当前位置:文档之家› SBA.15分子筛形成过程的介观动力学模拟及实验研究

SBA.15分子筛形成过程的介观动力学模拟及实验研究

SBA.15分子筛形成过程的介观动力学模拟及实验研究
SBA.15分子筛形成过程的介观动力学模拟及实验研究

高校化学工程学报

2010年6月

文所用到的珠子之间的Flory-Huggins参数。

坐标系的选取:x轴为流速方向,y轴为速度梯度方向,z轴为中性轴。程序实现的是稳恒剪切(Uniform

steady

shear),即速度梯度是均匀的:du/dry=0Y

为定值。模拟盒子大小为32nmx32姗x32nm,珠子

之间的键长为d=ah-1=1.1543(口是指Gaussian键长,h是网格大小),扩散系数10-7cm2?s-1。体系的噪音系数Q三V-1h3=75.019(V为珠子的体积),模拟步长加=50llS。总的模拟时间为1.0ms(共计20000步)。模拟任务由分子模拟软件MaterialsStudio。中的MesoDyn模块完成。

3实验部分

3.1试剂与仪器

三嵌段共聚物P123(PE020PP070PE020,平均分子量为5800,Aldrich),正硅酸乙酯(分析纯,AlfaAesar),盐酸(分析纯,广州市东红化工有限公司),NaCI(分析纯,天津市百世化工有限公司),乙醇(分析纯,天津市富宇精细化工有限公司),去离子水(实验室自制)。

D8

Advance(Bruker)X射线衍射仪(Cu

Kctradiation,40kV,40mA):Micromeritics公司ASAP2010M

氮气吸.脱附测定仪(77K条件下N2吸.脱附);JEM-2010HR透射电子显微镜(-r作电压200kV)。3.2合成步骤

本文以三嵌段共聚物P123(PE020PP070PE020)为模板剂,正硅酸乙酯(TEOS)为硅源试剂,采用水热合成的方法制备得到高质量的硅基有序介孔分子筛SBA.15。合成步骤如下:精确称取1.0g

P123于锥形

瓶中,加入25mL去离子水,在303K条件下剧烈搅拌,依次缓慢加入25

mL4t001.L-1盐酸、0.843gNaCI,

体系充分搅拌混合4h后逐滴加入2.14mL硅酸物种,在303K条件下持续搅拌老化24h。反应物摩尔比为:硅酸物种(TEOS):P123:NaCI:HCI:H20=l:0.017:1.5:9。861:137。将所得到的乳白色溶液倒入聚四氟乙烯内衬的不锈钢水热反应釜,于373K晶化48h后,依次用去离子水、乙醇洗涤,过滤,373

干燥过夜得到白色固体,然后在空气中煅烧除去模板剂P123(脱模分两个过程:首先以2K.min-1的升温速率升到523K煅烧3h分解模板剂,然后以lK?min-1的升温速率升到823K煅烧3h脱除模板剂),即得到SBA一15分子筛白色粉末。

4结果与讨论

4.1

SBA一15形成过程中的超分子自组装

本文首先采用介观动力学方法模拟了SBA.15分子筛形成中模板剂与硅酸物种之间的超分子自组装

过程,其中模板剂P123与硅酸物种浓度均为10%,温度为298K。研究表明,P123在低浓度时(5%印<15%),主要以球状胶束(sphericalmicelle)的形态存在【H1。图1所示为该组装过程中,PPO嵌段(在SBA.15分子筛

图1

PPO嵌段密度分布随模拟时阃的变化(郴.025ms,Co)0.1

ms.(c)0.8ms

Fig.1

TheisosurfaccsofPPOblockswithtime

evolution(a)0.025嬲,嘞0.1ms,(c)0.8眦

~:薹l一一一~~~

一~,一,。”拍一E一。,¨瓤~一一E

第24卷第3期罗劭娟等:SBA-15分子筛形成过程的介现动力学模拟及实验研究425

的形成中起决定性的致孔作用)密度分布随模拟时间的变化过程。从图中可以看出,非离子型表面活性剂P123与硅酸物种在水溶液中能协同自组装形成超分子聚集体(球状胶束)。其中在模拟之初,PPO嵌段呈均相分散在溶液中(图l(a)),随着模拟时间的增加,体系逐渐发生相分离,球形胶束开始逐渐形成(图I(b)),最后体系达到相平衡(图l(c))。模拟体系中有序参数随模拟时间的变化也同样表明了这种变化趋势有序参数P可以定义为:

