF.

图2-5-13

证明:连结CD,

由切割线定理得AT 2=AD·AB, ∵AE=AT,∴AE 2=AD·AB. ∴

AD

AE

AE AB =.① ∵BC 是直径,∴∠BDC=90°,即CD ⊥AB. 又EF ⊥AB,∴CD ∥EF.∴

AC

AF

AD AE =.②

由①②得

AC

AF

AE AB

.∴AB·AC=AE·AF.

9.如图2-5-14,已知AB 是⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于D,以C 为圆心,CD 为半径作⊙C 交⊙O 于E 、F,连结EF 交CD 于M. 求证:CM=MD.

图2-5-14

证明:双向延长CD 分别交⊙O 、⊙C 于Q 、P, ∵AB 是⊙O 的直径,CD ⊥AB, ∴CD=DQ.

∵CD=PC,∴PC=DQ. 根据相交弦定理得CM·MQ=EM·MF=MD·MP. ∴CM(MD+DQ)=MD(MC+PC). ∴CM·MD+CM·DQ=MD·MC+MD·PC. ∴CM·DQ=MD·PC. 又∵DQ=PC, ∴CM=MD. 拓展探究

10.如图2-5-15,⊙O 1和⊙O 2相交于点A 、B,⊙O 2和⊙O 3相交于C 、D,分别延长BA 、DC 相交于P,过P 作⊙O 1和⊙O 3的切线PM 、PN,M 、N 为切点,连结MN,求证:∠PMN=∠PNM.

图2-5-15

证明:由切割线定理得PM 2=PA·PB,

PN 2=PC·PD.

又由割线定理得PA·PB=PC·PD, ∴PM 2=PN 2.∴PM=PN. ∴∠PMN=∠PNM. 备选习题

11.如图2-5-16,△ABC 中,∠C=90°,⊙O 的直径CE 在BC 上,且与AB 相切于D 点,若CO ∶OB=1∶3,AD=2,则BE=____________.

图2-5-16

解析:∵CO∶OB=1∶3,OC=OE,

∴BE∶EC=1∶1.

设BE=x,则BC=2x.

由切割线定理得BD2=BE·BC=2x2,

2.

∴BD=x

又由切线长定理得AD=AC,

在Rt△ABC中,AB2=AC2+BC2,

2+2)2=22+(2x)2.

∴(x

2.

解得x=2

2

答案:2

12.如图2-5-17,⊙O分别与△ABC的边AB、AC切于M、N点,交边BC于E、F点,且BE=EF=FC. 求证:∠B=∠C.

图2-5-17

证明:由切线长定理得AM=AN,

由切割线定理得BM2=BE·BF,CN2=CF·CE.

∵BE=EF=FC,∴BE·BF=CF·CE.

∴BM2=CN2.∴BM=CN.

∴AM+BM=AN+CN,即AB=AC.

∴∠B=∠C.

13.如图2-5-18,已知⊙O1与⊙O2相交于E、F两点,过E任作直线分别交⊙O1与⊙O2于A、B 两点,G为AB的中点,直线FG分别交两圆于C、D.

求证:CG=DG.

图2-5-18

证明:由相交弦定理得AG·GE=CG·GF.

由割线定理得BG·GE=GD·GF.

∵AG=BG,∴AG·GE=BG·GE.

∴CG·GF=GD·GF.∴CG=DG.

14.如图2-5-19,△ABC内接于⊙O,AB=AC,AD是⊙O的切线,BD∥AC,BD交⊙O于点E,连结AE,求证:AE2=DE·DB.

图2-5-19

证明:∵AD是⊙O切线,

∴∠DAE=∠ABD.

∵BD∥AC,∴∠CAB=∠ABD.

∴∠DAE=∠CAB.∵∠AED=∠C,

∴△ADE∽△ABC.

∴∠D=∠ABC.

∵AB=AC,∴∠ABC=∠C.

∴∠D=∠AED.∴AD=AE.

∵AD2=DE·DB,

∴AE2=DE·DB.

