当前位置:文档之家› 带隙电压基准的设计_毕业设计

带隙电压基准的设计_毕业设计

带隙电压基准的设计_毕业设计
带隙电压基准的设计_毕业设计

带隙电压基准的设计

摘要

基准电压源是模拟电路设计中广泛采用的一个关键的基本模块。所谓基准电压源就是能提供高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,但是它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。本文的目的便是设计一种基于CMOS带隙基准电压源。

本文首先介绍了基准电压源的国内外发展现状及趋势。然后详细介绍了MOS器件的基本原理、基准电压源电路原理,并对不同的带隙基准源结构进行了比较。在带隙基准电压基准电路设计中,首先对所采用的h05mixddst02v13库中的阈值电压、沟道长度调制系数、跨导参数进行提取,对衬底pnp管的温度特性进行分析,再对电路中的各个管子的宽长比、电容、电阻值进行手动计算,最后通过Hspice软件对电路进行仿真验证。

模拟和仿真结果表明,电路实现了良好的温度特性,0℃~100℃温度范围内,基准电压温度系数大约为0.25mV/℃,输出电压为1.0V。

关键词:MOS器件;带隙基准电压源;参数提取;温度系数;输出电压;

Abstract

The reference voltage source is a vital basic module is widely used in analog circuit design. The reference voltage source is able to provide high stability reference amount of power, the reference source and power supply, process parameters and the temperature is very small, but its temperature stability and anti-noise performance affects the precision and performance of the whole system. The purpose of this paper is the design of a CMOS bandgap voltage reference based on.

This paper first introduces the present situation and development trend of voltage reference at home and abroad. And then introduces the basic principle of MOS device, reference voltage source circuit principle, and the bandgap structure were compared with different. In the bandgap voltage reference circuit design, first on the threshold voltage, the h05mixddst02v13 Library of the channel length modulation coefficient, transconductance parameter extraction, analysis of temperature characteristics of a substrate of PNP pipe, the pipe of each circuit in the ratio of width to length, capacitance, resistance value for manual calculation, finally the circuit was simulated by Hspice software.

Simulation results show that, circuit has good temperature performance, 0 ℃ ~ 100 ℃temperature range, the temperature coefficient of the reference voltage is about 0.25mV/ ℃, the output voltage is 1.0V.

Keywords: MOS device; bandgap voltage reference; extraction; output voltage temperature coefficient;

目录

0 前言 (1)

1 MOS器件原理 (3)

1.1基本概念 (3)

1.1.1 MOSFET的结构 (3)

1.2 MOS的I/V特性 (4)

1.2.1 阈值电压 (4)

1.3 二级效应 (5)

1.3.1 体效应 (5)

1.3.2 沟道长度调制 (6)

1.3.3 亚阈值导电性 (6)

1.3.4 电压限制 (7)

2 基准电压源电路原理 (8)

2.1基准电压源的结构 (8)

2.1.1直接采用电阻和管分压的基准电压源 (8)

2.1.2有源器件与电阻串联组成的基准电压源 (9)

2.1.3带隙基准电压源 (11)

2.2带隙基准电压源的基本原理 (11)

2.2.1与绝对温度成正比的电压 (12)

2.2.2负温度系数电压VBE (13)

2.3带隙基准源的几种结构 (14)

2.3.1 widlar带隙基准源 (14)

2.3.2 Brokaw带隙基准源 (15)

2.3.3使用横向BJT的CMOS带隙基准源 (15)

3 基准电压源电路设计 (17)

3.1基准源的整体结构 (17)

3.2参数提取 (18)

3.2.1 MOS管阈值电压的提取 (18)

3.2.2 MOS管的跨导参数 (19)

3.2.3 MOS管的沟道长度调制效应系数 (21)

3.3运算放大器电路结构以及尺寸计算 (22)

3.3.1运算放大器结构及指标 (22)

3.3.2根据运放手动计算 (23)

3.4带隙电压基准电路结构以及计算 (30)

3.4.1带隙电压基准核心电路 (30)

3.4.2 Vbe结的温度系数及结电压的计算 (30)

3.4.3 Vbe的温度系数计算 (31)

3.4.4带隙电路零温度系数的计算 (32)

4 电路仿真 (33)

4.1仿真工具介绍 (33)

4.2失调电压仿真验证 (33)

4.3输入共模范围 (34)

4.4幅频相频特性 (35)

4.5带隙电压基准核心电路仿真 (35)

5 结论 (36)

致谢 (37)

参考文献 (38)

附录A: (39)

附录B: (45)

附录C: (54)

0 前言

基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此也可以说性能优良的基准源是一切电子系统设计最基本和最关键的要求之一。

随着电路系统结构的进一步复杂化,对模拟电路基本模块,如A/D、D/A转换器、滤波器以及锁相环等电路提出了更高的精度和速度要求,这样也就意味着系统对其中基准电压源模块提出了更高的要求。另外,基准电压源是电压稳压器中的一个关键电路单元,它也是DC-DC转换器中不可缺少的组成部分;在各种要求较高精确度的电压表、欧姆表、电流表等仪器中都需要电压基准源[1]。