一JI.∑【嘭2(,.)一(秽)21dr

JP=口.驴2=——上———————一

其中咖是指聚合物的体积分数,V指格子的体积。它表示体系与均相分布的差异程度,反映了体系的相分离过程,是体系相分离和各组分相容程度的综合体现。结合胶柬的形成过程可以把计算出来的有序参数随时间的变化分为三个阶段:阶段I,有序参数变化很小,表明模拟之初体系处于均相状态(如图l(a)),并没有明显的聚集体出现:阶段II,有序参数急剧增加,初始的球形胶束开始形成(如图ICo)),此阶段耗时较短,约为0.14ms:阶段IⅡ最为耗时,体系逐渐趋向于热力学稳定态,有序参数在长时间模拟中达到平衡(如图l(c))。

从图l(c)可以看出,模板剂P123与硅酸物种在水中协同组装形成尺寸均一的超分子结构,该结构可以看作是硅基有序介孔分子筛SBA.15的前

驱体。图2(a)所示为该超分子结构中硅酸物

种的存在形式,由图中可以看出,硅酸物种

包裹在P123球状胶束的亲水PEO嵌段外

部,且硅酸物种则与PEO球壳相互交织在一

起,界面并不十分明显。通过对单个胶束进

行切面分析(图2(b))能够更为直观地看到该

超分子结构的聚集形态,其中内部疏水的

图2P123胜酸物种超分子自组装结构的

PPO嵌段(图2(b)圆圈里的最内层)在SBA.15Fig.2(a)Densityfielddistributionand(b)densitysliceof

分子筛形成中起决定性的致孔作用,外部亲

5“pe卜m01ecm盯3仃u。眦

水的PEO嵌段(图2(b)圆圈里的中间层)通过

与硅酸物种(图2(b)中圆圈里的最外层)相互

作用形成该超分子聚集体,插入到硅氧烷结

构中的PEO链在高温脱除以后形成了

SBA.15分子筛孔壁中的微孔结构。在整个

过程中,P123嵌段共聚物自组装、硅酸物种

缩聚交联、P123与硅酸物种协同组装这三个

相互作用共存于整个体系中,相互协调、相

互促进,最终形成模板剂P123/硅酸物种超

分子聚集体,是SBA.15分子筛形成过程中

的关键所在。

4.2剪切场作用下SBA.15介观相形成过程

模拟

本文通过对模拟体系中引入稳恒剪切

力来模拟实际中搅拌等外力作用,模拟研究

SBA-15二维六方介观相的形成过程。其中

模板剂P123浓度为20%,硅酸物种浓度为40%,温度为298K。剪切率7=5x105s一。

图3PPO嵌段密度分布随模拟时间的变化

Fig.3TheisosurfacesofPPOblockswitIltimeevolution

(a)O.02ms,(b)0.05ms,(C)O.1ms。(d)0.8ms

第24卷第3期罗劭娟等:SBA-15分子筛形成过程的介现动力学模拟及实验研究

范围内具有一定量的微孔孔径,其微孔比表面积为106.881132.旷1,微孔孔容为0.11×10-2em3.g-1,这些无规则的微孔是P123/硅酸物种超分子结构中亲水的PEO嵌段插入到无机硅氧烷结构中所形成的,而从模拟的结果来看,P123/硅酸物种超分子结构中,PEO嵌段和硅酸物种交织在一起,PEO嵌段焙烧除去之后就形成了SBA.15中的微孔。介观模拟结果很直观地解释了这一结构的形成机理。表2列出了所合成的SBA.15分子筛的结构数据。

表2SBA-15分子筛的结构参数

!!堕!兰璺塑!塑堡2翌P!堕壁!!受坠:!!些!!!壁壁竺!!虫2111竺!!!!!空!

