当前位置:文档之家› 圆锥曲线方程单元知识总结

圆锥曲线方程单元知识总结

圆锥曲线方程单元知识总结
圆锥曲线方程单元知识总结

圆锥曲线方程单元知识总结

【知识结构】

【命题趋势分析】

从近三年高考情况看,圆锥曲线的定义、方程和性质仍是高考考查的重点内容,三年平均占分20分,约为全卷分值的13.3%,在题型上一般安排选择、填空、解答各一道,分

别考查三种不同的曲线,而直线与圆锥曲线的位置关系又是考查的重要方面。

例1 (20XX 年江苏卷理科第13题)椭圆552

2=+ky x 的一个焦点是(0,2),则

k________________________________________。

分析 本题主要考查椭圆的标准方程,先将其化为标准形式,然后求解。 解 椭圆方程即11522=+x k

y ∴k

a 52= 12=

b ,∴由21522=-=-=k

b a

c 解得k=1。 点评 由焦点在y 轴上,其标准方程应化为122

22=+b

x a y 的形式,若此题变化为:已知曲线552

2=+ky x 的焦距为4,则k_____________________________________。 则应分两种情况讨论:(1)若为椭圆,则k=1;(2)若为双曲线,方程即为151

2

2=-k

y x

∴12=a ,由k b 52-=

,由25122=-=+=k b a c ,得3

5-=k 。

例2 (20XX 年全国卷理科第14题)双曲线116

92

2=-y x 的两个焦点为21F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x 轴的距离为_________________________________。

分析 本题主要考查双曲线的定义,从“形”的角度看,只需求出21F PF Rt ?斜边21F F 上的高,可用第一定义求解;从“数”的角度看,只需求出点P 的纵坐标0y ,先利用第二定义即焦半径公式表示出||1PF ,||2PF ,由勾股定理求出0x ,再代入双曲线方程即可求出0y 的值;由于点P 在以21F F 为直径的圆上,因此,解决本题一个最基本的方法,则是利

用交迹法求出点P 。

解法一 设n PF m

PF ==||||21,且由双曲线的对称性不妨设点P 在第一象限,则m ―n=2a ―6 ①,1004222=-+c n m ②, ②-①2得2mn=64,∵mn=32,作PQ ⊥x 轴于Q ,则在21F PF Rt ?中,

5161032||21===F F mn PQ ,即点P 到x 轴的距离为5

16, 解法二 设)00)((0000>>y x y x P ,,,由第二定义可得

a ex c a x e PF +=???? ??+=0201||,a ex c a x e PF -=???? ??-=0202||,∵21PF PF ⊥, ∴220204)()(c a ex a ex =-++,

即222022a c x e -=,这里a=3 c=5 35=e ,代入得415

30=x 。 ∴由双曲线方程得2525619162020

=???? ??-=x y ,∴5160=y 。 解法三 设)00)((0000>>y x y x P ,,,∵21PF PF ⊥

∴点P 在以21F F 为直径的圆上,即

252020=+y x ①,又点P 在双曲线上,

∴1449162020=-y x ②,由①,②消去20x ,得2525620=y ,∴5

160=y 。 点评 (1)由双曲线的对称性,可将点P 设定在第一象限内,而不必考虑所有的情况。

(2)解题的目标意识很重要,例如在解法一中只需整体求出mn 的值,而不必将m ,n

解出;在解法三中只需求0y 即可;