近年来,国内外对CMOS工艺实现的电压基准源作了大量的研究,发表了大量的学术论文,其中的技术发展主要表现在如下几个方面。

1.低电压工作的基准电压源

SOC(Signal Operation Control)的主流工艺是CMOS工艺,目前,5V(0.6um)、3.3V (0.35um)、1.8V(0.18um)、1.5V(0.15um)、1.2V(0.13um)、0.9V(0.09um)等电源电压已经得到广泛的使用。随着手提设备对低电源需求的不断增加,设计低压工作的电压基准源成为当前基准源研究的热点。由于传统带隙电压基准源的带隙电压为1.2V左右,所以,对于电源电压低于1.2V的基准设计必须采用特殊的电路结构,许多文献[2]都提出了输出基准电压低于1.2V的电路结构。采用这些电路结构后主要的工作电压限制通常来自于运放的工作电压,不同运放的电路结构和MOS管衬底效应造成的高阈值电压是限制工作电压的主要因素。

2.低温度系数的基准电压源

低温度系数的基准电压源对于要求精度高的应用场合比较关键,比如说对于高精度的A/D、D/A结构,高精度的电流源、电压源等。对于普通的一阶温度补偿的带隙结构的温度系数一般在20ppm/℃~50ppm/℃,因此,设计低温度系数

V环的基准电压源一般必须进行高阶温度补偿。目前出现的高阶补偿技术包括

BE

路曲率补偿法,β非线性曲率补偿法,基于电阻比值的温度系数的曲线补偿方法。

3.高电源抑制比的基准电压源

在数模混合集成电路中,电路中可能存在高频噪声和数字电路产生的噪声对模拟电路产生信号干扰的现象。在混合电路中,电压基准源应该在较宽的范围内具有良好的电源抑制比性能,有些设计中使用运放结构的带隙基准技术,在直流频率时的PSRR(Power Supply Rejection Ratio,电源抑制比)可达-110dB,在1MHz 的PSRR达-70dB;而使用无运放负反馈结构的带隙基准,在1KHz的PSRR为-95dB,在1MHz的PSRR为-40dB。

4.低功耗的基准电压源

低功耗设计对于依靠电池工作的便携设备具有非常重要的意义,低功耗电路可以延长电池的使用寿命。有些设计中的电路功耗可达220uW。

传统的基准源是基于稳压二极管的原理制成,但由于它的击穿电压一般都大于现在电路中所用的电源,已经不再常用。20世纪70年代初,Widlar首先提出带隙基准电压源的概念和基本设计思想,由于其在电源电压、功耗、稳定性等方面的优点,得到了广泛的应用。现在拥有带隙基准源的集成电路已广泛应用于军事装备、通讯设备、汽车电子、工业自动化控制及消费类电子产品等领域。

随着微电子技术的不断发展,现阶段常用集成电路的制作工艺主要有两种: 双极工艺和CMOS工艺。双极性工艺是集成电路中最早成熟的工艺,其集成电路具有较快的器件速度,适合高速电路设计,但相对来说,器件功耗较大;CMOS 工艺技术是在PMOS与NMOS工艺基础上发展起来的,由于CMOS电路具有功耗低、器件面积小、集成密度大等优点,已经逐渐发展成为当代VLSI(超大规模集成电路)工艺的主流工艺技术,因此,在本文在设计高精度的带隙基准电压源时,就采用了CMOS工艺技术。

为了设计一种高精度CMOS带隙基准源,本文将首先着手于研究带隙基准源的原理和提高带隙基准源性能的方法,再对高精度的CMOS带隙基准源进行完整设计分析,然后借助HSPICE对电路进行模拟仿真,包括带隙基准源的核心电路、电源抑制比电路、快速启动电路等。本文的主要内容如下:1)介绍CMOS带隙基准源的现状、发展趋势以及本课题研究目的意义;

2)介绍MOS器件基本原理,基准源的分类,详细分析带隙基准源的基本原理和几种基本框架,并分析其优缺点;

3)对CMOS带隙基准源进行设计分析,参数提取;

4)利用软件进行仿真;

1 MOS 器件原理

在现代的IC 工业中,必须充分地掌握半导体器件的知识。而这一点对于模拟电路的设计比对于数字电路更为重要,因为在模拟电路设计中,我们不能把晶体管等效为一个简单的开关,晶体管的许多二级效应直接影响其性能。而且,因为IC 技术的每代更新都使器件尺寸按比例缩小,所以这些效应就变得更加重要了[3]。

1.1基本概念

1.1.1 MOSFET 的结构

N 型MOS (NMOS )器件制作在p 型衬底上(衬底也称作bulk 或者body ),两个重掺杂n 区形成源端和漏端,重掺杂的(导电的)多晶硅区(通常简称poly )作为栅,一层二氧化硅使栅与衬底隔离。器件的有效作用就发生在栅氧下的衬底区。注意,这种结构中的源和漏是对称的。

