当前位置:文档之家› 型钢混凝土柱埋入式柱脚埋深计算

型钢混凝土柱埋入式柱脚埋深计算

型钢混凝土柱埋入式柱脚埋深计算

型钢柱埋入式柱脚埋深计算

计算依据:《钢骨混凝土结构技术规程》YB9082-2006 《高层建筑混凝土结构技术规程》JGJ 3-2010 计算参数:

基础混凝土强度:c f =23.12/N mm

型钢参数:b =400mm; w t =35mm ; f t =30mm; h =1000mm,

ss A =1125752mm ,ssy f =2952/N mm ,ss W =167863cm ;s γ=1.0; 根据计算模型:型钢柱最大柱底内力为:

N =65100KN, x M =375KN m ?

0.5x1.0x0.8x23.1x1600x1600/1000b N ==23654.4KN 0

c ss ssy ss N f A ==295x112575=33209.6KN 0c rc c c N f A ==23.1x(1600x1600-112575)=56535.5KN 由6.3.3.1条可得钢骨承担的轴力:

0ss ss b cy c u b

N N N N N N -=

?=-6510023654

33209.633209.656535.523654-?=+-20825.8KN 钢骨承担的弯矩:

y ss s ss ssy M W f γ==1.0x16786x295=4951.8KN m ?;m=1.3 001m ss cy ss ss

cy y ss c N M M N ?? ?=-?=

???2252.2KN m ?

由7.4.3条可得:

钢骨承担的剪力:2/cy ss ss

c n V M H ==2x2252.2/4.0=1126KN

34se w f b t d =+=3x35+4x40=265mm 取柱脚箍筋为:12@100φ四肢

则有:min ,3,sv yv b c c

se A f f f f b s ??=???

min ={28.3,69.3,6.14}=6.142

/N mm ss

c s se b V h b f ==692mm

当钢骨所需埋深:

ss c B se B V h b f =

因此,当埋深大于1673mm 时,基础底板和地脚螺丝根据构造要求设置即可。

根据规范要求,型钢混凝土柱型钢埋深不宜小于型钢高度的2.5倍,本工程型钢截面最大高度为1000mm ,因此型钢在基础内的埋深取2500mm 。

型钢混凝土柱工程施工工艺

型钢混凝土柱施工工艺 一.工艺特点 1.为了解决型钢混凝土框架中的梁、柱节点处型钢与钢筋在空间上的矛盾,以实现柱中主筋自下而上连续、贯通,保证其整体性,在型钢梁、柱加工前需进行钢筋穿孔位置的深化设计;另外,为了模板支设时对拉螺栓的使用,还得进行型钢柱上对拉螺栓眼位置的深化设计。 2.“型钢柱”柱顶柱主筋通过塞焊连接于“型钢柱”柱顶锚固钢板,钢筋自动成为锚板的锚筋,且节省了钢筋的锚固用量。 3.场馆四周型钢混凝土框架结构相对独立,模板支设难度大。施工时需搭设单独的操作架及梁、柱支撑体系。 4.型钢柱高度大,混凝土浇筑时混凝土对模板有很大的侧压力,这对模板方案的选择提出了很高的要求,科学、合理、易操作的模板施工技术对工程的质量、安全、成本等至关重要。 5.型钢梁、柱节点处,“工”字型型钢梁占据了节点处的大量空间、且“王”字型型钢周围主筋密集,混凝土浇筑时下灰困难。 6.部分型钢柱柱间有钢斜撑,柱侧模支设困难。 7.自密实混凝土施工操作工艺简单,劳动强度小,混凝土浇筑质量容易控制。 二.适用范围 本工法适用于大跨度、重荷载和超高层建筑中的型钢混凝土框架结构体系。 三.工艺原理 1.型钢混凝土框架结构利用型钢、钢筋与混凝土协同作用的原理,大大提高了结构的承载力、刚度、抗震性能。 2.在型钢梁和钢支撑节点区域变截面翼缘板上适当开孔,保证了型钢梁柱节点处钢筋的连接质量和节点区域的设计抗力。 3.自密实混凝土在型钢混凝土柱中的应用,解决了型钢框架中钢筋密集部位的混凝

土振捣不密实和振捣困难的施工难题。 4.利用侧压力试验确定了超高型钢柱混凝土浇筑时对模板的侧压力计算公式。 四.工艺流程和操作要点 1.施工工艺流程 施工工艺流程如下图所示: 2.操作要点 ⑴.深化设计 ①.对拉螺栓孔深化设计 根据模板方案设计,型钢柱螺栓竖向间距为900㎜,柱底第一道对拉螺栓距地面200㎜。深化设计时需确定对拉螺栓孔的位置。型钢柱在厂家加工时根据深化设计结果,在型钢柱腹板上开直径为30㎜的圆孔。

结构设计原理

第三章 轴心受力构件 本章的意义和内容:在设计以承受恒荷载为主的多层房屋的内柱及桁架的腹杆等构件时,可近似地按轴心受力构件计算。轴心受力构件有轴心受压构件和轴心受拉构件。本章主要讲述轴心受压构件的正截面受压承载力计算、构造要求,以及轴心受拉构件的受拉承载力计算等问题。 本章习题内容主要涉及: 轴心受压构件——荷载作用下混凝土和钢筋的应力变化规律;稳定系数?的确定;配有纵筋及普通箍筋柱的强度计算;配有纵筋及螺旋形箍筋柱的强度计算;构造要求。 轴心受拉构件——荷载作用下构件的破坏形态;构件的强度计算。 一、概 念 题 (一)填空题 1. 钢筋混凝土轴心受压构件计算中,?是 系数,它是用来考虑 对柱的承载力的影响。 2. 配普通箍筋的轴心受压构件的承载力为u N = 。 3. 一普通箍筋柱,若提高混凝土强度等级、增加纵筋数量都不足以承受轴心压力时,可采用 或 方法来提高其承载力。 4. 矩形截面柱的截面尺寸不宜小于 mm 。为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,常取≤l 0 ,≤h l 0 (0l 为柱的计算长度,b 为矩形截面短边边长,h 为长边边长)。 5.《混凝土结构设计规范》规定,受压构件的全部纵筋的配筋率不应小于 ,且不宜超过 ;一侧纵筋的配筋率不应小于 。 6.配螺旋箍筋的钢筋混凝土轴心受压构件的正截面受压承载力为 sso y s y cor c u 2(9.0A f A f A f N α+''+=),其中,α是 系数。 (二)选择题 1. 一钢筋混凝土轴心受压短柱,由混凝土徐变引起的塑性应力重分布现象与纵筋配筋率ρ'的关系是:[ ] a 、ρ'越大,塑性应力重分布越不明显 b 、ρ'越大,塑性应力重分布越明显 c 、ρ'与塑性应力重分布无关 d 、开始,ρ'越大,塑性应力重分布越明显,但ρ'超过一定值后,塑性应力重分布反

