当前位置:文档之家› 第二章 随机变量及其分布习题

第二章 随机变量及其分布习题

第二章 随机变量及其分布习题
第二章 随机变量及其分布习题

第二章 随机变量及其分布习题

一 、填空题

1. 设随机变量ξ的分布律为N

a

K P =

=)(ξ(K=1,2, N ),则常数=a 。 2. 盒内有5个零件,其中2件次品,从中任取3件,用ξ表示取出的次品数,则ξ的概率

分布为 。

3.设)(x F 是离散型随机变量的分布函数,若______)(==b P ξ,则

)()()(a F b F b a P -=<<ξ成立。

4.设离散型随机变量ξ的分布函数为 ?

?≥+<≤-<≤--<=2

2132

1110)(x b a x a x a

x x F ,且2

1)2(=

=ξP ,则___________________,______,

的分布律为ξ==b a

5. 设连续型随机变量ξ的概率密度为???

??≤>=-0

0)(2x x ke

x f x

则 ____)2(____,)2(____,)21(___,=<===≤<=ξξξP P P k

6. 设5个晶体管中有2个次品,3个正品,如果每次从中任取1个进行测试,测试后的产品不放回,直到把2个次品都找到为止,则需要进行的测试次数ξ是一个随机变量,则

________)2(______,)5(=≤==ξξP P

7. 设随机变量ξ的概率密度为8

)1(2)(--=x ke

x f (+∞<<∞-x ),则=k 。

8. 两个随机变量ηξ,相互独立的充要条件是______

9. 设连续型随机变量ξ的概率密度为??

?<≥=-0

)(x x e x f x

,则ξ的函数ξη=的概率密度________)(=y η? 10. 设随机变量ξ的概率密度为

??

?>><<=其他

)

0,0(,10)(k b x kx x f b

且________________,,75.0)2

1

(===>

b k P 则ξ 二 、选择题

1 .k

k p x P 2

)(=

=ξ)2,1( =k 为一随机变量ξ的分布律的必要条件是( ) (A )k x 非负 (B )k x 为整数

(C )20≤≤k p (D )2≥k p 2 . 若函数)(x f y =是一随机变量ξ的概率密度,则( )一定成立

(A ))(x f 的定义域为[0,1] (B ))(x f 的值域为[0,1] (C) )(x f 非负

(D) )(x f 在)

,(∞∞-内连续 3.如果)(x F 是( ),则)(x F 一定不可以是连续型随机变量的分布函数( ) (A )非负函数 (B )连续函数 (C )有界函数 (D )单调减少函数 4.下列函数中,( )可以作为连续型随机变量的分布函数

(A))(x F = ??

?≥<0

1

0x x e x

(B )G(x)= ??

?≥<-0

1

0x x e x

(C)=Φ)(x ???≥-<010

x e

x x

(D) H(x)= ???≥+<-0

100

x e

x x

5 . 设)(ηξ, 的联合概率密度为???

??≤+=其他

11

),(22y x y x f π

则ηξ与为( )的随机变量

(A )独立同分布 (B )独立不同分布

(C )不独立同分布 (D )不独立也不同分布

三、计算题

1. 掷两颗骰子,用ξ表示点数之和,求ξ的概率分布。

2. 抛掷一枚硬币,直到出现“正面朝上”为止,求抛掷次数的分布律。

3. 已知随机变量ξ只能取 1-,0,1,2,相应的概率为c 21,c 43,c 85

,c

167, 求c 的值,并计算)1(<ξP 。

4. 设连续型随机变量ξ的概率密度为??????

?≥<≤<=2

2041

0)(x x x ke x f x

求(1)系数k (2)ξ的分布函数 (3) {

}1≤ξP ,{}1=ξP ,{}21<<ξP 5. 设连续型随机变量ξ的分布函数为??

???≥<<≤=2

12000)(3

x x Ax

x x F

求(1)系数A ;(2)P {}10<<ξ,P {

}25.1≤<ξ,P {}32≤≤ξ 6. 设连续型随机变量ξ的概率密度为??

?

??<≤-<≤=其他02

1210)(x x x Ax x f

求(1)系数A (2)ξ的分布函数F(x) (3) P {}10|5.15.0≤≤≤<ξξ

7某种型号的电灯泡使用时间(单位:小时)为一随机变量ξ,其概率密度为

??

?