源漏方向的栅的尺寸叫栅长L ,与之垂直

方向的栅的尺寸叫做栅宽W 。由于在制造过程

中,源/漏结的横向扩散,源漏之间实际的距离

略小于L 。定义D L L L 2-drawn eff ,式中eff L 称

为有效沟道长度,drawn L 是沟道总长度,而D L 是

横向扩散的长度。eff L 与氧化层厚度ox t 对MOS

电路的性能起着非常重要的作用。因此,MOS 技术发展中的主要推动力就是不是器件的其他器件参数退化而一代一代的减少这两个尺寸。从简单的角度来看,PMOS 器件可通过将所有掺杂类型取反来实现,在实际中,NMOS 和PMOS 器件必须在同一晶片上,也就是说做在相同的衬底上。NMOS 和PMOS 晶体管的区别在于每个PFETs 可以出于各自独立的n 阱中,而所有NFETs 则共享同一衬底。

衬底

衬底1.2 MOS 的I/V 特性

分析MOSFETs 中电荷的产生和传输,建立它们与各端电压之间的函数关系。目的是推导出I/V 特性方程,这样我们就能够将抽象级别从器件物理级提升到电路级。

1.2.1 阈值电压

阈值电压是在MOS 管形成反型沟道时,导电沟道载流子浓度等于衬底浓度时所形成的栅源电压。当栅压G V 从0V 上升时,p 衬底中的空穴被赶离栅区而留下负离子以镜像栅上的电荷。就是形成了一个耗尽层。在这种情况下,由于载流子而无电流流动。随着G V 的增加,耗尽层宽度和氧化物与硅界面处的电势也增加。当界面电势达到足够高时,电子便从源流向界面并最终流到漏端。这时,源和漏之间的栅氧下就形成了载流子“沟道”,同时晶体管“导通”。我们也称之为界面的“反型”。形成沟道所对应的G V 称之为“阈值电压”,TH V :

ox dep

2C Q V F MS TH +Φ+Φ= (1.1)

MS Φ是多晶硅栅和硅衬底的功函数之差的电压值,)()(i sub n /ln q

k N T F =Φ q 是电子电荷,sub N 是衬底的掺杂浓度,dep Φ是耗尽区的电荷,ox C 是单位面积的栅氧化层电容。由pn 结理论可知,sub si dep q 4N F Φ=Φε,其中si ε表示硅的介电常数。由于≈ox C 6.9fF/μ2m 。D I 为漏电流,DS V 为

漏源电压,n μ为n 沟道器件的表面迁移率,ox C 为单

位面积栅氧化物电容,W 为有效沟道宽度,L 为有效

沟道长度,TH V 为阈值电压,有:

()2ox n max ,21TH GS D V V L W C I -=μ (1.2)

其中TH GS V V -为过驱动电压,称W/L 为宽长比,以上两等式是 CMOS 模拟电路设计的基础,它描述了D I 与工艺常数ox n C μ,器件的尺寸 W 和 L 以及栅和漏相对于源的电位之间的关系。

当0=GS V 时,就有沟道,加入GS V ,就有D I 。

当0>GS V 时,沟道增宽,D I 进一步增加。

当0

1.3 二级效应

1.3.1 体效应 从公式OX DEP F MS TH C Q V +

Φ+Φ=2我们知道,阈值电压是耗尽层电荷总数的函数,因为在反型层形成之前,栅极电荷必定镜像d Q 。因此,随着b V 的下降,d Q 增加,TH V 也增加。这称为“体效应”或“背栅效应”[9]。

可以证明,在考虑体效应后,TH V 为

)22(0F SB F TH TH V V V Φ-+Φ+=γ 式中OX sub si C N q /2εγ=,称为体效应系数,SB V 是源衬电势差[1]。γ的典型值在2/13.0V 到2/14.0V 之间。

产生体效应,并不需要改变衬底电势sub V :源电压相对于sub V 发生改变,会产生同样的现象。现在假设衬底接地而且体效应很显著。那么当in V 增加时,out V 会变得更正,源和衬底之间的电压差将增大,导致TH V 的值增大。

体效应通常是我们所不希望有的。阈值电压的变化经常会使模拟电路(或数字电路)设计复杂化。器件工艺学家通过权衡sub N 和ox C 来使γ取一个合理的值。

1.3.2 沟道长度调制 在式子2')(21TH GS ox n D V V L

W C I -=μ中,我们注意到,当栅和漏之间的电压差增大时,实际的反型沟道长度逐渐减小。也就是说,'L 实际上是DS V 的函数。这一效应称为“沟道长度调制”。定义L L L ?-=',即L L L L /)/1('/1?+≈,并且假设L L /?和DS V 之间的关系是线性的,如DS V L L λ=?/,在饱和区,我们得到

)1()(212DS TH GS ox n D V V V L

W C I λμ+-≈ 式中λ是沟道长度调制系数。对于较长的沟道,λ值较小。

饱和状态下D I 与DS V 的关系似乎让人觉得:可以通过选择适当的漏-源电压来确定MOSFET 的偏置电流,以允许自由的选择TH GS V V -。然而,由于漏电流随DS V 的变化非常缓慢,所以不用漏-源电压来确定电流。