QC成果-提高型钢混凝土柱混凝土施工质量

领 二0一六年六月

提高型钢混凝土柱混凝土施工质量 浙江省建工集团有限责任公司省职工QC小组 一、工程概况 本工程位于杭州市西湖区学院路107号,建筑面积36648m2(其中地上为26305 m2,地下为10343 m2)主楼16层,高度为62.9m;裙楼4层高度为28.2m;地下2层,深12.65m- 15.65m,部分空间设置夹层。其中裙楼为27m×31.2m大跨度型钢混凝土结构,其框架体系由1000mm×1200 mm型钢混凝土柱和600mm×1400mm、600mm×1800mm、600mm×1500mm型钢混凝土梁组成。柱钢筋:14C28+1 0C25,箍筋C16/12@100。高8.1m。6.6m。5.7m。 二、QC小组活动组织 项目部在以往的工程施工中,通过积极开展全面质量管理活动,取得了良好的质量效果,为了进一步激发广大专业人员的积极性和创造性,通过群众性质量管理活动为工程建设提供保证,项目部在集团注册登记成立了QC小组。小组成员自愿参加,其中有管理人员,也有技术人员,一线班组人员。 1、小组概况 小组名称浙江省职工服务中心项目QC小组 课题名称提高型钢混凝土柱混凝土施工质量 小组类型现场型 课题号ZJJGQC16-09注册号 ZJJGQC16-09 小组成员9人组长张叶锋 QC教育时间48小时以上成立时间2015年10月10日 活动时间2015年10月10日~2016年5月30日 制表:谢立志复核:张叶锋制表日期:2015年10月12日 2、小组活动计划

3、参加人员序号姓名年龄性别文化程度职称职务组内分工1张叶锋35男本科工程师项目经理全面负责2谢立志30男本科助工项目总工技术负责3陆伟思31男大专助工质量员组织协调活动实施4赵谭泉31男大专助工施工员活动实施5楼槟槟30男本科助工安全员活动实施6马妙根52男高中助工材料员活动实施7杨兴兵40男高中技师木工班长活动实施8叶仲丙41男高中技师泥工班长活动实施9 蔡联宝 41 男 高中 技师 钢筋工班长 活动实施 制表:谢立志 复核:张叶锋 日期:2015年10月12 日三、选择课题 1、选题原则 经过小组讨论,确定了课题选择的三条原则:在本工程施工应用具有独特性和重要性;能为本工程“钱江杯”目标的最终实现提供有力保证;能解决本工程施工中急需解决的问题。 工程难点、亮点对比表 注: 5分 3分 1分 制表:谢立志 复核:张叶锋 日期:2015年10月21日 2、课题确定:确定QC 小组活动课题为 提高型钢混凝土柱混凝土施工质量。 3、选题理由

型钢埋入式柱脚(刚性固定)

软件主要针对型钢混凝土埋入式刚性柱脚节点,计算主要遵循《钢结构连接节点设计手册》(第二版)及《钢骨混凝土结构设计规程》(YB 9082-2006)中的相关条文及规定。 《钢结构连接节点设计手册》(第二版)中埋入式柱脚相关技术内容,主要针对钢柱做埋入式柱脚节点。设计注意事项 刚性固定埋入式柱脚时直接将钢柱埋入钢筋混凝土基础或基础梁的柱脚。其埋入办法:一是预先将钢柱脚按要求组装固定在设计标高上,然后浇灌基础或基础梁的混凝土;另一种是预先按要求浇灌基础或基础梁的混凝土,在浇灌混凝土时,按要求留出安装钢柱脚用的插入杯口,待安装好钢柱脚后,再用混凝土强度等级比基础高一级的混凝土灌实。通常情况下,前一种方法对提高和确保钢柱脚和钢筋混凝土基础或基础梁的组合效应或整体刚度有利,所以在工程实际中多被采用。 在埋入式柱脚中,钢柱的埋入深度是影响柱脚的固定度、承载力和变形能力的重要因素,而且有时对于中柱、边柱和角柱,其埋入深度也不尽相同,这就需要选择易于进行钢筋混凝土补强的埋入深度来处理。 为防止钢柱的局部压屈和局部变形,在钢柱向钢筋混凝土基础或基础梁传递水平力处压应力最大值的附近,设置水平加劲肋是一个有效的补强措施;对箱型截面柱和圆管形截面柱处设置水平加劲肋的环形横隔板外,在箱内和管内浇灌混凝土也将获得良好的效果。 为防止基础或基础梁中混凝土早期的压坏和剪坏,应配置补强钢筋,合理地确定钢柱周边的钢筋混凝土保护层厚度及其配筋是很重要的。 在中柱、边柱和角柱中,其钢筋混凝土保护层厚度有时是不尽一致,特别在边柱和角柱的柱脚中,对没有设置基础梁的一侧,钢柱翼缘面处的钢筋混凝土保护层厚度;中柱不得小于180mm;边柱、角柱的外侧不宜小于250mm。 配置在钢柱埋入部分中的钢筋,出基础或基础梁应有的配筋外,尚应在钢柱周边增设补强垂直纵向主筋、架立筋、箍筋、顶部加强箍筋、基础梁主筋在钢柱埋入部分水平方向弯折处的加强箍筋。

柱脚节点计算

M N ???--2 233102.20361027.1416

mm f M t 7.15205 8495 66=?=≥ 满足要求 取,30mm t ∴ ③区段内底板下平均反力 2min max /45.12 85 .004.22 mm N =+= += σσσ ③区按三边支承板:mm a 178 2= mm b 2002= 124.1178 200 22==a b 查表得118 .0=β N a M 1260717846.3115.022 22=??==σβ mm y 6903 480 100950=- -= 锚拴受力为 KN y Na M Nt 25.680690 31592.36100.4813=?-?=-= 采用4个M45的锚拴,Nt=182.8*4=731.2KN 满足要求 2、Z2柱脚