(3)在三种解法中,以解法三最简洁,因此,最基本的方法有时也是最有效的方法。 (4)如果将问题改为:当21PF F ∠为钝角时,点P 的横坐标的取值范围是

________________________________。

那么,可先求出使21PF PF ⊥时的点P 的横坐标为41530=

x ,由图形直观及双曲线的范围可得,2000年高考理科第14题考查了椭圆中与此

类似的问题。

例3 (2000年全国卷理科第11题)过抛物线)0(2>=a ax y 的焦点F 作一直线交抛

物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则q

p 11+等于( ) A .2a B .a 21 C .4a D .a

4 分析 此题主要考查抛物线的定义与标准方程,可利用焦半径公式来解决。

解 抛物线方程即y a x 12=,记m a

=41,则F (0,m ),而直线PQ 的方程可设为x=k (y -m ),代入抛物线方程my x 42

=得 0)2(222222=++-m k my k y k ,

设)()(2211y x Q y x P ,,,,则

?????=+=+22

12221,)2(2m y y m k k y y 而m y q m y p +=+=21,, 于是,m k

k m m k k m y y q p 222221)1(42)2(22+=++=++=+, 2222

212121)1(4)())((m k k m y y m y y m y m y pq +=+++=++=。 故,a m

pq q p q p 4111==+=+。

当k=0时,易证结论也成立,因而选C 。

点评 (1)由于所给抛物线的焦点在y 轴上,故其焦点是)410(a ,,焦半径公式是a y PF 41||1+

=,而不能写成a x PF 41||1+=。(2)解题中,令m a

=41以及将直线PQ 的方程设为x=k (y -m ),都是为了简化运算。(3)作为一道选择题,如此解法显然是不经济的,可以利用上节例5中的结论3直接得出结果,因此,记住一些重要结论,对提高解题效率无疑是有益的。(4)特例法也是解选择题的常用的解题方法,本题只需考虑PQ//x 轴,

即为通径的情况,可立即得出结果。

例4 (20XX 年全国卷理科第19题)设抛物线)0(22>=p px y 的焦点F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC//x 轴,证明直线AC 经过坐

标原点O 。

分析 本小题主要考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力,证明三点共线,只须证明OC 、OA 两直线的斜率相等,也可利用抛物线的性质证

明AC 与x 轴的交点N 恰为EF 的中点,从而N 与O 重合,证得结论。

解法一 易知焦点)02(,p F ,设直线AB 的方程是2

p my x +

=,代入抛物线方程得 0222=--p pmy y

设)()(2211y x B y x A ,,,,则 2

21p y y -=,即12

2y p y -=。 因BC//x 轴,且C 在准线1上,故点)2(2y p C ,-,且1212px y =,从而p

y x 2211=,从而

1122222y p y p p p y k OC =--=-=,12111122y p p

y y x y k OA ===, 于是,OA OC k k =,从而A 、O 、C 三点共线,即直线AC 经过原点O 。

解法二 如图,设准线1交x 轴于点E ,AD ⊥1于D ,连AC 交EF 于点N ,由AD//EF//BC ,

得||||||||||||AB BF AC CN AD EN ==,即|

|||||||AB BF AD EN ?=,①

||||||||AB AF BC NF =,即||||||||AB BC AF NF ?=,② 又由抛物线的性质可知,|AD|=|AF|,|BC|=|BF|,代入①②可得|EN|=|NF|,即N 为EF

的中点,于是N 与点O 重合,即直线AC 经过原点O 。

点评 (1)本例解法一利用曲线的方程研究曲线的性质,充分体现了用坐标法研究几何问题的基本思想,而解法二则充分利用了抛物线的几何性质及相似三角形中的有关知识。

(2)在解法一中,直线AB 方程的设法值得推崇,从思路分析看,若证OC OC k k =,即证

1122x y p y =-,将p y x 221-=代入后即证1222

y p p y =-,即证221p y y -=,为此应通过直线AB 的方程及抛物线方程px y 22=联立消去x 得到关于y 的一元二次方程,解法一中的这一设

法,既回避了直线方程的变形过程使运算简单,同时也回避了当AB ⊥x 轴的情况的讨论,若将AB 方程设为)2

(p x k y -=,则必须对k 不存在的情况作出说明。(3)试验修订本(必修)《数学》第二册(上)123P 习题8.6第6题是:过抛物线焦点的一条直线与它交于两点P 、Q ,经过点P 和抛物线顶点的直线交准线于点M ,求证直线MQ 平行于抛物线的对称轴,可见,这道高考题实际上是课本习题的一个逆命题,同学们在平时的学习中,对课本典型

例题,习题要加强研究。

例5 (20XX 年江苏卷第20题)设A 、B 是双曲线12

2

2

=-y x 上的两点,点N (1,2)是线段AB 的中点。 (1)求直线AB 的方程;

(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点

是否共圆?为什么?