而00锄品盯%m““xlO一2‰mDBJ.I氐

!!璺!!尘!蔓:g:生:g:!!坚::g:!塑::g:!!垡!磐!曼垒:!!!:;!!!:鲤!塑:墼!堑:§!!:箜!:!!!:;!.!:堡!..Note:kisthewallthickness,k黾I-D射№ao=2/√rd№dmspacingisobtainedbymeasuringsmall.angleXRD!….从高分辨透射电镜图(图6Co)、(d))中可以

看出,实验所合成的SBA.15具有非常完美的

二维六方结构,孔径分布均一狭长,且具有

较长的一维线性孔道,与介观动力学模拟结

果(图6(a)、(c))在结构外观上极为吻合。这

个结果证明了分子模拟的正确性,同时也证

明了介观动力学是研究超分子自组装过程

的有效工具。此外,通过采用不同的Gaussian

链描述形式,介观动力学方法不仅能够用于

研究各种表面活性剂在水溶液中的相行为,

而且对于阳离子表面活性剂、阴离子表面活

性剂及非离子表面活性剂与硅酸物种这一

超分子组装结构的模拟研究同样适合,这种

模拟方法能够帮助我们深入研究硅基有序

介孔分子筛的形成机理,筛选最为合适的模

板剂以及搭配使用混合模板剂,也对协同作用机理提供了有力的支撑。同时其直观地展现了SBA.15形成的过程,对于指导合成高质量的SBA.15分子筛具有重要的意义。

图6PPO嵌段密度分布切片(a)沿x轴和(c)y轴方向;

SBA-15分子筛的TEM图谱(b)沿孔道方向(d)垂直于孔道方向

Fig.6DensityslicesofPPOblocksalongxaxis(a)andYaxis(c),TEMimagesofSBA?15mesoporousmolecularsievealongthechannel

(b)andperpendiculartothechannel(d)

5结论

本文采用介观动力学(MesoDyn)方法模拟了硅基有序介孔分子筛SBA.15的形成过程,以Gaussian链的形式对模板剂P123及硅酸物种(TEOS)进行粗粒化描述。模拟的结果表明:P123在水中自组装、硅酸物种缩聚交联、P123与硅酸物种协同组装这三个相互协调促进形成尺寸均一的P123/r硅酸物种超分子结构,这是硅基有序介孔分子筛SBA一15的前驱体。而实验合成的SBA.15分子筛的BJH孔径分布狭窄,大小均一,因此可证明该均一的超分子结构存在的正确性:同时,从DFT孔径分析中可知SBA.15有一定量的微孔,这是由于超分子结构中亲水的PEO嵌段插入到无机硅氧孔壁中在高温脱除模板剂后所形成的。

同时,模拟体系中引入稳恒剪切力来模拟实际中的外力作用。在剪切力的作用下,P123/硅酸物种超分子聚集体由球状逐渐被拉扯成柱状,并最终排列成规则的六角形的聚集结构。而在水热法合成的SBA-15的TEM图像中所呈现出来的二维六方结构证明了这种六角形的聚集介观相正是SBA.15的结构基础。因此,用MesoDyn方法模拟SBA.15形成的过程,研究模板剂与硅酸物种的协同组装对于深入研

究硅基有序介孔分子筛的形成机理,探索及调控其复杂的孔道结构具有重要的意义。

SBA-15分子筛形成过程的介观动力学模拟及实验研究

作者:罗劭娟, 林东强, 陈汇勇, 奚红霞, 钱宇, LUO Shao-juan, LIN Dong-qiang,CHEN Hui-yong, XI Hong-xia, QIAN Yu

作者单位:华南理工大学,化学与化工学院,广东,广州,510640

刊名:

高校化学工程学报

英文刊名:JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES

年,卷(期):2010,24(3)

参考文献(24条)

1.Kresge C T.Leonowicz M E.Roth W J Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism 1992(6397)

2.Beck J S.VartUli J C.Roth W J A new family of mesoporous molecular sieves prepared with liquid crystal templates 1992(27)

3.Zhao D Y.Feng J L.Huo Q S Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores 1998(5350)

4.单佳慧.刘晓勤.崔榕超声对Cu(I)/SBA-15脱硫吸附剂制备和性能的影响 2008(5)

5.张富民.袁超树.王军SBA-15负载杂多化合物在苹果酯合成中的催化性能 2006(6)

6.Zhu S M.Zhou Z Y.Zhang D Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles 2007(17)

7.Kruk M.Jaroniec M.Kim T W Synthesis and characterization of hexagonally ordered carbon nanopipes 2003(14)

8.Wan Y.Zhao D Y On the controllable soft-templating approach to mesoporous silicates 2007(7)

9.Cao X R.Xu G Y.Li Y M Aggregation of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution:DPD simulation study 2005(45)