0.1=c kN 82.954 cc c f βcc c f β= 查表得060.0=β N a M 2368026562.5060.022 22=??==σβ mm f M t 9.21295 23680 66=?=≥ 满足要求 取,30mm t ∴ ③区按三边支承板:mm a 178 2= mm b 2002= 124.1178 200 22==a b 查表得118.0=β N a M 2047717862.5115.022 22=??==σβ mm f M t 4.20295 20477 66=?=≥ 满足要求 取,30mm t ∴

mm y 7493 100950=- -= 锚拴受力为 KN N 14422.1/24.10482/36.1138=+= 223/6.9/77.4756 400101442mm N mm N bl N c <=??==σ ○ 1区段内底板下平均反力

型钢混凝土柱施工工法

型钢混凝土柱施工工法 中油吉林化建工程有限公司 苏畅宋志宇王晓龙 1.前言 中海石油炼化有限责任公司惠州炼油二期项目中的30万吨/年LLDPE装置中的脱气和挤压造粒厂房,整体结构下部为钢筋混凝土框架,厂房屋面以上为钢结构构架,构架上安装工艺管道及设备,钢筋混凝土与上部钢结构构架之间过渡区采用型钢混凝土柱设计方案。该设计方案充分考虑了结构整体安全、稳定、耐久等要求,因此目前各领域建设项目中得到广泛应用,但由于型钢混凝土柱传统施工工艺操作难度大,且措施用材料必须连接或穿过主体结构,影响主体结构稳定性,项目部组织设计、优化新的施工方案,克服了施工难题,最终圆满的完成了该项施工任务。 2.工法特点 2.1型钢混凝土柱的施工工法,应结合钢筋混凝土结构和钢结构柱施工特点,在传统施工工艺基础上优化、创新,着力解决以下施工重点、难点问题。 2.2型钢混凝土柱中内箍筋应穿过十字钢柱,纵向主筋应穿过结构层钢梁,因此必须保证钢柱、钢梁预制过程中开孔精度,细化开孔、穿筋方案。 2.3型钢混凝土柱侧模板加固不同于钢筋混凝土柱侧模板加固,因为十字钢柱位于型钢混凝土柱中心,用于加固模板的对拉螺栓不能从柱中间穿过。传统工艺一般采用单头螺栓分别焊接在十字钢柱四面的栓钉上拉紧的方法,但是该方法不能应用于梁、柱节点无栓钉区域,为此设计了新的模板加固方案,有效的解决了该难题。 2.4型钢混凝土柱截面尺寸大,振捣施工必须计算振捣设备影响范围,才能保证混凝土振捣密实,并采用分层浇筑混凝土的施工方案,保证混凝土的施工质量。 3.适用范围 适用于设计文件中要求采用型钢混凝土结构的柱施工,包括型钢混凝土柱中钢结构的制作、安装施工,型钢混凝土柱钢筋、模板制作、安装及混凝土浇筑施工。 4.工艺原理 型钢混凝土在结构特性上充分发挥了钢筋混凝土结构和钢结构各自的优势,发展前景广阔。然而任何新技术的应用,都应建立在方案可行的基础上,而型钢混凝土的施工工艺可以充分借鉴钢筋混凝土结构和钢结构施工工艺,将二者工艺重新组合优化,合理安排制作、运输、安装、浇筑等工艺流程,产生型钢混凝土结构特有的施工工艺,因此具备了很高的应用性。同时也是型钢混凝土柱工艺原理的形成依据。 5.施工工艺流程及操作要点 5.1施工工艺流程 施工准备→钢柱预制→钢柱安装→竖向受力钢筋安装→箍筋安装→绑扎钢筋→安装模板固定架→模板安装→模板加固→浇筑混凝土→养护→验收 5.2操作要点

大直径钢管混凝土柱柱脚安装施工工法

大直径钢管混凝土柱柱脚安装施工工法 工法目录 第一章前言 第二章工法特点 第三章适用范围 第四章工艺原理 第五章施工工艺流程及操作要点 第六章材料及主要机具设备 第七章质量控制 第八章安全措施 第九章环保措施 第十章效益分析 第十一章应用实例

大直径钢管混凝土柱柱脚安装施工工法 1 前言 随着建筑技术的发展和社会进步,大直径钢管混凝土柱因结构稳定性好、刚度大、建筑美学效果好等特点,作为主要承重构件被越来越多的应用于建筑工程中。但由于安装精度要求高、施工难度大,对工程的质量及工期具有重要影响,尤其是柱脚的安装质量更为突出,如何采取安全、优质、经济、高效的措施加以保证,是施工技术管理的一个重要课题。 本工法所述关键技术,利用钢板带定位环及普通脚手架钢管作为柱脚锚栓承重、定位构件,利用单螺母进行柱脚标高的调节、控制,可有效保证柱脚安装的质量,降低措施投入,提高施工效率,社会效益明显,具有广泛推广的应用价值。 现以重庆新闻传媒中心工程为例对本工法进行介绍。 2工法特点 2.1 采用钢板带定位环技术,使安装更精准快捷,施工质量更可靠。 2.2 利用普通脚手架钢管作为柱脚锚栓定位的主要承重、定位构件,固定牢靠,取材方便,经济环保。 2.3 通过单螺母调节并控制钢管混凝土柱柱脚标高,精度高,操作便捷,劳动强度低,绿色环保。 3 适用范围 本工法适用于工业与民用建筑中大直径钢管混凝土柱柱脚的施工。 4 工艺原理 利用钢板带作为定位环,对钢管柱柱脚锚栓的位置进行定位,保证位置精确,而后采用钢管支架固定钢板带的方式进行钢管柱柱脚锚栓的空间定位,使之形成一个独立稳定的结构,待柱脚下部混凝土浇筑完成后,通过锚栓中单螺母调节并控制柱脚的标高,保证钢管混凝土柱柱脚的安装精准度。

矩形钢管混凝土柱计算公式

矩形钢管混凝土柱计算 矩形钢管混凝土柱计算 李树海陈志华王小盾刘妍 天津大学建筑工程学院,天津300072 摘要:作为住宅钢结构研究项目的一个子,课题本文介召日本矩形钢管混凝土柱允许承载力和极限承载力的计算公式,在此基础上,按照相关理论,推导出矩形钢管混凝土柱的设计计算公式,同时,指出进一步要解决的问题。 关键词:矩形钢管混凝土柱 一引言 钢结构住宅具有许多建筑设计和施工上的优越性,将成为我国和世界今后住宅结构发展的方向,因此,对它的理论计算和实际应用的多方面的探索越来越受到各方面的关注。我国在这方面的研究起步比较晚,有许多