分析 本题主要考查直线、圆及双曲线的方程和性质,运算能力和综合运用所学知识解决问题的能力。求直线AB 的方程,可以设出其点斜式,与双曲线方程联立消元,利用韦达定理及中点公式求出其斜率,由于涉及“中点弦”问题,亦可利用“设而不求”法解决。对于第(2)小题,根据图形特征,若四点共圆,则CD 必为其直径,至少可有以下三种解题思路:(1)判断CD 中点到四点是否等距;(2)判断是否有AC ⊥AD ;(3)判断A 、B 两

点是否以CD 为直径的圆上。

解 (1)解法一:设AB :y=k (x -1)+2代入122

2

=-y x ,整理得 02)2()2(2)2(2

22=------k x k k x k 。①

设)()(2211y x B y x A ,,,,则

022≠-k ,且2212)2(2k k k x x --=

+ 因N (1,2)是AB 的中点,故221=+x x ,于是22)2(22=--k

k k ,解得k=1,从而所求直线AB 的方程为y=x+1。

解法二:设)()(2211y x B y x A ,,,,代入双曲线方程得

))(())((2,

2222212121212222121y y y y x x x x y x y x -+=-+??????=-=-2。 因N (1,2)为AB 的中点,故221=+x x ,421=+y y ,将它们代入上式可得

2121y y x x -=-,从而1=AB k ,于是直线AB 的方程为y=x+1。

(2)将k=1代入方程①得,0322=--x x ,解得11-=x ,32=x 。

由y=x+1得,01=y ,42=y ,即A (-1,0),B (3,4),而直线CD 的方程是y ―

1=―(x ―2),即y=3-x ,代入双曲线方程并整理得01162=-+x x ②

设)()(4433y x D y x C ,,,,则643-=+x x ,1143-=x x 。

解法一:设CD 中点为)(00y x M ,,则32

430-=+=x x x ,于是6300=-=x y ,即M (-3,6)。

因243243243)(2)()(||x x y y x x CD -=-+-=

1044)(243243=-+?=

x x x x 故102||||==MD MC 。

又243243243)(2)()(||||x x y y x x MB MA -=-+-==

1044)(243243=-+?=

x x x x 即A .B .C .D 四点与点M 的距离相等,从而A 、B 、C 、D 四点共圆。

解法二:由643-=+x x ,1143-=x x 得,12)3()3(4343=-+-=+x x x x ,

16)3)(3(4343=--=x x y y ,故

11

)(114343434433-=+++=+?+=?x x x x y y x y x y k k AD AC ,即AC ⊥AD 。 由对称性可知,BC ⊥BD ,于是A 、B 、C 、D 四点共圆。

解法三:以CD 为直径的圆的方程是 0))(())((4343=--+--y y y y x x x x ,即

0)()(4343434322=+++-+-+y y x x y y y x x x y x 。

将643-=+x x ,1143-=x x ,1243=+x x ,1643=x x ,代入得

0512622=+-++y x y x ,即40)6()3(2

2=-++y x 。

因40)60()31()6()3(222121=-++-=-++y x ,

40)64()33()6()3(222222=-++=-++y x ,

故A 、B 在以CD 为直径的圆上,即A 、B 、C 、D 四点共圆。

点评 (1)处理直线与圆锥曲线相交问题时,要重视韦达定理的应用。(2)“设而不求”是解决“中点弦”问题常用的方法,通过“设而不求”可以建立弦所在直线的斜率与弦的中点坐标之间的关系,本题已知中点坐标,即可确定出直线的斜率。(3)判断四点共

圆的方法很多,注意从多种不同的角度进行思考,锻炼思维的灵活性。

【典型热点考题】

1.探究 例6 设21F F 、分别是椭圆342

2y x +的左、右焦点,试问:在椭圆上是否存在一点P ,使得?=∠9021PF F ?为什么?

分析 根据点P 满足的条件,探究是否能够将点P 的坐标求出,若能,则存在;若不

能,则不存在,求P 点坐标,有以下两条思路:

思路一 设)(00y x P ,,用焦半径公式将||1PF ,||2PF 用0x 表示,由

2212221||||||F F PF PF =+,探求0x 是否存在。

思路二 由?=∠9021PF F 知,点P 在以21F F 为直径的圆上,只须考察该圆与椭圆是

否存在公共点。

思考:画一个较为准确的图形,不难发现,圆12

2=+y x 与椭圆1442

2=+y x 没有公共点,所以这样的点P 是不存在的,关键是这个椭圆太“圆”了,由此引发我们思考:为使点P 存在,椭圆应尽量“扁”一些,也即其离心率应该较大,于是我们可以去思考一个

一般性的问题:

一般化:若椭圆)0(

1222>>=+2

b a b

y a x 上存在一点P ,使得?=∠9021PF F ,求离心率e 的取值范围。

利用例6提供的两个思路均可得到)12

2[,∈e ,从而验证了我们的猜想。

再思考:考察点P 从长轴端点2A 始沿椭圆运动至1A 的过程,21PF F ∠由0°逐渐增大后又逐渐减小为0°,猜想在某一位置必然取得最大值,试问:这个最大值是多少?又在何处取得?从椭圆的对称性来看,我们可以猜想:当点P 在短轴端点B 处时,21PF F ∠取得

最大值,是不是这样呢?