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

高二数学圆的一般方程 人教版

高二数学圆的一般方程人教版 (1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径、掌握方程x2+y2+Dx+Ey+F=0表示圆的条件、 (2)能通过配方等手段,把圆的一般方程化为圆的标准方程、 (3)理解并能初步应用圆系的知识去处理问题、 教学重点和难点 重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数, D、E、F、 难点:圆系的理解和应用、 教学过程设计 (一)教师讲授: 请同学们看出圆的标准方程:(x-a)2+(y-b)2=r2,圆心(a,b),半径r、 把圆的标准方程展开,并整理:x2+y2-2ax-2by+a2+b2-r2=0、 我们把它看成下面的形式: x2+y2+Dx+Ey+F=0 ① 这个方程是圆的方程、

反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线是圆、 ② (配方过程由学生去完成)这个方程是不是表示圆? (1)当D2+E2-4F>0时,方程②表示 (2)当D2+E2-4F=0时,方程②表示 (3)当D2+E2-4F<0时,方程②不表示任何图形 ∴当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0、 做圆的一般方程、 现在我们来看圆的一般方程的特点:(启发学生归纳) (1)①x2和y2的系数相同,不等于0、 ②没有xy这样的二次项、 同学们不难发现,x2和y2的系数相同,不等于0、且没有xy 这样的二次项,是方程x2+y2+Dx+Ey+F=0表示圆的必要条件、但不是充分条件、 (2)圆的一般方程中有三个特定的系数 D、E、F,因之只要求出这三个系数,圆的方程就确定了、 (二)研究问题1,求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径和圆心坐标、 [解法一]设所求圆的方程是x2+y2+Dx+Ey+F=0、 把已知三点的坐标代入,得三个方程,解这三个方程组成的方程组

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

新人教版必修二高中数学 《圆的标准方程》 教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 22)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-22224)3(16)1(r a r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22= ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高一数学教案:4.1.1 圆的标准方程

第一课时 4.1.1 圆的标准方程 教学要求:使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程 教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程. 教学难点:运用圆的标准方程解决一些简单的实际问题 教学过程: 一、 复习准备: 1.提问:两点间的距离公式? 2.讨论:具有什么性质的点的轨迹称为圆?圆的定义? 二、讲授新课: 1. 圆的标准方程: ①建系设点: A. C 是定点,可设C(a ,b)、半径r ,且设圆上任一点M 坐标为(x ,y). ②写点集:根据定义,圆就是集合P={M||MC|=r} ④化简方程: 将上式两边平方得22 ()()x a y b r -+-= (建系设点→写点集→列方程→化简方程?圆的标准方程 (standard equation of circle)) ⑤思考:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么? ⑥师指出:只要a ,b ,r 三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a 、b 、r ,可以根据条件,利用待定系数法来解决. 2. 圆的标准方程的应用 ①.写出下列各圆的方程: (1)圆心在原点,半径是3;(2)经过点P(5,1),圆心在点C(8,-3); (指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.) ②.已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外? (从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决) ③ ABC 的三个定点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程 ( 用待定系数法解) ④ .已知圆心为C 的圆经过点A(1,1)和B(2,-2),却圆心C 在直线L:10x y -+=上,求圆心为C 的圆的标准方程。 3. 小结: ①.圆的方程的推导步骤:建系设点→写条件→列方程→化简→说明 ②.圆的方程的特点:点(a ,b)、r 分别表示圆心坐标和圆的半径; ③.求圆的方程的两种方法:(1)待定系数法;确定a ,b ,r ; (2)轨迹法:求曲线方程的一般方法. 三、巩固练习: 1. 练习:P131 14 2. 求下列条件所决定的圆的方程: (1) 圆心为 C(3,-5),并且与直线x-7y+2=0相切; (2) 过点A(3,2),圆心在直线y=2x 上,且与直线y=2x+5相切. 3. 已知:一个圆的直径端点是A(x 1,y 1)、B(x 2,y 2). 证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. 4. 作业 P134 习题4 1、2题. 第二课时 4.1.2圆的一般方程 教学要求:使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由

高一数学教案[苏教版]圆的标准方程

4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆 的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问 题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情 和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条 件r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明222 ()()x a y b r -+-=为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究 例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内 例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC 外接圆的标