研究方面的空白,尤其是对计算理论公式的推导和研究都相对不足,这样,我们必定要借鉴其它发达国家的研究成果,加快我国的住宅钢结构方面的发展。本文在分析日本矩形钢管混凝土柱的计算公式的基础上,按照相关理论,推导了矩形钢管混凝土柱的计算公式,供结构计算参考。 二日本结构规范发展简介 钢管混凝土的设计方法由日本建筑学会第一次在“管材钢—混凝土组合结构计算标准(1967)”提出,共包括三种截面类型,分别为:外包,填充,外包加填充。在1980改版后,加入了矩形钢管混凝土的内容。改版后的内容被收入日本建筑学会第四版《钢骨混凝土计算规范(1987)》。在1997年,《钢管混凝土设计和施工指针》出版,其包括了自《钢骨混凝土计算规范(1987)》出版后十年内对钢管混凝土研究的新成果。《指针》给出了受压构件、柱和桁架杆件等允许和极限强度和变形能力的计算方法。该《指针》重点有二,一是在计算圆截面受压构件和柱的强度时考虑了钢管对混凝土的影响(环箍效应);二是给出了长柱极限强度的计算方法。另外,《指针》还给出了钢管混凝土的施工方法和实际案例。 2001年,《钢骨混凝土计算规范》第五版出版,包括了高强材料应用的内容,《钢骨混凝土计算规范》第五版的单位系统从重力单位改为国际标准(SI)单位体系,并且增加了解释的内容。这版《钢骨混凝土计算规

钢骨柱柱脚的预埋方案

钢骨柱柱脚螺栓的预埋施工方案 一、钢骨柱柱脚螺栓的预埋 1、螺栓的加工 (1)项目施工部门根据图纸和施工进度安排进场时间。 (2)项目质量部门对预埋件的加工精度进行验收,根据钢构要求,螺丝丝扣加长50mm。 2、预埋件的测量定位控制线应单独设置,每个埋件的控制线都应从结构控制轴线单独引测,在已浇筑的混凝土或已固定的钢筋表面做好控制标记。 3、预埋件在安装前做好中心定位标记,便于安装时的测量校正。 4、预埋件锚筋与结构主筋位置发生冲突时,可以适当调整锚筋位置,保证埋件安装位置。当预埋螺杆与主筋位置发生冲突时,尽量调整主筋位置,保证螺杆按设计位置就位。 5、柱脚预埋螺栓固定 (1)根据场地坐标控制点在单体周围设置控制桩位。 (2)从单体控制桩拉麻线进行初定位,钢筋工程施工的同时安放预埋螺栓。预埋螺栓采用3mm厚定位钢板进行定位,3mm定位钢板和预埋钢板尺寸相同,钻相同的螺孔直径d=35mm,定位钢板底面及侧面隔离剂,标高教所浇砼顶板高5mm,四周和板筋焊接牢固,螺栓根部加设L50×5角钢与底板钢筋电焊固定,调整好水平和垂直度后与钢筋进行点焊连接。 (3)在钢筋工程结束后,对模板进行初步加固,然后将梁钢筋固定,具体方法为纵横轴方向互相焊接固定,确保不位移。 (4)采用经纬仪对螺栓位置进行精确坐标定位。 (5)采用水准仪对螺栓位置进行精确水准定位,水准控制点来自场内水准控制点。 (6)螺栓和模板加固后,对螺栓进行校核。 (7)对螺栓进行复核,发现不合格的重复上述校核和加固工作。 (8)螺栓定位控制精度2mm。 (9)在浇捣砼时同分包方、监理办理验收手续,防止单面下料、单面振捣,合理安排砼的浇捣流程,使其对钢筋的影响减少到最少。同时,必须对锚栓顶部螺

刚接柱脚计算书

端部设计类型: 箱形柱刚接柱脚(1); 此类端部个数:4 节点抗震设计抗震调整系数按<建筑抗震设计规范(GB 50011-2001)>取值 端部所在节点号: 113; 111; 524; 526; 端部所在单元号: 56; 55; 886; 887; 截面名称:焊接矩形截面□500×400×16×16; 相关杆件单元: 截面名称:; 下面的计算结果由这4个端部在计算模型中所有荷载组合中轴力,剪力,弯矩的最大,最小值经计算得到 构件抗拉强度(N/mm2):310.00 构件抗剪强度(N/mm2):180.00 焊缝抗剪强度(N/mm2):200.00 钢材牌号: Q345 接触面处理方法: 喷砂 高强螺栓类型: 摩擦型 螺栓等级: 10.9级 锚栓信息: 直径d0(mm): 30 锚栓排列: 3 行 3 列 行间距: 775.00 列间距: 500.00 底板抗拉强度设计值(N/mm2):265.00 锚栓抗拉强度设计值(N/mm2):180.00 砼轴心抗压强度设计值(N/mm2):11.90 锚栓最大拉应力(N/mm2):8.96 砼最大压应力(N/mm2): 3.86 砼轴心抗压强度设计值提高系数:1.22 最大水平剪力(N):128925.03 抗剪承载力(N):452293.82 底板区格最大弯矩(N.mm): 93563.31 连接板信息: 板号板长(mm) 板宽(mm) 板厚(mm)

1 1670 1120 46 板号板长(mm) 板宽(mm) 板厚(mm) 2 430 360 36 板焊缝高度(mm): 14 板号板长(mm) 板宽(mm) 板厚(mm) 3 430 360 36 板焊缝高度(mm): 14 端部设计类型: 箱形柱刚接柱脚(1); 此类端部个数:21 节点抗震设计抗震调整系数按<建筑抗震设计规范(GB 50011-2001)>取值 端部所在节点号: 115; 121; 123; 135; 143; 147; 151; 155; 161; 131; 145; 149; 153; 157; 159; 163; 179; 181; 183; 165; 185; 端部所在单元号: 57; 60; 61; 66; 70; 72; 74; 76; 79; 895; 71; 73; 75; 77; 78; 80; 88; 89; 90; 81; 91; 截面名称:焊接矩形截面□350×350×10×10; 相关杆件单元: 截面名称:; 下面的计算结果由这21个端部在计算模型中所有荷载组合中轴力,剪力,弯矩的最大,最小值经计算得到 构件抗拉强度(N/mm2):310.00 构件抗剪强度(N/mm2):180.00 焊缝抗剪强度(N/mm2):200.00 钢材牌号: Q345 接触面处理方法: 喷砂 高强螺栓类型: 摩擦型 螺栓等级: 10.9级