??≤>=-0

0050001)(5000x x e

x f x

求3个这种型号的电灯泡使用了1000小时后至少有2个仍可继续使用的概率 8.甲和乙两名篮球运动员各投篮3次,如果甲的命中率为0.7,乙的命中率为0.6,用ηξ,分别表示甲和乙投篮命中的次数,求ηξ,的分布律及(ηξ,)的联合分布律 9. 已知离散型随机变量ξ的分布律为ξ -3 -1 0 1 3 5

P

121 61 31 121 92 9

1

求:(1)121-=ξη的分布律; (2)2

2ξη=的分布律。

10. 设ξ的概率密度为??

?<<=其他0

102)(x x x f ξ求ξ

η-=e 的概率密度)(y η?

四、证明题

已知ηξ,为相互独立的随机变量,ηξ,的概率函数为

),2,1,0,10()1()()(n k p p p C k P k P k

n k k n =<<-====-ηξ 求证:)22,1,0()

1()(22n k p p C k P k

n k k n =-==+-ηξ 五、附加题

设离散型随机变量ξ的分布函数为 ?

?≥+<≤-<≤--<=2

2132

1110)(x b a x a x a

x x F ,

且2

1

)2(=

=ξp ,求 a , b , 以及ξ的分布律。 一、 填空题:

1. 设(Y X ,)的分布律为

则=??????

≤≤

21,21Y X P ,{}=≥1X P ,=????

??

<21X P 。 2.

?

?

?>>--=--其它

,00

,0),1)(1(),(32y x e e y x F y x 则分布密度函数

=),(y x f . 。

3.已知(Y X ,)~??

??

?

≤≤+=其它

,04,0),

sin(),(π

y x y x C y x f 则=C 。

4. 设(Y X ,)的分布律为

X 与Y 独立,则=α ,=β 。

二、选择题:

1. 设随机变量(Y X ,)的密度函数为?

??<<<<=其它,01

0,10,1),(y x y x f 则概率

{}6.0,5.0<

A. 0.5

B. 0.3

C.

8

7

D. 0.4 2. 设随机变量X 与Y 相互独立,其概率分布为

X 0 1 Y 0 1 P

31 32 P 31 3

2

则下列式子正确的是( )。

A. Y X =

B. {}1==Y X P

C. {}9

5

=

=Y X P D. {}0==Y X P 3. 设随机变量X 与Y 相互独立,且),(~2

11σμN X ,),(~2

22σμN Y ,则Y X Z += 仍具

正态分布,且有( )。

A. ),(~2

22

11σσμ+N Z B. ),(~2121σσμμ+N Z

C. ),(~2

22

121σσμμ+N Z D. ),(~2

22

121σσμμ++N Z

4. 设X 与Y 是相互独立的两个随机变量,它们的分布函数分别为)(x F X 、)(y F Y ,则

),max(Y X Z =的分布函数为( )

。 A. {})(),(m ax )(z F z F z F Y X Z = B. {}

)(,)(max )(z F z F z F Y X Z = C. )()()(z F z F z F Y X Z = D. 都不是

三、计算题:

1. 设箱内有6个零件,其中一、二、三等品各为1、2、3个,从中任意取出3件,用X 和Y 分别表示取出的一等品和二等品数,试求),(Y X 的联合概率及边缘概率分布。

2. 将一枚硬币掷3次,以X 表示前2次中出现H 的次数,以Y 表示3次中出现H 的

次数,求),(Y X 的联合分布律以及),(Y X 的边缘分布律。

3. 二维随机变量),(Y X 共有六个取正概率的点,它们是:(1,-1), (2,-1) , (2,0) ,(2,2) ,

(3,1) , (3,2) , 并且),(Y X 取得它们的概率相同,求),(Y X 的联合分布。

4.设),(Y X 的联合分布密度为?

?

?≥≥=+-其它

,00

,0,),()(y x Ce y x f y x

试求:(1)常数C ;(2))10,10(<<<

5. 随机变量),(Y X 的分布密度??

?<<<<=其它

,

00,10,

3),(x

y x x y x f

求(1)X 与Y 的边缘分布密度;

(2)条件分布密度,问X 与Y 是否独立。

6.设二维随机变量),(Y X 的密度函数为?????≤≤≤≤+=其它

,02

0,10,

3

1),(2y x xy x y x f ,

(1)求关于X 和关于Y 的边缘密度函数,并判断X 和Y 是否相互独立?(2)求

{}1≥+Y X P

7. 已知二维随机变量服从D ={}

10),(<<

????

??