1.3.3 亚阈值导电性

在分析MOSFET 时,我们一直假设:当GS V 下降到低于TH V 时器件会突然关断。实际上,TH GS V V ≈时,一个“弱”的反型层仍然存在,并有一些源漏电流。甚至当TH GS V V <,D I 也并非是无限小,而是与GS V 呈现指数关系[2,3]。这种效应称作“亚阈值导电”。当DS V 大于200mV 左右时,这一效应可用公式表示为

T

GS D V V I I ζex p 0= 式中,1>ζ,是一个非理想因子,q kT V T /=。我们也称器件工作在弱反型区。这里的关键是当GS V 下降到低于TH V 时,漏电流以有限的速率下降。对于ζ的典型值,在室温时,要使D I 下降一个数量级,GS V 必须下降约80mV 。例如,如果在低压工艺中选择0.3V 为阈值电压,那么当GS V 下降到0时,漏电流仅下降到75.310/1。亚阈值导电会导致较大的功率损耗(或者是模拟信息的丢失)。

1.3.4 电压限制

如果MOSFETs的端电压差超过某一特定值,则会发生各种击穿效应。在高的栅-源电压下,栅氧将发生不可恢复的击穿,从而毁坏晶体管。在短沟道器件中,一个相当大的源-漏电压会使漏极周围的耗尽层变宽,结果耗尽层会达到源区周围,从而产生一个很大的漏电流(这一效应应称为“穿通”效应)。

2 基准电压源电路原理

基准源主要分为基准电压源和基准电流源,而基准电压源的性能参数主要有温度系数、电源抑制比和功耗等。

2.1基准电压源的结构

2.1.1直接采用电阻和管分压的基准电压源

如图2.1所示的基准电压源可以说是最简单的基准源。

(a)采用电阻分压的基准电压源 (b)采用管分压的基准电压源

图 2.1采用电阻和管分压的基准电压源

对图2.1(a),有

212

REF DD R V V R R =+ (2.1) 1REF DD V REF REF REF DD V DD DD DD REF

V V V V S V V V V ??===?

? (2.2) 其中,REF DD

V V S 表示电源电压幅度敏感系数。 对图2-1(b ),有

REF V = (2.3)其中,P P OX P W C L βμ??= ???,N N OX N W C L βμ??= ???,P

W L ?? ???代表PMOS 管的宽长比,N

W L ?? ???代表NMOS 管的宽长比。若有N P ββ=,TN TP V V =,1REF DD V V S =,则它的输

出基准电压对电源电压非常敏感,而且对温度也非常敏感,所以它的应用受到很大的限制。

图2-2电源电压敏感系数小于1的简单电压源

若要得到电源电压敏感系数小于1的电路结构,就要像图2.2那样设计电路,在电路中提供相对稳定的电流,才能减小基准电压对电源电压的依赖。

2.1.2有源器件与电阻串联组成的基准电压源

通过以上的分析,为了能设计出简单的基准电压源,人们设计出了有源器件与电阻串联组成的基准电压源,如图2.3和图2.4所示。

图2.3电阻与MOS 管串联的基准电压源

图2.4电阻与双极晶体管串联的基准电压源

在图2.3中,得到: (2.4)

(2.5) 1)(2R V V V V V REF DD T GS REF β-+==))()(11(DD V V V V R V V S REF DD -+=β

齐纳二极管工作在反向偏置区时,在稳定的电压下,它的电流也是稳定的,而且随着电压的增加,电流会迅速的增加。因此使用这种基准时,必须提供恒定的电流。最基本的形式就是由电源和电阻来完成,如图2.5所示。

图2.5 齐纳二极管构成的电压基准源

R E F B V V V = (2.6)

REF DD V Z DD V Z BV

r V S r R V =

+ (2.7) Z r 是击穿二极管在击穿点Q (如图2.6)的小信号阻抗。

图2.6 齐纳二极管工作特性

反向击穿发生在电压为BV 的时候,BV 变化范围为6V ~8V(如图2.7),BV 值的大小取决于n+区和p+区的掺杂浓度。击穿电压的温度系数会随着击穿电压BV 的值变化,齐纳击穿电压的温度系数为负,雪崩击穿电压的温度系数为正。通过选择合适的正温度系数就可以抵消掉二极管的结压降负温度系数(约为-2.0mV/℃)。通过选择合适的偏置电流,就可以获得接近零温度系数的基准电压。

然而这种基准源的应用越来越少,因为它们使用起来有点困难:精度不高,噪声大,输出基准电压对电流和温度都有较大的依赖性。

图2.7 BV V 的温度系数与BV V 的关系

2.1.3带隙基准电压源

带隙基准电压源的性能较其它基准电压源有了很大的飞跃。它的温度系数可以做的很小,可以获得从1.22V 到10V 的各种基准电压。由于建立在非表面的带隙原理上,因此比齐纳二极管更稳定。它的输出阻抗很低,能保持很小的温度系数而且具有较高的稳定性。同时,带隙基准源工作的静态电流和功耗都很小,电源电压抑制比比较大,输出电压受电源电压的影响很小。由于以上优点使带隙基准电压源得到广泛的应用,本文所采用的就是带隙基准电压源,下面详细分析带隙基准电压源的原理[5]。