利用焦半径公式及余弦定理不难验证这一猜想是正确的。

若设θ=∠21PF F ,我们有12cos 22

-≥a

b θ。 回头看,在例6中,42=a ,32=b ,代入可得2

1cos ≥

θ,故0°≤θ≤60°,可见使θ=90°的点P 是不存在的。 又一个问题:若椭圆1222=+2

b

y a x 上存在一点P ,使?=∠12021PA A (1A 、2A 为长轴端点),求离心率e 的取值范围。

分析 21PA PA 、不再是椭圆的焦半径,按照例6中的思路一已经不能解决问题,但是我们知道,使?=∠12021PA A 的点P 是轨迹是关于21A A 对称的两段圆弧,可先求出圆弧所

在圆的方程,然后按照思路二进行研究,下面我们给出这一问题的解答。

解 由对称性,不妨设)0)((000>y y x P ,,则a x y k PA +=

001,a

x y k PA -=001,由到角公式得 121

21120PA PA PA PA k k k k tg +-=?,即3100000000-=+?-++--a

x y a x y a x y a x y , 整理得,322

20200-=-+a y x ay 。 ①

又1220220=+b

y a x ,故2022

220y b

a a x -=-。 ② ②代入①得,22

032c ab y =。

因点P 在椭圆上,故b y <<00,即b c ab ≤22

32,从而232c ab ≤,即

42223)(4c c a a ≤-,也就是044324≥-+e e ,从而322≥

e ,解得36≥e ,又0

????∈136,e 。 点评 (1)在解析几何中,直角一般由垂直条件来转化,而一般角则常用到角公式来转化,若想用余弦定理将无法运算进行到底。(2)注意利用椭圆的范围性,由b y ≤0来建

立a 、b 、c 三者之间的不等式关系,从而求出e 的范围。

2.应用。

例7 某隧道横断面由抛物线的一段和矩形的三边组成,尺寸如图,某卡车载一集装箱,

箱宽3m ,车与箱共高4m ,试问:该车能否通过此隧道?为什么?

分析 此题为抛物线在实际问题中的应用,可利用抛物线的方程和性质进行研究。

解 以抛物线弧的顶点为原点,建立图示直角坐标系,设抛物线的方程为

)0(22>-=p py x ,从图示可以看出,点(3,-3)在抛物线上,故)3(232--=p ,得

2p=3,即抛物线的方程是y x 32

-=。

由抛物线的对称性可知,为使此车尽量通过此隧道,车应沿隧道中线行驶,令23=

x 代入y x 32-=得43-=y ,所以集装箱两侧隧道的高度是)(25.44

323m h =-+=。 因为车与箱共高仅4米,即h>4,所以此车能通过此隧道。

点评 (1)实际问题应转化为数学问题来处理,此处通过建立坐标系转化为解析几何

中的问题。(2)建系应恰当,尽量使方程为标准方程,分析问题时注意考虑图形的对称性。

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高考数学圆锥曲线与方程章总结题型详解

圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2y =上 的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB , 由2FA FB =,则2AM BN =,点B 为AP 的中点, 因为点O 是PF 的中点,则1 2 OB AF = ,