<<<<210,210Y X P 。

8. 离散型随机变量),(Y X 有如下概率分布:

X Y 0 1 2

0 0.1 0.2 0.3 1 0 0.1 0.2 2 0 0 0.1

(1) 求边缘概率分布;

(2) 求2=Y 时X 的条件分布; (3) 检验随机变量X 与Y 是否独立。

9. 设X 和Y 是两个相互独立的二维随机变量,X 在(0,1)上服从均匀分布,Y 的概

率密度为???

??≤>=-0

,

00,

21)(2y y e y f y

Y ,(1)求X 和Y 的联合概率密度;(2)求

{}1<+Y X P 。

10. 设二维随机变量),(Y X 的联合概率分布为

(1) 求常数k ;(2)求X +Y 的概率分布;(3)求{}Y X ,m ax 的概率分布

四、证明题:

二维随机变量),(Y X 在单位圆上服从均匀分布,证明:随机变量X ,Y 不相互独立。

五、附加题:

设随机变量 ),(Y X 联合密度函数为???+∞

<<<=-其它,

00,),(y x xe y x f y

求Y X Z +=的密度函数。

离散型随机变量与正态分布

离散型随机变量的均值与方差、正态分布 一、选择题、填空题 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=0.84,则P (ξ≤-2)=( ) A .0.16 B .0.32 C .0.68 D .0.84 2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为 c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1, 则ab 的最大值为 ( ) A.148 B.124 C.1 12 D.16 3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 4.设X 是一个离散型随机变量,其分布列为: 则q 等于( ) A .1 B .1±22 C .1-2 2 D .1+ 2 2 5.随机变量X 的概率分布规律为P (X =k )=c k (k +1),k =1,2,3,4,其中c 是常数,则P (12

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

随机变量及其分布知识点汇总

随机变量及其分布知识点汇总 知识点一 离散型随机变量及其分布列 (一)、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值 (1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== 则随机变量X 的概率分布列如下: {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注意:超几何分布的模型是不放回抽样

知识点二 条件概率与事件的独立性 (一)、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ (二)、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即 ()()()P AB P A P B =),则称事件A 与事件B 相互独立。 ()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =. 注意:(1)互斥事件:指同一次试验中的两个事件不可能同时发生; (2)相互独立事件:指在不同试验下的两个事件互不影响. (三)、n 次独立重复试验 1.一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验. 在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然, 1212()()()()n n P A A A P A P A P A ???=??? “相同条件下”等价于各次试验的结果不会受其他试验的影响 注意: 独立重复试验模型满足以下三方面特征 第一:每次试验是在同样条件下进行; 第二:各次试验中的事件是相互独立的; 第三:每次试验都只有两种结果,即事件要么发生,要么不发生. 2.n 次独立重复试验的公式: n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为 ()(1),0,1,2,...,.(1)k k n k k k n k n n P X k C p p C p q k n q p --==-===-其中,而称p 为成功

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

简单随机变量之和与正态分布

简单随机变量之和与正态分布 本文将笼统,随意的讲解,为什么多随机变量之和可以认为服从正态分布。 首先我们建立一个简单的随机变量之和的模型。假设我们手里有一枚硬币,我们认定硬币的正面为1,反面为0,那么抛一次硬币的情况就是0或1且他们的概率都是50%。如果我不写概率也是写概率的比例,那么这个比例可以写为1:1。现在我们抛两次硬币,那么这个结果有四种,00,01,10,11。相信你知道我在说什么。那么正同我们提到的,我们要的是随机变量之和,所以我们有0,1,2。且他们的比例可以很容易的得到,是1:2:1。那么如果抛三次硬币呢?可能的结果就是0,1,2,3,而他们的比例是1:3:3:1。也许你已经发现这个规律了,也许你没有,但我会告诉你的。假如你抛2N次硬币,并且求和,那么其结果就是0,1,2……2N,共2N+1种可能。这2N+1种可能的比例服从组合数C2N i。你可以代入刚才抛三次的情况,C30:C31:C32:C33就是我们得到的1:3:3:1。至于为什么这个比例符合组合数,抛两次硬币那里举了个例子,就不重复了。这里简单的定义以下,每个随机变量称作X i他们的和称作Y,也就是: 2N Y=∑X i 1 (为什么突然变成了抛2N次而不是抛N次,因为我想保证我抛的是偶数次,这样Y的均值就是N了,你会发现抛两次的时候,Y的均值就是1,但是如果你抛三次,Y的均值就会是1.5,我想避免这个小数。) 所以接下来我们就要说明,组合数的分布规律为什么就成了正态分布。那么首先,你相信这个结论吗?让我们从抛多次到抛少次,来看一下正态分布和这个组合数分布到底有多像。 从Y的取值范围你也能猜出,这里分别是N取5,10,15,20的情况,实际上除了N 取5,也就是抛10次的时候,你还能看得清楚红线和蓝线,当N取10也就是抛20次以后,两线其实非常吻合了。你还可以看一下他们之间的误差,其峰值也是逐渐减小的。