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学圆的方程综合训练试题

圆的方程综合训练试题 一、选择题 1.直线0643=+-y x 与圆4)3()2(2 2=-+-y x 的位置关系是( ) A.过圆心 B.相切 C.相离 D.相交但不过圆心王新敞 2.若直线0=++a y x 与圆a y x =+2 2相切,则a 为( ) A.0或2 B.2 C.2 D.无解王新敞 3.两圆094622 =+-++y x y x 和0191262 2=-+--+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离王新敞 4.以M (-4,3)为圆心的圆与直线052=-+y x 相离,那么圆M 的半径r 的取值范围是( ) A.0<r <2 B.0<r <5 C.0<r <25 D.0<r <10 5.两圆2 2 2 r y x =+与r r y x ()1()3(2 2 2 =++->0)外切,则x 的值是( ) A.10 B. 5 C.5 D. 2 10 王新敞 6.已知半径为1的动圆与圆16)7()5(2 2 =++-y x 相切,则动圆圆心的轨迹方程是( ) A.25)7()5(2 2=++-y x B. 17)7()5(22=++-y x 或15)7()5(2 2=++-y x C. 9)7()5(2 2=++-y x D. 25)7()5(22=++-y x 或9)7()5(2 2=++-y x 王新敞 7.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A. 16)4()3(22=++-y x B. 16)4()3(2 2=-++y x C. 9)4()3(22=++-y x D. 9)4()3(2 2=-++y x 王新敞 二、填空题 8.圆02410222=-+-+y x y x 与圆08222 2=-+++y x y x 的交点坐标是 王新敞

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

高一数学教案:苏教版高一数学圆的标准方程

4.1.1圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问 题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方 程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r 都是常数,r>0 )设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列 出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 、(x -a)2(y -b)2= r ① 化简可得:(x-a)2? ( y-b)2二r2② 引导学生自己证明(x -a)2 (y -b)2=r2为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究 例(1):写出圆心为A(2, _3)半径长等于5的圆的方程,并判断点M'5,-7),皿2(-'、5, _1) 是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 2 2 2 探究:点M(x o,y。)与圆(x-a) ,(y-b)二r的关系的判断方法: (1)(x o-a) ?(y o-b) >r2,点在圆外 (2)(x o -'a)■(y o -'b)=r,点在圆上 (3)(X o - a) (y o - b)

高中数学圆的方程专题复习

1 / 4 高一数学辅导资料 内容:圆与方程 本章考试要求 一、圆的方程 【知识要点】 1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 0==b a 时,圆心在原点的圆的方程为:222r y x =+. 2.圆的一般方程02 2 =++++F Ey Dx y x ,圆心为点,2 2D E ?? -- ???,半径2 r = , 其中0422 >-+F E D . 3.圆系方程:过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 交点的圆系方程是()22221112220x y D x E y F x y D x E y F λ+++++++++=(不含圆2C ), 当1λ=-时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一 求圆的方程 问题1. 求满足下列各条件圆的方程: ()1以两点(3,1)A --,(5,5)B 为直径端点的圆的方程是 ()2求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程; ()3过点()4,1A 的圆C 与直线10x y --=相切于点()2,1B ,则圆C 的方程是? 考点二 圆的标准方程与一般方程 问题2.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 考点三 轨迹问题

问题3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是 问题4.设两点()3,0A -,()3,0B ,动点P 到点A 的距离与到点B 的距离的比为2,求P 点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 1.直线与圆的位置关系 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为△,圆的半径为r ,圆心C 到直线l 的距离为d 则直线与 圆的位置关系满足以下关系: 2.直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离). 0:111221=++++F y E x D y x C 0:222222=++++F y E x D y x C 则两圆的公共弦所在的直线方程是 4.相切问题的解法: ①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为1-(或一条直线存在斜率,另一条不存在) ③利用直线与圆的方程联立的方程组的解只有一个,即0=?来求解. 特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为 . 圆222)()(r b y a x =-+-的切线方程为 【互动探究】 考点一 直线与圆的位置关系 问题1:()1已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 .A l 与C 相交 .B l 与C 相切 .C l 与C 相离 .D 以上三个选项均有可能 ()2直线l :1mx y m -+-与圆C :() 2 211x y +-=的位置关系是 .A 相离 .B 相切 .C 相交 .D 无法确定,与m 的取值有关. ()3过点()1,3P 引圆2244100x y x y +---=的弦,则所作的弦中最短的弦长为

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

(数学试卷高一)圆与方程测试题及答案

必修2第四章《圆与方程》单元测试题 (时间:60分钟,满分:100分) 班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为 (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2 3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-所表示的曲线关于直线y x =对称,必有 ( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 8. 已知点A(1,-2,11),B(4,2,3),C(6,-1,4)则三角形ABC 的形状是( ) (A) 直角三角形 (B )锐角三角形 (C )钝角三角形 (D )斜三角形 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 A 、6π B 、4π C 、3π D 、2π 10.两圆x 2+y 2-4x+6y=0和x 2+y 2 -6x=0的连心线方程为 ( ) A .x+y+3=0 B .2x -y -5=0

相关主题
文本预览
相关文档 最新文档