10.Chen S.Hu G H.Guo C Experimental study and dissipative particle dynamics simulation of the formation and stabilization of gold nanoparticles in PEO-PPO-PEO block copolymer micelles 2007(18-20)

11.刘伟.钱虎军.吕中元.李卓.孙家锺剪切场作用下环形二嵌段共聚物微相形态变化的耗散粒子动力学研究2007(3)

12.张秀青.苑世领.徐桂英.刘成卜水溶液中Pluronic嵌段共聚物聚集行为的介观模拟 2007(2)

13.Li Y Y.Hou T J.Guo S L The Mesodyn simulation of pluronic water mixtures using the "equivalent chain" method 2000(12)

https://www.doczj.com/doc/a27393141.html,m Y M.Gerhard G W Polymer mesoscale simulation of block copolymers in aqueous

solution:parameterisation,micelle growth kinetics and the effect of temperature and concentration morphology 2003(12)

15.Guo S L.Hou T J.Xu X J Simulation of the phase behavior of the (EO)13(PO)30(EO)13(pluronic

L64)/water/p-xylene system using MesoDyn 2002(43)

16.Zhang X Q.Yuan S L.Wu J Mesoscopic simulation on phase behavior of ternary copolymeric solution in the absence and presence of shear 2006(19)

17.Zhao Y R.Chen X.Yang C J Mesoscopic simulation on phase behavior of pluronic P123 aqueous

solution 2007(50)

18.Shi-Ling Yuan.Xiu-Qing Zhang.Kwong-Yu Chan Effects of shear and charge on the microphase formation of P123 polymer in the SBA-15 synthesis investigated by mesoscale simulations 2009(4)

19.Li Y M.Xu G Y.Chen A M Aggregation between xanthan and nonyphenyloxypropyl β-hydroxyltrimethylammonium bromide in aqueous solution:MesoDyn simulation and binding isotherm measurement 2005(47)

20.van Vlimmeren B A C.Maurits N M.Zvelindovsky A V Simulation of 3D mesoscale structure formation

in concentrated aqueous solution of the triblock polymer surfactants (ethylene

oxide)13(propyleneoxide)30(ethyleneoxide)13 and (propyleneoxide)19(ethyleneoxide)33(propylene oxide)19.application of dynamic mean-field density functional theory 1999(3)

21.Yang C J.Chen X.Qiu H Y Dissipative particle dynamics simulation of phase behavior of aerosol

OT/Water system 2006(43)

22.Yuan S L.Cai Z T.Xu G Y Mesoscopic simulation study on phase diagram of the system

oil/water/aerosol OT 2002(3-4)

23.Yuan S L.Cai Z T.Xu G Y Mesoscopic simulation study on the interaction between polymer and C12NBr or C9phNBr in aqueous solution 2003(11)

24.徐如人.庞文琴分子筛与多孔材料化学 2004

本文链接:https://www.doczj.com/doc/a27393141.html,/Periodical_gxhxgcxb201003010.aspx

实验四介观动力学模拟

精品文档 《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau 方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin's equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、. 精品文档 和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进行编辑,以获得满足特殊要求的力场,从而拓展了MS Mesocite的应用范围。 应用Mesocite进行动力学模拟时,最主要的是得到精确的力场。Martini力场,是由Marrink提出的,可以应用于生物分子体系。Martin力场中包括四种主要的力场类型:极性(polar-P)、非极性(apolar-C)、无极性(nonpolar-N)、带电

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

最新实验四:介观动力学模拟_27396

《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、

MS分子动力学模拟具体实施步骤

第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块 3.1.1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示 图3-2 弹出对话框,如图3‐2所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe

原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。 图3-3 图3-4 弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按 钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。 图3-5 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