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

“随机变量及其分布”简介

“随机变量及其分布”简介 北京师范大学数学科学院李勇 随机变量是研究随机现象的重要工具之一,他建立了连接随机现象和实数空间的一座桥梁,使得我们可以借助于有关实数的数学工具来研究随机现象的本质,从而可以建立起应用到不同领域的概率模型,如二项分布模型、超几何分布模型、正态分布模型等。 在本章中将通过具体实例,帮助学生理解取有限值的离散型随机变量及其分布列、均值、方差的概念,理解超几何分布和二项分布的模型并能解决简单的实际问题,使学生认识分布列对于刻画随机现象的重要性,认识正态分布曲线的特点及曲线所表示的意义。 一、内容与要求 1. 随机变量及其分布的概念。 通过具体实例使学生理解随机变量及其分布列的概念,认识随机变量及其分布对于刻画随机现象的重要性。要求学生会用随机变量表达简单的随机事件,并会用分布列来计算这类事件的概率。 2.超几何分布模型及其应用。 通过实例,理解超几何分布及其导出过程,并能进行简单的应用。 3. 二项分布模型及其应用。 通过具体实例使学生了解条件概率和两个事件相互独立的概念,理解n次独立重复试验和二项分布模型,并能解决一些简单的实际问题。 4.离散随机变量的均值与方差。 通过实例使学生理解离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 5.正态分布模型。 借助直观使学生认识正态分布曲线的特点及含义。 二、内容安排及说明 1.全章共安排了4个小节,教学约需12课时,具体内容和课时分配如下(仅供参考): 2.1 离散型随机变量及其分布列约3课时 2.2 二项分布及其应用约4课时

2.3 离散型随机变量的均值与方差约3课时 2.4 正态分布约1课时 小结约1课时 2. 本章知识框图 3.对内容安排的说明。 研究一个随机现象,可以借助于随机变量,而分布描述了随机变量取值的概率分布规律。二项分布和超几何分布是两个应用广泛的概率模型.为了使学生能够更好地理解它们,并能用来解决一些实际问题,教科书在内容安排上作了如下考虑: (1) 为学生把注意力集中在随机变量的基本概念和方法的理解上,通过取有限个不同 值的随机变量为载体介绍这些概念,以便他们能更好的应用这些概念解决实际问 题。例如,如何定义随机变量来描述所感兴趣的随机事件;一个具体的随机变量都 能表达什么样的事件,如何表达这些事件;如何用分布列来表达随机事件发生的概 率等。 (2) 介绍超几何分布模型及其应用,其目的是 i. 让学生了解它的广泛应用背景,并使学生能够应用该分布设计一些能够丰富学生课外

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

随机变量及其分布知识点总结

圆梦教育中心 随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率 ()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+U 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.doczj.com/doc/a6542129.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

1多维随机变量及其联合分布

3.1多维随机变量及其分布 教学目标:本节讲解的是多维随机变量及其分布.通过本节的教学,要求学生正确理解多维随机变量及其分布,掌握多维随机变量及其分布的计算方法,运用定义和性质解决有关问题. 教学重点:多维随机变量及其分布的定义与性质. 教学难点:多维随机变量及其分布的证明与计算. 二维随机变量 定义1 设E 是随机试验,则由定义在E 的样板空间Ω上的随机变量X 与Y 构成的有序对),(Y X 称为二维随机变量(或二维随机向量)。 定义2 对任意实数y x ,,二元函数 },{)}(){(),(y Y x X P y Y x X P y x F ≤≤≡≤≤= 称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数。 若把二维随机变量),(Y X 看成平面上随机点),(Y X 的坐标,则分布函数 ),(y x F 就表示随机点落在以点),(y x 为顶点的左下方的无限矩形域内的概率。 ),(),(),(),(},{111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤< 分布函数具有以下基本性质: (1)1),(0≤≤y x F ,且 对任意固定的y ,0),(=-∞y F , 对任意固定的x ,0),(=-∞x F , 0),(=-∞-∞F ,1),(=∞∞F 。 (2)),(y x F 分别是x 和y 的不减函数。 (3)),(),0(y x F y x F =+,),()0,(y x F y x F =+,即),(y x F 关于x 或y 均右连续。