矩形钢管混凝土柱计算【最新版】

矩形钢管混凝土柱计算 钢结构住宅具有许多建筑设计和施工上的优越性,将成为我国和世界今后住宅结构发展的方向,因此,对它的理论计算和实际应用的多方面的探索越来越受到各方面的关注。我国在这方面的研究起步比较晚,有许多研究方面的空白,尤其是对计算理论公式的推导和研究都相对不足,这样,我们必定要借鉴其它发达国家的研究成果,加快我国的住宅钢结构方面的发展。本文在分析日本矩形钢管混凝土柱的计算公式的基础上,按照相关理论,推导了矩形钢管混凝土柱的计算公式,供结构计算参考。 钢管混凝土的设计方法由日本建筑学会第一次在“管材钢-混凝土组合结构计算标准(1967)”提出,共包括三种截面类型,分别为:外包,填充,外包加填充。在1980改版后,加入了矩形钢管混凝土的内容。改版后的内容被收入日本建筑学会第四版《钢骨混凝土计算规范(1987)》。在1997年,《钢管混凝土设计和施工指针》出版,其包括了自《钢骨混凝土计算规范(1987)》出版后十年内对钢管混凝土研究的新成果。《指针》给出了受压构件、柱和桁架杆件等允许和极限强度和变形能力的计算方法。该《指针》重点有二,一是在计算圆截面受压构件和柱的强度时考虑了钢管对混凝土的影响(环箍效应);二是给出了长柱极限强度的计算方法。另外,《指针》还给出了钢管混凝土的施工方法和实际

案例。2001年,《钢骨混凝土计算规范》第五版出版,包括了高强材料应用的内容,《钢骨混凝土计算规范》第五版的单位系统从重力单位改为国际标准(SI)单位体系,并且增加了解释的内容。这版《钢骨混凝土计算规范》包含了1997年《钢管混凝土设计和施工指针》的内容和其出版后几年内的研究新成果。在原《指针》的基础上,新版《钢骨混凝土计算规范》在没有损害计算精度的条件下简化了长柱的设计公式。日本钢管混凝土结构设计的基本原理发表于“钢管混凝土--国际规范和实践比较”ASCCS会议报告,1997.9,第99页至第116页。 (一) 矩形钢管混凝土柱允许承载力 1. 矩形钢管混凝土柱轴心受压允许承载力 2. 矩形钢管混凝土柱受轴力和单向弯矩共同作用下的允许承载力 3. 矩形钢管混凝土柱受轴力和双向弯矩作用允许承载力 (二) 矩形钢管混凝土柱极限承载力 1.矩形钢管混凝土柱轴心受压极限承载力

型钢混凝土构造要求1

11.3型钢混凝土构件的构造要求 11.3.1型钢混凝土梁应满足下列构造要求: 1混凝土强度等级不宜低于C30,混凝土粗骨料最大直径不宜大于25mm;型钢宜采用Q235及Q345级钢材; 2梁纵向钢筋配筋率不宜小于0.30%; 3梁中型钢的保护层厚度不宜小于100mm,梁纵筋与型钢骨架的最小净距不应小于30mm,且不小于梁纵筋直径的1.5倍; 4梁纵向受力钢筋不宜超过二排,且第二排只宜在最外侧设置; 5梁中纵向受力钢筋宜采用机械连接。如纵向钢筋需贯穿型钢柱腹板并以90°弯折固定在柱截面内时,抗震设计的弯折前直段长度不应小于0.4倍钢筋抗震锚固长度laE,弯折直段长度不应小于15倍纵向钢筋直径;非抗震设计的弯折前直段长度不应小于0.4倍钢筋锚固长度la,弯折直段长度不应小于12倍纵向钢筋直径; 6梁上开洞不宜大于梁截面高度的0.4倍,且不宜大于内含型钢高度的0.7倍,并应位于梁高及型钢高度的中间区域;

7型钢混凝土悬臂梁自由端的纵向受力钢筋应设置专门的锚固件,型钢梁的自由端上 宜设置栓钉。 11.3.2型钢混凝土梁沿梁全长箍筋的配置应满足下列要求: 1箍筋的最小面积配筋率应符合本规程第6.3.4条第1款和第6.3.5条第4款的规定,且不应小于0.15%; 2梁箍筋的直径和间距应符合表11.3.2的要求,且箍筋间\距不应大于梁截面高度的1/2。抗震设计时,梁端箍筋应加密,箍筋加密区范围,一级时取梁截面高度的2.0倍,二、三级时取梁截面高度的1.5倍;当梁净跨小于梁截面高度的4倍时,梁全跨箍筋应加密设置。 11.3.3当考虑地震作用组合时,钢/混凝土混合结构中型钢混凝土柱的轴压比不宜大于表11.3.3的限值。 11.3.4型钢混凝土柱的轴压比可按下式计算: μN=N/(fcA+faAa)(11.3.4) 式中