分子动力学模拟-经验谈

分子动力学攻略 此文为dddc_redsnow发表于biolover上的关于分子动力学的系列原创文章,相当经典与精彩,特此将系列文章整合,一起转载,望学习动力学的新手们共同学习,提高进步,在此特向dddc_redsnow本人表示感谢。 动力学系列之一(gromacs,重发) 在老何的鼓励下,发一下我的gromacs上手手册(我带人时用的,基本半天可以学会gromcas) ###################################################### # Process protein files step by step # ###################################################### pdb2gmx -f 2th_cap.pdb -o 2th_cap.gro -p 2th_cap.top -ignh -ter nedit 2th_cap.top editconf -f 2th_cap.gro -o 2th_cap_box.gro -d 1.5 genbox -cp 2th_cap_box.gro -cs -p 2th_cap.top -o 2th_cap_water.gro make_ndx -f 2th_cap_water.gro -o 2th_cap.ndx genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_All.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_M.itp genpr -f 2th_cap_water.gro -n 2th_cap.ndx -o 2th_cap_C.itp nedit Flavo.itp grompp -f em.mdp -c 2th_cap_water.gro -p 2th_cap.top -o prepare.tpr genion -s prepare.tpr -o 2th_cap_water_ion.gro -np 1 -pq 1 ##################################################### # Minimize step by step # # 1. minimization fixing whole protein # # 2. minimization fixing maincharin of protein # # 3. minimization fixing Ca of protein # # 4. minimization without fix # ##################################################### grompp -np 4 -f em.mdp -c 2th_cap_water_ion.gro -p 2th_cap.top -o minimize_water.tpr mpirun -np 4 mdrun -nice 0 -s minimize_water.tpr -o minimize_water.trr -c minimize_water.gro -e minimize_water.edr -g minimize_water.log & grompp -np 4 -f em.mdp -c minimize_water.gro -p 2th_cap.top -o minimize_sidechain.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain.tpr -o minimize_sidechain.trr -c minimize_sidechain.gro -e minimize_sidechain.edr -g minimize_sidechain.log & grompp -np 4 -f em.mdp -c minimize_sidechain.gro -p 2th_cap.top -o minimize_sidechain_ex.tpr mpirun -np 4 mdrun -nice 0 -s minimize_sidechain_ex.tpr -o minimize_sidechain_ex.trr -c minimize_sidechain_ex.gro -e minimize_sidechain_ex.edr minimize_sidechain_ex.log & grompp -np 4 -f em.mdp -c minimize_sidechain_ex.gro -p 2th_cap.top -o minimize_all.tpr mpirun -np 4 mdrun -nice 0 -s minimize_all.tpr -o minimize_all.trr -c minimize_all.gro -e minimize_allx.edr -g minimize_all.log&

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.doczj.com/doc/a27393141.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.doczj.com/doc/a27393141.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.doczj.com/doc/a27393141.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

实验四:介观动力学模拟

《计算材料学》实验讲义粗粒度模拟 实验名称:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微妙)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进

介观化学体系中的动力学尺度效应

介观化学体系中的动力学尺度效应 侯中怀 辛厚文1 中国科学技术大学化学物理系 安徽合肥 230026 摘要:以生命和表面催化体系为对象,研究了介观化学体系中,内涨落对体系非线性动力学行为的调控作用。发现内涨落可以诱导随机振荡,其强度在体系处于最佳尺度时会出现一个甚至多个极大值,并且在耦合体系中会得到进一步增强,表现为尺度共振效应,尺度选择效应和双重尺度效应,揭示了介观化学体系中尺度效应的新机制。 一 引言 近年来,随着化学研究的对象向生命和纳米体系的深入,介观化学体系动力学规律的研究,已成为受到广泛关注的前沿课题。按照传统的宏观反应动力学理论,体系的状态()i X t 随着时间的演化规律,可以用如下的确定性方程来描述[1,2]: 1()(,...,), (1,...,)i i N dX t f X X i N dt == (1.1) ,其中()i X t 表示第i 种物质在t 时刻的分子数目。但是当体系的尺度V 小到介观尺度时,体系的内涨落显著增长,此时1()((),...,())N t X t X t ≡X 已成为离散的随机变量,宏观确定性方程(1.1)不再有效,体系状态的演化需要用随机动力学方程来描述[3,4]。 化学体系在远离平衡的条件下,由体系中非线性过程的作用,可以形成化学振荡,化学波,化学混沌等多种非线性动力学行为。在生命体系和表面催化等复杂化学体系中,实验上已经发现了大量的非线性动力学行为的例子,如CO 在单晶催化剂表面的反应速率振荡[5],合成基因网络中的蛋白质浓度振荡[6],细胞内及细胞间钙离子浓度的振荡[7],纳米粒子催化剂表面的反应速率振荡等[8]。这些非线性化学现象,对于表面催化和生命体系的实际功能,如基因表达、钙信号的传递、催化活性和选择性等,有着重要的调控作用。传统上,对这些化学振荡行为都是用形如(1.1)的宏观确定性方程来描述。但是如前所述,对于亚细胞水平以及纳米粒子表面进行的化学反应,宏观确定性方程不再适用,而应当代之以介观层次的随机动力学方法。 1 通讯联系人 Email:hxin@https://www.doczj.com/doc/a27393141.html,