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线方程总结

圆锥曲线方程后期复习系列 北海七中高二数学备课组 1、已知定点)0,3(),0,3(21F F -,在平面上动点P 的轨迹中是椭圆的是(答:C ) A .421=+PF PF B .621=+PF PF C .102 1=+PF PF D .122 22 1=+PF PF 2、方程8表示的曲线是_____(答:双曲线的左支) 3、已知P 为抛物线2 2 1x y =上的动点,点P 在x 轴上的射影为M , 点A 的坐标是)217, 6(,则PM PA +的最小值是 _____ (答:2 19) 4、已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为___(答:11(3,)(,2)22--- )5、 若R y x ∈,,且62322=+y x ,则y x +的最大值是_,22y x +的最小值是_2) 6、方程221Ax By +=表示双曲线的充要条件是什么?(A ,B 异号)。 7、双曲线的离心率等于2 5 ,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程 (答:2 214 x y -=); 8、设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) 9、方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是)23,1()1,( --∞ 10、若椭圆1522=+m y x 的离心率510 = e ,则m 的值是__(答:3或325); 11、以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时, 则椭圆长轴的最小值为__(答:22)

圆锥曲线知识点总结

圆锥曲线知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或1 22 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:①以上方程中,a b 的大小0a b >>,其中222b a c =-; ②在22221x y a b +=和22 221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置, 只要看2 x 和2 y 的分母的大小。例如椭圆22 1x y m n + =(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±, y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点

(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和 b 分别叫做椭圆的长半轴长和短半轴长。 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ?中,2||OB b =, 2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-; ④离心率:椭圆的焦距与长轴的比c e a = 叫椭圆的离心率。∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。 2.双曲线 (1)双曲线的概念

圆锥曲线与方程 知识点详细

椭圆 1、椭圆的第一定义:平面一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。 a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值围是)10(<>),且已知椭 圆的准线方程为2 a x c =±,试推导出下列式子:(提示:用三角 函数假设P 点的坐标e PM PF PM PF == 2 21 1

圆锥曲线必考知识点总结及答案

八、圆锥曲线 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122 2 2 1=+PF PF (答:C ) ; (2)方程8表示的曲线是_____(答:双曲线的左支) (2)第二定义 已知点)0,22(Q 及抛物线4 2x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) 2.圆锥曲线的标准方程 (1)椭圆: (1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11 (3,)(,2)22 --- U ); (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ 2) (2)双曲线: (1)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点, 则该双曲线的方程_______(答:2 214 x y -=) ; (2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线: 3.圆锥曲线焦点位置的判断: 椭圆:已知方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__(答: )2 3 ,1()1,(Y --∞) 4.圆锥曲线的几何性质: (1)椭圆 (1)若椭圆1522=+m y x 的离心率510 = e ,则m 的值是__(答:3或3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:22) (2)双曲线 (1)双曲线的渐近线方程是023=±y x ,则该双曲线的离心率等于______ (答: 2或3 );

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212 121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:) 0(12 22 2 φφb a b y a x =+. ii. 中心在原点,焦点在y 轴上:) 0(12 222 φφb a b x a y =+ . ②一般方程: ) 0,0(122φφB A By Ax =+. ③椭圆的标准方程:122 2 2 =+b y a x 的参数方程为???==θ θ sin cos b y a x (一象限θ应是属于 2 0π θπ π). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距: 2 221,2b a c c F F -==. ⑤准线: c a x 2 ± =或 c a y 2 ± =. ⑥离心率: )10(ππe a c e = . ⑦焦点半径: i. 设),(00y x P 为椭圆) 0(12 22 2 φφb a b y a x =+ 上的一点,21,F F ii.设),(00y x P 为椭圆) 0(12 22 2 φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知: )0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+ =归结起来为 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+ =+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 2 22 b a b y a x =+. ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程: 122 2 2=+ b y a x 的参数方程为???==θ θ sin cos b y a x (一象限θ应是属于2 0π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加 右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -= 和),(2 a b c ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

高中数学知识点总结之圆锥曲线篇

64. 熟记下列公式了吗? [)()直线的倾斜角,,,102 212112l απααπ∈==--≠≠?? ???k y y x x x x tan ()()()P x y P x y a k 1112221,,,是上两点,直线的方向向量,l l → = (2)直线方程: ()点斜式:(存在)y y k x x k -=-00 斜截式:y kx b =+ 截距式:x a y b +=1 一般式:(、不同时为零)Ax By C A B ++=0 ()()点,到直线:的距离30000022P x y Ax By C d Ax By C A B l ++==+++ ()到的到角公式:41122112 l l t a n θ=--k k k k l l 122112 1与的夹角公式:tan θ=--k k k k 65. 如何判断两直线平行、垂直? A B A B A C A C 1221122112=≠??? ?l l ∥ k k l 1212=?l ∥(反之不一定成立) A A B B 1212120+=?l l ⊥ k k 12121·⊥=-?l l 66. 怎样判断直线l 与圆C 的位置关系? 圆心到直线的距离与圆的半径比较。 直线与圆相交时,注意利用圆的“垂径定理”。 67. 怎样判断直线与圆锥曲线的位置? 联立方程组关于(或)的一元二次方程“” 相交;相切;相离??>?=?