柱脚计算书

设计结果文件:StsLink.out 日期:2015/05/27 时间:17:37:44 ------------------------------------------------------------------------------------ 圆管固接柱脚连接类型: 外露式柱脚无锚栓支承托座 柱编号= 1 采用钢截面: 圆管377X12 柱脚混凝土标号: C30 柱脚底板钢号: Q235 柱脚底板尺寸B x H x T = 650 x 650 x 20 锚栓钢号: Q235 锚栓直径D = 27 锚栓垫板尺寸B x T = 70 x 14 环向锚栓数量= 8 柱底混凝土承压计算: 控制内力: N=50.00 kN,Mx=30.00 kN*m,My=50.00 kN*m 柱脚混凝土最大压应力σc:2.31 N/mm2 柱脚混凝土轴心抗压强度设计值fc:14.30 N/mm2 σc=2.31 <= fc=14.30,柱底混凝土承压验算满足。 锚栓抗拉承载力校核: 控制内力: N=50.00 kN,Mx=30.00 kN*m,My=50.00 kN*m 单个锚栓所受最大拉力Nt:46.00 kN 单个锚栓抗拉承载力设计值Ntb:64.32 kN Nt=46.00 <= Ntb=64.32,锚栓抗拉承载力验算满足。 柱底板厚度校核(按混凝土承压最大压应力计算): 区格1,圆管内侧圆形板,计算底板弯矩:6240.59 N*mm 区格2,底板内圈三边支撑板,计算底板弯矩:3534.45 N*mm 区格3,底板外侧悬挑板,计算底板弯矩:486.10 N*mm 底板厚度计算控制区格:区格1 底板反力计算最小底板厚度: Tmin1 = 14 mm 锚栓拉力(悬臂)计算最小底板厚度: Tmin2 = 16 mm 柱底板构造最小厚度Tmin = 20 mm (最后控制厚度应取以上几者的较大值并规格化后的厚度!) 柱脚底板厚度T = 20 mm 底板厚度满足要求。

桩基钢筋笼的螺旋箍筋计算

螺旋箍筋总长度 =n×{√b^2+[π×(D-2×15)]^2}+2×π×(D-2×15)+2×6.25×d L: 螺旋筋的高度 n:螺旋筋的圈数 n=L/b b:螺旋筋之间的距离,螺距 D:混凝土柱的直径 d:螺旋筋的直径 螺旋筋混凝土保护层15,螺旋筋当中,上下各有一个水平圈,此量必计算在内。再加两个弯钩长度,就为螺旋筋总的钢筋用量。还有搭接长度根据现场施工情况增加。 其实就是螺旋展开是一个三角形的道理。 可采用勾股弦定理简化算式: L=H平方+(πDn)平方,算出得式后,再进行开平方。 式中: L—为螺旋箍筋的长度 H—为螺旋箍筋起点到终点的垂直高度 π——为圆周率 D—为螺旋箍筋的直径 n—为螺旋箍盘的缠绕圈数 1、螺旋箍筋计算方法:在圆柱形构件(如图形柱、管柱、灌注桩等)中,螺旋箍筋沿主筋圆周表面缠绕,其每米钢筋骨架长的螺旋箍筋长度,可按下式计算:l=2000лa/p×[1-e^2/4-3/64(e^2)^2 –5/256(e^2)^3] 其中 a=√(p^2+4D^2)/4 e2=(4a^2-D^2)/( 4a^2) 式中 l——每1m钢筋骨架长的螺旋箍筋长度(㎜); p——螺距(㎜); л——圆周率,取3.1416; D——螺旋线的缠绕直径;采用箍筋的中心距,即主筋外皮距离加上一个箍筋直径(㎜)。 公式中括号内最后一项5/256(e^2)^3数值很小,一般在计算时略去。

2、螺旋箍筋简易计算方法 方法一,螺旋箍筋长度亦可按以下简化公式计算: l=1000/p×√(лD)^2+p^2+лd/2 式中 d——螺旋箍筋的直径; 其他符号意义同前。 方法二,对于箍筋间距要求不大严格的构件,或当p与D的比值较小(p/d﹤0.5)时,箍筋长度也可以按下面近似公式计算: l=n√p^2+(лD)^2 式中 n——螺旋圈数; 其他符号意义同前。“ ^ ”表示次方的意识。 螺旋箍筋计算方法螺旋箍筋长度亦可按以下简化公式计算: l=1000/p×√(лD)^2+p^2+лd/2 式中 d——螺旋箍筋的直径; 螺旋箍筋计算方法:在圆柱形构件(如图形柱、管柱、灌注桩等)中,螺旋箍筋沿主筋圆周表面缠绕,其每米钢筋骨架长的螺旋箍筋长度,可按下式计算: l=2000лa/p×[1-e^2/4-3/64(e^2)^2 –5/256(e^2)^3] 其中 a=√(p^2+4D^2)/4 e2=(4a^2-D^2)/( 4a^2) 圆型箍筋重=(圆箍周长+钩长)*根数*单位重 螺旋箍筋重=螺旋筋长*单位重 =√[(螺距)的平方+(2*3.14*螺旋半径)的平方]/螺距*单位重 注螺距和单位重在根号外面 1、螺旋箍筋计算方法:在圆柱形构件(如图形柱、管柱、灌注桩等)中,螺旋箍筋沿主筋圆周表面缠绕,其每米钢筋骨架长的螺旋箍筋长度,可按下式计算:l=2000лa/p×[1-e^2/4-3/64(e^2)^2 –5/256(e^2)^3] 其中 a=√(p^2+4D^2)/4 e2=(4a^2-D^2)/( 4a^2) 式中 l——每1m钢筋骨架长的螺旋箍筋长度(㎜); p——螺距(㎜); л——圆周率,取3.1416; D——螺旋线的缠绕直径;采用箍筋的中心距,即主筋外皮距离加上一个箍筋直径(㎜)。 公式中括号内最后一项5/256(e^2)^3数值很小,一般在计算时略去。 2、螺旋箍筋简易计算方法 方法一,螺旋箍筋长度亦可按以下简化公式计算: l=1000/p×√(лD)^2+p^2+лd/2 式中 d——螺旋箍筋的直径; 其他符号意义同前。 方法二,对于箍筋间距要求不大严格的构件,或当p与D的比值较小(p/d﹤0.5)时,箍筋长度也可以按下面近似公式计算: l=n√p^2+(лD)^2

劲钢(型钢)柱结构施工方案.