泊洛沙姆188 与胆酸聚集形态的介观模拟

中国科学: 化学 2011年第41卷第3期: 500 ~ 508 SCIENTIA SINICA Chimica https://www.doczj.com/doc/a27393141.html, https://www.doczj.com/doc/a27393141.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 增溶性辅料泊洛沙姆188与胆酸聚集形态的介观模拟 刘南岑①, 史新元②, 乔延江②* ① 首都医科大学中医药学院, 北京 100069 ② 北京中医药大学中药信息工程研究中心, 北京 100102 *通迅作者, E-mail: yjqiao@https://www.doczj.com/doc/a27393141.html, 收稿日期: 2010-03-05; 接受日期: 2010-04-11; 网络版发布日期: 2010-09-14 doi: 10.1360/032010-160 摘要为了建立符合中药特点的增溶性药用辅料的筛选与评价方法, 本研究以清开灵注射液为研究载体, 采用介观动力学方法(MesoDyn)研究其难溶活性成分胆酸与增溶性辅料泊洛沙姆188之间的相互作用, 探讨了胆酸对泊洛沙姆188临界胶束浓度的影响及泊洛沙姆188浓度、模拟时间、温度对两者聚集体构型的影响, 并采用实验方法验证了部分模拟结果, 为中药注射剂增溶性辅料的科学应用提供一定基础. 结果表明: 在清开灵注射液中活性成分胆酸的存在下, 泊洛沙姆188的临界胶束浓度范围为0.6%~0.7%, 降低了泊洛沙姆188自身的临界胶束浓度, 为使清开灵注射液中的胆酸(3%)全部增溶, 泊洛沙姆188浓度应为1.7%. 关键词 泊洛沙姆188 胆酸 增溶 介观模拟 聚集体 1 引言 在新药研发过程中, 很多体外药理活性很高的药物为难溶性药物[1], 由于其溶解性能较差, 严重限制了其临床应用. 因此, 改善药物溶解性, 提高其生物利用度成为药学领域亟待解决的重点问题之一[2]. 常用的增溶方法是调节pH值、加入潜溶剂或助溶剂、胶束或混合胶束、包合以及乳化等[3]. 其中, 加入嵌段共聚物增溶的方法范围广、结构稳定、粒度分布窄、具有较低的CMC, 基本上克服了低分子表面活性剂增溶效果不理想或毒性较大的缺点, 是一种用于难溶性药物增溶的新型和重要方法[2]. 增溶性辅料的选择对增溶效果、药物的有效性乃至安全性都有较大的影响, 从而影响药物的研发进程及临床应用. 因此, 需对辅料和药物的相互作用机制进行深入探讨. 采用经典的实验方法, 深入研究增溶体系微观结构及其对制剂性能的影响, 难度较大[4]. 近年来, 越来越多的科研小组采用介观模拟方法进行聚集形态的研究, 如聚合物与表面活性剂之间的相互作用[5~9]、嵌段共聚物的相分离过程[10~12]等, 但是针对中药注射液中难溶性活性成分与增溶性辅料的系统研究还未见报道. 介观模拟在处理时间上大大短于热力学驰豫时间, 特别是介观动力学模拟(MesoDyn)[13]和耗散粒子动力学模拟(DPD)[14], 更接近实际情况, 可模拟非理想行为下胶束的介观形貌[15]. 嵌段聚合物的应用性质很大程度上取决于其系统的介观形貌, 而决定介观形貌的因素很多, 如温度、浓度、组成等. 本文采用介观动力学方法, 探讨增溶性辅料泊洛沙姆188和清开灵注射液中活性成分胆酸之间的相互作用, 初步考察了不同浓度、温度及模拟时间, 嵌段共聚物胶束体系形态的变化, 为增溶性药用辅料筛选方法的建立提供介观层次上的信息, 也为后续研究提供一定的基础.

分子动力学模拟教学教材

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse 势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

相关主题
文本预览
相关文档 最新文档