第一定义椭圆,双曲线,抛物线?+=>=?-=<=?=???????PF PF a a c F F PF PF a a c F F PF PK 12121212222222 第二定义:e PF PK c a == 0111<?=?e e e 椭圆;双曲线;抛物线 y b O F 1 F 2 a x x a c =2 ()x a y b a b 222 210+=>> () a b c 222=+ ()x a y b a b 222 2100-=>>, ()c a b 222=+

圆锥曲线知识点总结

圆锥曲线 一、椭圆 1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<

二、双曲线 1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于 12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。 这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 2、双曲线的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210,0x y a b a b -=>> ()22 2 210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==+ 对称性 关于x 轴、y 轴对称,关于原点中心对称 离心率 ()2 211c b e e a a ==+>,e 越大,双曲线的开口越阔 渐近线方程 b y x a =± a y x b =± 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

高中圆锥曲线知识点总结全面经典

高中数学椭圆的知识总结 1.椭圆的定义: 平面内一个动点P 到两个定点12,F F 的距离之和等于常数 (12122PF PF a F F +=>),这个动点P 的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 注意:若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形. (1)椭圆:焦点在x 轴上时12 2 22 =+b y a x (222 a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围: ,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长 轴长为2a ,短轴长为2b ; ④离心率:c e a =,椭圆?01e <<,e 越 小,椭圆越圆;e 越大,椭圆越扁。⑥ (2).点与椭圆的位置关系:①点00(,)P x y 在椭圆外?2200 221x y a b +>; ②点00(,)P x y 在椭圆上?220 220b y a x +=1;③点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>相交于A 、B 两点, 且线段AB 的中点在直线L :x -2y=0上,则此椭圆的离心率为_______; (3)试确定m 的取值范围,使得椭圆13 42 2=+y x 上有不同的两点关于直 线m x y +=4对称; 特别提醒:因为0?>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 椭圆知识点的应用 1.如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。 确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位

曲线与方程知识点及题型归纳总结 (2)

曲线与方程知识点及题型归纳总结 知识点精讲 一、曲线的方程和方程的曲线 在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程 (),0f x y =的实数解建立了如下的关系: (1) 曲线上的点的坐标都是这个方程的解(完备性) (2) 以这个方程的解为坐标的点都是曲线上的点(纯粹性) 那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线。事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上诉定义中C F ????=????条件(1)C F 条件(2)F C 二、直接法求动点的轨迹方程 利用直接法求动点的轨迹方程的步骤如下: (1) 建系-----建立适当的坐标系 (2) 设点-----设轨迹上的任一点(),P x y (3) 列式-----列出有限制关系的几何等式 (4) 代换-----将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为 ,x y 的方程式化简 (5) 证明(一般省略)-----证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补 充检验)。 简记为:建设现代化,补充说明。 注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线。 题型归纳及思路提示 题型1 求动点的轨迹方程 思路提示: 动点的运动轨迹所给出的条件千差万别,因此求轨迹的方法也多种多样,但应理解,所求动点的轨迹方程其实质即为其上动点的横纵坐标,x y 所满足的等量关系式,通常的方法有直译法,定义法,相关点法(代入法),参数法。 一、直译法 如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直译法。 例10.30 在平面直角坐标系xOy 中,点B 与点()1,1A -关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于1 3 -,求动点P 的轨迹方程。 分析 设点(),P x y ,将题设中直线AP 与BP 斜率之积等于1 3 - 翻译成含,x y 的等式。 解析:因为点B 与点()1,1A -关于原点O 对称,所以点B 的坐标为()1,1-,设点(),P x y ,由题意得 111 113 y y x x -+=-+-g ,化简得()22341x y x +=≠± ,故动点P 的轨迹方程为()22341x y x +=≠± 变式1 已知动圆过定点()4,0A ,且在y 轴上截得的弦的长为8,求动圆圆心的轨迹C 的方程

相关主题
文本预览
相关文档 最新文档