错误!未找到引用源。劲钢结构施工方案 错误!未找到引用源。劲钢结构概况 型钢混凝土组合结构是指在混凝土内配置了型钢和普通钢筋的结构, 本工程钢骨柱采用了十字钢骨和箱型钢骨两种; 钢骨梁有单钢骨和双钢骨两种, 并与体外预应力配套使用,达到了降低梁高的目的。钢管混凝土结构是在型钢柱 (箱型柱和钢管柱内灌注自密实免振捣混凝土;劲性钢筋混凝土结构是在表面布满长剪力钉的型钢结构的外面包裹一层钢筋混凝土外壳。 错误!未找到引用源。型钢混凝土组合结构特点 型钢混凝土组合结构是指在混凝土内配置了型钢和普通钢筋的结构, 本工程钢骨柱采用了十字钢骨和箱型钢骨两种; 钢骨梁有单钢骨和双钢骨两种, 并与体外预应力配套使用,达到了降低梁高的目的。钢管混凝土结构是在型钢柱 (箱型柱和钢管柱内灌注自密实免振捣混凝土;劲性钢筋混凝土结构是在表面布满 90mm 长剪力钉的型钢结构的外面包裹一层钢筋混凝土外壳。这种结构具有钢结构和混凝土结构的双重优点: a 型钢不受含钢率限制,刚度大,承载能力高。 b 型钢构件截面积小,在结构承载力允许的条件下可以增加使用面积和层高,其经济效益可观。 c 型钢砼柱结构的延展性高,具有优良的抗震性能。 d 型钢砼柱结构耐久性和耐火性能优良。 e 不必等待柱芯混凝土达到一定强度就可继续安装上一个层次的钢结构构件,有效地缩短了建设工程的工期。 f 钢筋安装工程在钢构件施工完毕后进行,钢筋密集、钢构件表面布满剪力钉,钢筋安装非常困难。

g 竖向结构模板安装要避免碰撞已经施工完毕的密集的型钢梁, 钢柱部位无法设置对拉螺栓,模板设计要全面考虑。 h 竖向结构模板与型钢柱间仅有 150mm 空隙,且钢筋和栓钉非常密集,模板上口分布有型钢梁,对混凝土的施工提出更高的要求。 错误!未找到引用源。工艺流程 绑扎底板钢筋、安装钢柱柱脚埋件→浇筑底板混凝土→安装型钢柱→柱脚灌浆→安装型钢梁→浇筑柱芯混凝土→安装墙、柱钢筋→安装墙、柱模板→浇筑竖向结构混凝土→拆除竖向结构模板→安装水平结构模板→安装梁、板钢筋→浇筑梁、板混凝土→······→安装型钢柱→安装型钢梁 错误!未找到引用源。材料准备 (1柱脚无收缩灌浆料 第一节钢柱与底板间设计有 50mm 缝隙,用无收缩灌浆料填充,要求此种灌浆料的流动性相当高,扩展度不小于 500mm 。 (2高强自密实微膨胀低收缩混凝土 钢管混凝土及箱型钢骨内部需要浇筑自密实免振捣混凝土,要求水胶比 0.26、水灰比 0.33、砂率 0.4%,严格控制混凝土扩展度≥500mm ,坍落度为 220-240mm 。柱内衬板构造是否影响混凝土自密实、高抛混凝土是否产生离析、如何改善自密实混凝土的工作性能, 是保证施工质量的关键问题, 混凝土配比时原材料要求严格: 水泥:选用北京市建委备案的知名品牌 42.5R 普通硅酸盐早强水泥。 砂:质地坚硬、级配良好的 B 类低碱活性天然Ⅱ区中砂。含泥量不大于 1%、细度模数:2.5~3.2。

钢管混凝土施工方案

钢管混凝土柱的施工方案 一、工程概况 钢管混凝土柱设计直径为720mm。钢管壁厚一2~10层为14mm,11~30层为12mm,采用Q235A钢板按设计尺寸卷制。按现场施工条件,确定2个楼层作为一个组合件依次对接,钢管制作长度~8.4m。 二、钢管混凝土柱施工 1.钢管柱的制作 钢管柱要求各部件的制作、焊接的尺寸、位置、标高准确。为减少现场工作量,保证质量,钢管及各部件制作、组焊集中在工厂完成,经检验合格运至现场安装。 2.钢管柱与基础底板的连接 柱基础设计为在混凝土底板面下落300mm预埋外径1170mm、内径620mm钢板圆环(图 5-53)。为保证位置、标高的准确及平整度小于2mm要求,在底板钢筋绑扎完后,按预埋板规格做成一个稳定的支架,按垫层上放线位置直接落于垫层。在预埋钢板上钻洞,让锚固筋穿过孔洞,调整标高及板面平整度后,进行塞焊焊接。底板混凝土浇筑时,两侧对称浇筑,防止位移。 3.钢管柱的现场安装 (1)吊装设备与方法吊装利用现场施工用的TL-150型塔式起重机,塔式起重机臂长50m,钢管柱吊装在40m范围内,单根柱最大重量,塔式起重机起重量能满足要求,起吊方法采用两点捆绑垂直起吊。 (2)首节钢管柱的安装安装前先清理预埋钢板面,按柱安装方向(应与柱身划线方向吻合)划出十字线,在线上标出柱半径,焊定位板。安装时,调整柱身划线与预埋钢板划线重合,柱外皮与柱半径标点重合后,塞紧定位板。利用顶拉杆调整垂直度,顶拉杆一端焊于预埋钢板上,一端焊于柱身钢管上。垂直度调整好后,将柱脚与肋板焊牢。 (3)钢管柱现场对接钢管柱从地下室至顶层无变径,只存在同径连接。将吊起的上节柱按母线位置缓慢地插入下节柱内衬管上,上下线稍有偏移时,可采用特制厚钢板抱箍钳调整。上节柱插入内衬管过程中,由于内衬管与钢管内壁局部存在摩擦,导致就位困难,可在上下柱接口处设顶拉杆,相互垂直方向各设1根,待顶拉到位后,再利用顶拉杆调整垂直度。符合要求后,焊接防变形卡板(图5-54)。卡板对称设4块,然后进行钢管对接焊施工,防变形卡板和顶拉杆在对接焊完成后拆除,并将其焊点打磨平整。 (4)垂直度控制用2台经纬仪在相互垂 直的两个方向观测,为方便观测,先行安装角部钢管柱。观测时,经纬仪对中于柱轴线,十字竖丝对准柱脚处柱外边线点,观测者由柱脚从下向上观测柱身母线,同时指挥安装人员调整顶拉杆,直至柱顶母线与经纬竖丝重合。另外,对接环缝焊接好后,卸去卡板,对柱身垂直进行复核,并做好垂直度偏差值记录,以便下次安装调整,防止出现累积误差。 (5)对接焊施工现场对接焊采用人工焊,接口焊缝为熔透二级焊缝,分次焊满。焊接工程中,易产生较大的焊接残余变形,导致垂直度偏差。因此,采取措施如下: 1)每根柱从下至上固定焊工,以明确责任。 2)对称施焊,即分段反向对称顺序施焊。 3)严格控制同类型焊机及焊接电流等参数。 4)对接前根据上节柱安装偏差值,计算后在管口实行机械打磨,保持焊缝间隙基本一致。 5)增设防变形卡板。