2.2带隙基准电压源的基本原理

图2.8是带隙基准电压源的原理图。由室温下温度系数为-2.0mV/℃的pn 结二极管产生电压BE V ;同时也产生一个热电压T V (T=KT/q ),它与绝对温度成正比(PTAT ),它在室温下的温度系数为+0.085mV/℃。如果电压T V 乘以常量K 加上电压BE V ,则输出电压为:

REF BE T V V KV =+ (2.8)

式(2.8)对温度求导,用BE V 和T V 的温度系数求出理想的不依赖于温度的K 值。

2.0BE V mV T

?=-?/℃ , 0.085T V mV T ?=+?/℃, 则K=2.2/0.085=23.5,在理论实现零温度系数,此时

0.650.02623.5 1.26REF V V =+?=

由于该电压等于硅的带隙电压(外推到绝对温度),所以这类基准电路也叫“带隙”基准电路。

图2.8 BE V 与PTAT V 补偿原理

2.2.1与绝对温度成正比的电压

早在1964年人们就认识到,如果两个双极晶体管在不相等的电流密度下工作,那么它们的基极-发射极电压的差值就与绝对温度成正比。

Q2

图2.9 与绝对温度成正比的电压的产生

如图2.9所示,如果两个同样的晶体管(I S1=I S2)偏置的集电极电流分别为0nI

和0I ,忽略它们的基极电流,则有001212ln

ln ln BE BE BE T T T S S nI I V V V V V V n I I ?=-=-=,

因此,BE V 的差值与绝对温度成正比。 2.2.2负温度系数电压V BE 有公式知()000ln ln TE e BE

g T T C b Db C A T T V V V V I N T γγαω????=--- ? ????? 。其中,g V 是硅的带隙势垒,/T V kT q =,T 是绝对温度,0T 是参考温度,单位为K ,TE C 是与温度不相关的常数,e A 是发射极面积,b ω是基区宽度,Db N 是基区掺杂浓度,pb μ是基区少数载流子平均迁移率,γ=4-m ,α是温度指数。

当T =0T 时,000

00ln TE e BE g C b Db kT C A T V V q I N γω??=- ???

,其中0g V 是硅在温度0T 时的带隙势垒。

为了简化分析,假设g V 不随温度变化,且0g g V V =,将0BE V 的表达式代入式()000ln ln TE e EB g T T C b Db C A T T V V V V I N T γγαω????=--- ? ?????就可以得到: ()00000ln BE g BE g T V V T V V T

V T T αγ-??=++- ??? 等式两边对温度求导:

()()0000ln BE g BE V V V k T k T T q T q

αγαγ-???=+-+- ???? (2.9) ()0000BE g BE

T T V V V k T T q

αγ=-?=

+-? (2.10) 可见,BE V 的温度系数本身与温度有关,如果正温度系数的量表现出一个固定的温度系数,那么在恒定电压基准的产生电路中就会产生误差。因此,只有在一阶近似的情况下,基准的温度系数才可以认为是很小的[8]。

2.3带隙基准源的几种结构

2.3.1 widlar 带隙基准源

第一个带隙基准源由Robert widlar 于1971年提出,其结构如图2.10所示: 由图2.10可列方程如下: 121223321

ln()BE BE t S S V V V I I I R R I I -== (2.11) 假设12BE BE V V ≈,则1122I R I R =由式(2.11)可化简为

222311

ln()t S S V R I I R R I = (2.12) 输出基准电压REF V 的表达式如下:

t BE S S t BE BE REF KV V I R I R V R R V R I V V +=+=+=31

122323223)ln( (2.13)这就是 Widlar 带隙基准电压的表达式。式中第一项具有负的温度系数,第二项具有正的温度系数,合理地设置R 1,R 2,R 3,I S1和I S2的值,就可使正、负温度系数相互抵消,从而实现零温度漂移。

这种结构的缺点是电源电压比较高,而且难以保证电流比不随温度变化[4]。

I1Q1

图2.10经典Widlar 带隙基准源

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

带隙基准电路设计要点

帯隙基准电路设计 (东南大学集成电路学院) 一.基准电压源概述 基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC ,ADC ,DAC 以及DRAM 等集成电路设计中有广泛的应用。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。在CMOS 技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。 基于CMOS 的帯隙基准电路的设计可以有多种电路结构实现。常用的包括Banba 和Leung 结构带薪基准电压源电路。在综合考虑各方面性能需求后,本文采用的是Banba 结构进行设计,该结构具有功耗低、温度系数小、PSRR 高的特点,最后使用Candence 软件进行仿真调试。 二.帯隙基准电路原理与结构 1.工作原理 带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。用数学方法表示可以为:2211V V V REF αα+=,且02211 =??+??T V T V αα。 1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。推导如下: 对于一个双极性器件,其集电极电流)/(exp T BE S C V V I I =,其中q kT V T /=,

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

带隙基准源电路与版图设计

带隙基准源电路与版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 °C ~ ~ 85 °C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. I