(4)若2121,y y x x <<,则 0),(),(),(),(11122122≥+--y x F y x F y x F y x F 如果二维随机变量),(Y X 可能取的值是有限对或可列无限对,则称),(Y X 是二维离散型随机变量。),(Y X 的分布律或X 和Y 的联合分布律为 ij j i p y Y x X P ===},{, ,2,1,=j i 。 其中 ij p 满足 (1) ; 0≥ij p (2) 111 =∑∑∞=∞ =i j ij p 。 X 和Y 的联合分布律也可用表格表示: ij j j j i i i p p p y p p p y p p p y x x x X Y 2122212212111121\ X 和Y 的联合分布函数为 ∑∑≤≤= x x y y ij i j p y x F ),(。 【例1】吴书p.66.例1。 一箱子装有5件产品,其中2件正品,3件次品.每次从中取1件产品检验质量,不放回地抽取,连续抽取两次.定义随机变量X 和Y 如下: 试求),(Y X 的分布律和分布函数。 解 10X ?=? ?,第一次取到次品,第一次取到正品10Y ?=? ?,第二次取到次品 ,第二次取到正品

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

随机变量及其分布列与独立性检验练习题附答案

随机变量及其分布列与独 立性检验练习题附答案 It was last revised on January 2, 2021

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A. 6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .5 3 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 2 3 ,乙在每局中获胜的概率为1 3,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( ) A .6 B . 395 C .41 5 D .9

7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A . 148 B . 124 C . 112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为1 3 ,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A . 4243 B .8243 C .40 243 D . 80 243 二、填空题 9.已知55104)1()1()1)(2(++???+++=-+x a x a a x x ,则=++531a a a ______. 10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________. 11.设ξ是离散型随机变量, 21 (),()33P a P b ξξ==== ,且a b <,又42 ,39E D ξξ== ,则a b +的值为______ _. 12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 到站的时刻 8:10 9:10 8:30 9:30 8:50 9:50 概率 一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分) 三、解答题

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

第二章-随机变量的分布及数字特征

第二章 随机变量及其数字特征 一、教学要求 1. 理解随机变量的概念,掌握离散型和连续型随机变量的描述方法,理解概率分布列和概率密度函数的概念和性质; 2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率; 3. 会利用分布函数计算离散和连续随机变量函数的数字特征; 4. 熟练掌握退化分布、两点分布、二项分布、几何分布、超几何分布、泊松分布和正态分布、指数分布、均匀分布等常用概率分布及其数字特征的计算和相关概率的求解; 5. 应用公式会求简单随机变量函数的概率分布及数字特征。 二、重点与难点 本章的重点是随机变量概率分布及其性质,常见的几种分布,随机变量函数的分布、数学期望和方差的计算;难点是随机变量函数的分布及数学期望的计算。 §2.1 随机变量及其分布 一、 随机变量 1.引入随机变量的必要性 1)在随机现象中,有很大一部分问题与数值发生关系。如:产品检验问题中,抽样中 出现的废品数;在车间供电问题中某时刻正在工作的车床数;在电讯中,某段时间的话务量等等。 2)有些初看起来与数值无关的随机现象,也常常能联系数值来描述。如: 掷硬币问题中,记出现正面时为“1”,出现反面时为“0”。 注:这些例子中,试验的 结果能用一个数字X 来表示,这个数X 是随着试验的结果的不同而变化的,也即它是样本点的一个函数,这种量以后称为随机变量。 2.引例 先看一个具体的例子: 例1 袋中有3只黑球,2只白球,从中任意取出3只球,观察取出的3只球中的黑球的个数. 我们将3只黑球分别记作1,2,3号,2只白球分别记作4,5号,则该试验的样本空间为 ()()()()()()()()()()123124125134135145234235245345?? ? ??? Ω=? ??? ??? ? ,,,,,,,,,,,,,,,,,,,, 我们记取出的黑球数为 X ,则 X 的可能取值为1,2,3.因此, X 是一个变量. 但是, X 取什么值依赖于试验结果,即 X 的取值带有随机性,所以,我们称 X 为随机变量.

相关主题
文本预览
相关文档 最新文档