钢管柱脚计算手册DOC

圆形底板刚接柱脚压弯节点技术手册 根据对柱脚的受力分析,铰接柱脚仅传递垂直力和水平力;刚接柱脚包含外露式柱脚、埋入式柱脚和外包式柱脚,除了传递垂直力和水平力外,还要传递弯矩。 软件主要针对圆形底板刚接柱脚压弯节点,计算主要遵循《钢结构连接节点设计手册》(第二版)中的相关条文及规定,并对相关计算过程自行推导。 设计注意事项 刚性固定外露式柱脚主要由底板、加劲肋(加劲板)、锚栓及锚栓支承托座等组成,各部分的板件都应具有足够的强度和刚度,而且相互间应有可靠的连接。 为满足柱脚的嵌固,提高其承载力和变形能力,柱脚底部(柱脚处)在形成塑性铰之前,不容许锚栓和底板发生屈曲,也不容许基础混凝土被压坏。因此设计外露式柱脚时,应注意:(1)为提高柱脚底板的刚度和减小底板的厚度,应采用增设加劲肋和锚栓支承托座等补强措施; (2)设计锚栓时,应使锚栓在底板和柱构件的屈服之后。因此,要求设计上对锚栓应留有15%~20%的富裕量,软件一般按20%考虑。 (3)为提高柱脚的初期回转刚度和抗滑移刚度,对锚栓应施加预拉力,预加拉力的大小宜控制在5~8kN/cm2的范围,作为预加拉力的施工方法,宜采用扭角法。 (4)柱脚底板下部二次浇灌的细石混凝土或水泥砂浆,将给予柱脚初期刚度很大的影响,因此应灌以高强度微膨胀细石混凝土或高强度膨胀水泥砂浆。通常是采用强度等级为C40的细石混凝土或强度等级为M50的膨胀水泥砂浆。 一般构造要求 刚性固定露出式柱脚,一般均应设置加劲肋(加劲板),以加强柱脚的刚度;当荷载大、嵌固要求高时,尚须增设锚栓支承托座等补强措施。 圆形柱脚底板的直径和厚度应按下文要求确定;同时尚应满足构造上的要求。一般底板的厚度不应小于柱子较厚板件的厚度,且不宜小于30mm。 通常情况下,圆形底板的长度和宽度先根据柱子的截面尺寸和锚栓设置的构造要求确定;当荷载大,为减小底板下基础的分布反力和底板的厚度,多采用补强做法,如增设加劲肋(加劲板)和锚栓支承托座等补强措施,以扩展底板的直径。此时底板的尺寸扩展的外伸尺寸(相 对于柱子截面的边端距离),每侧不宜超过底板厚度的倍。

混凝土梁钢筋与型钢柱组合连接技术

逆施混凝土梁钢筋与正施型钢柱组合连接技术 【摘 要】 xxxxx 广场工程逆施结构与正施型钢混凝土组合结构中采用了“逆施混凝土梁钢筋与正施型钢柱组合连接技术”,解决了窄间隙下逆施混凝土梁筋与正施型钢柱连接钢筋不同心、钢筋无伸缩的连接难题,为正逆施粗直径钢筋连接、特别是正施结构采用型钢混凝土组合结构钢筋连接技术作出了成功的探索。 【关键词】 可焊接套筒 熔槽帮条焊 型钢混凝土组合结构 钢筋连接 正逆施 前言:随着施工技术的发展,高层建筑越来越多,鉴于逆作法施工在工程周期方面的优势、型钢混凝土组合结构在抗震、防火及造价方面的优势,逆作法施工工艺及型钢混凝土组合结构在高层、超高层建筑中应用越来越多。而高层、超高层结构中混凝土梁配筋量大、钢筋排数多、钢筋间距较小,加之结构体系抗震等级高,钢结构体系不允许开洞,且正逆施连接部位空间较小,如何实现逆施混凝土梁钢筋与正施型钢柱的合理连接,成为此类工程施工的难点。 1 工程概况 xxxx 广场工程包含1栋办公楼,3栋公寓楼及商业裙楼,设有4层地下室。1栋办公楼及3栋公寓楼为超高层建筑,办公楼共53层,总高度258m ;A 、B 、C 三栋公寓分别为57层、53层、49层, 总高度分别为191m 、179m 、168m 。 工程抗震设防烈度为7度,主体结构 抗震等级为特一级或一级。 本工程地下结构采用敞开式逆作法施工工艺,逆施结构与正施结构型钢柱间距最小为600mm 如图1所 示。由于抗震等级高,与型钢柱连接 的逆施混凝土梁钢筋直径大(最大达 ф32)、排数多(大部分为3排),为保证结构的整体性,设计禁止在型钢柱上开洞,要求梁钢筋与型钢柱连接采用机械连接方式直接连接。 图1 逆施混凝土与正施型钢柱对接平面图

钢管混凝土柱

摘要:介绍了钢管混凝土结构的特点、研究现状及其工程应用,探讨了钢管混凝土结构研究方向。 关键词:钢管混凝土 近20年来,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中,随着建筑物高度的增加,钢管高强混凝土和钢管超高强混凝土结构的应用也将会得到快速的发展。一般的,我们把混凝土强度等级在C50以下的钢管混凝土称为普通钢管混凝土;混凝土强度等级在C50以上的钢管混凝土称为钢管高强混凝土;混凝土强度等级在C100以上的钢管混凝土称为钢管超高强混凝土。 钢管混凝土结构是由混凝土填入钢管内而形成的一种新型组合结构。由于钢管混凝土结构能够更有效地发挥钢材和混凝土两种材料各自的优点,同时克服了钢管结构容易发生局部屈曲的缺点。近年来,随着理论研究的深入和新施工工艺的产生,工程应用日益广泛。钢管混凝土结构按照截面形式的不同可以分为矩形钢管混凝土结构、圆钢管混凝土结构和多边形钢管混凝土结构等,其中矩形钢管混凝土结构和圆钢管混凝土结构应用较广。 1.钢管混凝土结构的特点 众所周知,混凝土的抗压强度高。但抗弯能力很弱,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高.同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中(如厂房和高层)。钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面: 1.1 承载力高、延性好,抗震性能优越 钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度;钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。

相关主题
文本预览
相关文档 最新文档