带隙基准学习笔记

带隙基准设计 A.指标设定 该带隙基准将用于给LDO提供基准电压,LDO的电源电压 变化范围为1.4V到3.3V,所以带隙基准的电源电压变化范围与 LDO的相同。LDO的PSR要受到带隙基准PSR的影响,故设计 的带隙基准要有高的PSR。由于LDO是用于给数字电路提供电源,所以对噪声要求不是很高。下表该带隙基准的指标。 电源电压1.4V~3.3V 输出电压0.4V 温度系数35ppm/℃ PSR@DC,@1MHz-80dB,-20dB 积分噪声电压(1Hz~100kHz)<1mV 功耗<25uA 线性调整率<0.01%

B.拓扑结构的选择 上图是传统结构的带隙基准,假设M 1~M尺寸相同,那么输 3 出电压为 R 2 V REF VlnNV BE T3 R 1 V是负温度系数,对温度求导数,得到公式(Razavi, BE Page313): V BE3BE3(4)Tg/ VmVE TT q 其中, 3 m。如果输出电压为零温度系数,那么: 2 V REF V BE 3 TT k q lnN R 2 R 1 得到: kV BE(4m)V T E g/ R 3 2 lnN qRT 1 q 带入: R

2 V REF VlnNV BE T3 R 1 得到:

E g V REF(4m)V T q 在27°温度下,输出电压等于1.185V,小于电源电压1.4V,可这个电路并不能工作在1.4V电源电压下,因为对于带隙基准 里的运放来说,共模输入范围会受到电源电压限制,电源电压的最小值为: VDD min V BE VV 2GS_input_differential_pairover _drive_of_current_source 其中,V是三极管Q2的导通电压,V GS_input_differential_pair是运放差 BE2 分输入管对的栅源电压,V____是运放差分输入管对尾 overdriveofcurrentsource 电流源的过驱动电压。 对于微安级别的电流,可以认为: V GS V TH 这里将差分输入对的体和源级短接以减小失配,同时阈值电 压不会受到体效应的影响。假设差分对尾电流源的过驱动电压为 100mV,那么,电源电压的最小值为: VDD min V BE2V TH_input_differential_pair100mV 下表列出了smic.13工艺P33晶体管阈值电压和三极管的导通电压随Corner角和温度变化的情况: V-40°27°80° TH slow-826mV-755mV-699mV typical-730mV-660mV-604mV fast-637mV-567mV-510mV BJT的V-40°27°80° BE slow830mV720mV630mV typical840mV730mV640mV fast860mV750mV660mV 可以计算出在不同温度的Corner角下电源电压的最小值: VDD-40°27°80° min slow1.756V1.575V1.429V typical1.67V1.49V1.344V fast1.597V1.417V1.27V 可以看出,对于大部分情况,1.4V电源电压无法保证带隙基 准中运放的正常工作,所以必须改进电路结构,使其可以工作在 1.4V电源电压下。

带隙基准设计实例

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、温度系数:ref F V TC V T ?=? 2、电压系数:ref F dd V VC V V ?= ? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是 2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、 温度系数:ref F V TC V T ?=? 2、 电压系数:ref F dd V VC V V ?=? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

低电压带隙基准电压源设计

低电压带隙基准电压源设计 基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。随着CMOS 工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。本文采用一种低电压带隙基准结构。在TSMC0.13μmCMOS工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。 1 传统带隙基准电压源的工作原理 传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。图1所示是传统的带隙基准电压源的核心部分的结构。其中双极型晶体管Q2的面积是Q1的n倍。 假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有: VBE1=VBE2+IR1 (1)

其中,VBE具有负温度系数,VT具有正温度系数,这样,通过调节n和R2/R1,就可以使Vref得到一个零温度系数的值。一般在室温下,有: 但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。 2 低电源带隙基准电压源的工作原理 低电源电压下的带隙基准电压源的核心思想与传统结构的带隙基准相同,也是借助工艺参数随温度变化的特性来产生正负两种温度系数的电压,从而达到零温度系数的目的。图2所示是低电压下带隙基准电压源的核心部分电路,包括基准电压产生部分和启动电路部分。

带隙基准实验报告

基本带隙基准电压源设计 一、实验要求 1、设计出基本的带隙基准 2、设计出低压带隙基准 二、实验目的 1、掌握PSPICE的仿真 2、熟悉带隙基准电压设计的原理 三、实验原理 模拟电路广泛的包含电压基准和电流基准。这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。产生基准的目的是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。要实现基准电压源所需解决的主要问题是如何提高其温度抑制与电源抑制,即如何实现与温度有确定关系且与电源基本无关的结构。由于在现实中半导体几乎没有与温度无关的参数,因此只有找到一些具有正温度系数和负温度系数的参数,通过合适的组合,可以得到与温度无关的量,且这些参数与电源无关。 负温度系数电压:双极性晶体管的基极-发射极电压,或者更一般的说,p-n 结二极管的正向电压,具有负的温度系数。 正温度系数电压:如果两个双极晶体管工作在不相等的电流密度下,那么它们的基极-发射极电压的差值与绝对温度成正比,且正温度系数与温度或集电极电流的特性无关。 利用上面得到的正、负温度系数的电压,通过合适的组合,我们就可以设计出一个零温度系数的基准。由于这个基准电压与硅的带隙电压差不多,因而称为带隙基准。 1、基本带隙基准 1.1基本的原理图如图1所示:

图1 基本带隙基准原理图 其中,MOS 管M1-M3的宽长比相同,Q1由n 个与Q2相同的晶体管并联而成。运放起嵌位作用,使得X 点和Y 点稳定在近似相等的电压。 1.2带隙电压公式推导: 对于一个双极性晶体管,我们可以写出其集电极电流公式为:BE T V V C S I I e =,其中 T kT V q = ,S I 为饱和电流,则可以推导出: ln C EB T S I V V I =。 假设运算放大器的增益足够高,在忽略电路失调的情况下有: 21 122 EB EB R R V V I I R -== 2 ln ln C C T T S S I I V V I nI R -= 2 ln T V n R = 则带隙基准电压为: (1) (2)

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析 摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。 基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。 在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。它利用了齐纳二极管被反向击穿时两端的电压。由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。 1971年,Widlar首次提出带隙基准结构。它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。 以上经典结构奠定了带隙基准理论的基础。文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。 1 带隙基准源工作原理 由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。 为得到与温度无关的电压源,其基本思路是将具有负温度系数的双极晶体管的基极-发射极电压VBE与具有正温度系数的双极晶体管VBE的差值△VBE以不同权重相加,使△VBE 的温度系数刚好抵消VBE的温度系数,得到一个与温度无关的基准电压。图2为一个基本的CMOS带隙基准源结构电路。

带隙基准

带隙基准电压源实验报告 一、实验名称:带隙基准电压源 二、实验目的: 1.熟悉掌握Orcad captureCIS的使用方法以及常见的仿真方法和参数设置。 2.利用Orcad captureCIS设计带隙基准电压源,并完成要求功能。 3.掌握带隙基准电压源的设计原理及计算方法。 三、实验步骤: (一)参数设置: 1.电源电压VCC= 2.7V,室温下(T=300K)时,IEQ=10uA。 2.确定电路结构后,预选两三极管的发射结面积之比为8,则有公式IEQ=VT*ln(8)/R1,计算可得R1=5.4K。 3.且由Vref=Vbe+αVT,当α=17.2时,使得Vref对温度T的偏导数为0,构成一个带隙基准电压源。而α=(1+R2/R1)ln(8),由R1=5.4K计算得R2=39.3K。 5.再由各级电流确定各放大MOS管以及启动电路MOS管的宽长比。 6.进行仿真验证。 (二)步骤及结果: 1、画出电路结构,按照以上计算的参数设置,电路如图所示: 如上图所示,R1取值为5.4K时,进行温度扫描,所得结果,如下图所示:

由图形曲线可以看出,温度偏移了我预想设置的温度,说明计算存在偏差,我通过改变R1的值来调节,使Vref在室温下是一个定值,且达到最大。如下为参数扫描的曲线,确定R1: 由图形可以看出,在不同的温度下,Vref的变化,以及其随R1的变化。当R1=5.6K时,所有曲线相交于一点,说明当R1=5.6K时,Vref在室温时能达到最大值,更改R1的值后,所得扫描曲线Vref 随温度的变化为: 由图所示,当温度在22~35度之间,Vref为一定值,所得基准电压比较稳定,结果比较满意。 2、仿真验证正温度系数电压,结果如图所示:

带隙基准源电路与版图设计.

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 I

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout II

带隙基准电压源设计

基于BiCMOS工艺的带隙基准电压源设计 叶鹏1,2,文光俊1,2,蔡竟业1, 王永平2 (1.电子科技大学 通信与信息工程学院,四川 成都 610054) (2.广州润芯信息技术有限公司,广东 广州 510663 ) 摘要:电压基准是模拟集成电路的重要单元模块,本文在0.35um BiCMOS工艺下设计了一个带隙基准电压源。仿真结果表明,该基准源电路在典型情况下输出电压为1.16302V,在-45℃~105℃范围内,其温度系数为3.6ppm/℃,在在电源电压为3V~3.6V范围内,参考电压从.16295V~1.16308V,变化了130uV,电源电压调整率为0.0186%/V。 关键字:带隙基准电压源;温度系数;电源电压调整率;BiCMOS 中图分类号 TN782 文献标识码 A A Veference Voltage Circuit Design on BiCMOS Technology YE Peng1,2,WEN Guang-jun1,2,CAI Jing-ye1,WANG Yong-ping2 (1 School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610054) (2 Guangzhou Runxin Information Technology Co. LTD, Guangzhou Guangdong 510663) Abstract:voltage reference is a critical module in analog integrated circuit.this paper design a bandgap voltage reference,the simulation result demonstrate that the output voltage is 1.16302V in typical,the temperature coefficience is 3.6ppm/℃when temperature from -45℃ to 105℃,the reference voltage is from 1.16295V to 1.16308V when power voltage 3V~3.6V,the vary Is 130uV, Keywords: bandgap voltage source;temperature coefficience;Line Sensitivity;BiCMOS 1引言 设计基准电路的目的就是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。基准源在模拟和混合集成电路中应用非常广泛,比如数据转换电路和稳压电路中。[1]在通常情况下,理想的基准电路是与温度、工艺参数以及电源电压无关的,但是实际中各种因素的影响不可避免,那么就要尽量减少各种不确定因素的影响。在设计时除了考虑温度、电源和工艺的不确定性以外,基准电路的其他一些参数也是十分关键的,如输出阻抗、输出噪声、功耗和版图面积。本文在分析了带隙基准电路原理的基础上,设计了一个低温度系数、低电源电压调整率的基准电压源。 2带隙基准电压源的原理

带隙基准源

带隙基准源 基本指标:共模抑制比(高);开环增益();失调电压(低);压摆率();随温度变化率/系数(低);温漂(低);功耗(低);相位裕度,理想相位裕度60°; 温度系数TC(temperature coefficient):指温度变化引起的输出电压的变化,一般用ppm/℃来表示。温度系数反映基准源在整个工作温度范围内输出电压最大值与最小值相对正常输出时的变化,对于一阶补偿的带隙基准源电路而言,温度系数一般在几十ppm/℃,经过二阶或高阶的非线性补偿的电路,温度系数可以达到几个ppm/℃以下。目前常用的高阶温度补偿技术包括:二阶曲线补偿技术[10],指数曲线补偿技术,线形化V BE的技术[11],基于电阻比值的温度系数的曲线补偿方法等。 线性调整率:用来描述直流情况下电源电压波动对基准电压的影响程度。调整率越小,基准输出电压越稳定。它是基准电压的直流特性参数,与瞬时状态无关。 电源抑制比:表示电源电压在小信号情况下的变化量与基准的变化量之比。亦即等于差分放大倍数与由于Vdd变化引起的放大倍数之比,表达式为A V (Vdd=0)/A V dd(Vin=0),它是基准电压的交流特性参数。 噪声:基准输出电压中的噪声通常包括宽带热噪声和窄带l / f 噪声。宽带噪声可以应用RC滤波器等电路有效的过滤清除。而l / f 噪声是基准源内在固有的噪声,不能被滤除,一般在0.1到10Hz范围内发挥作用。对高精度系统,低频的l / f 噪声的影响是一个重要的参数。 建立时间:指电源上电后,基准源输出达到正常值所需的时间。

表4-1电压基准源设计指标 设计指标描述最小值典型值最大值单位工作温度-40 27 85 ℃工作电压 4.5 5 5.5 V 输出电压 1.24/2.48 1.25/2.50 1.26/2.52 V 输出电流 2 mA 温度系数30 ppm/℃电源纹波抑制比(2MHz) -20 -30 -50 dB 采用自举输入还有以下优点:1)消除了Q1和Q2管的厄尔利效应不对称对K CMR的影响,同时,Q1,2的基极电压和Q5,6的基极电压将随输入共模电压变化,形成共模反馈,所以,K CMR得以大大提高;2)V CB1,2≈0,能有效地消除集-基反向漏电流I CBO对I B的有害干扰;3)由于基极电流很小,所以,该电路有很高的输入阻抗。

一种高精度的CMOS带隙基准电压源

一种高精度的CMOS 带隙基准电压源 黄晓敏,沈绪榜,邹雪城,蒋 湘 (华中科技大学图像识别与人工智能研究所,湖北省武汉市430074) 【摘 要】 设计了一种采用0.25μm CMOS 工艺的高精度带隙基准电压源。该电路结构新颖, 性能优异,其温度系数可达3×10-6/℃,电源抑制比可达75dB 。还增加了提高电源抑制比电路、启动电路和省功耗电路,以保证电路工作点正常、性能优良,并使电路的静态功耗较小。 关键词:CMOS ,带隙,基准电压源中图分类号:TN492 收稿日期:2003208211;修回日期:2003210211 0 引 言 基准电压源广泛应用于A/D 和D/A 转换器、数 据采集系统、电压调节器以及各种测量设备,其精度和稳定性直接决定了整个系统的精度。电压基准源有基于正向V BE 的电压基准、基于齐纳二极管反向击穿特性的电压基准、带隙电压基准等多种。其中,带隙电压基准具有低温度系数、高电源抑制比、低基准电压以及长期稳定性等优点,因而得到广泛应用。 本文提出了一种结构比较新颖的基准电压源电路,具有较低的温度系数和较高的电源抑制比。此外,还增加了提高电源抑制比电路、启动电路和省功耗电路,以保证电路工作点正常、性能优良,并使电路的静态功耗较小。 1 电路结构 1.1 带隙基准原理 由于双极型晶体管的基极2发射极电压V BE 呈负温度系数,而两个双极型晶体管工作在不同的工作电流时,它们的基极2发射极电压差ΔV BE 正比于绝对温度。故取: V REF =V BE +K ΔV BE (1)将式(1)对温度微分,并代入V BE 和ΔV BE 的温度系数,就可以求得合适的K 值。理论上,V REF 的温度系 数可以为0,并且V REF 几乎不受电源电压变化的影响。所以,V REF 的温度系数很小,同时也有较好的电源抑制比。1.2 带隙基准压的核心电路如图1所示的功耗控制开关,当CTR 为低电平时,M12导通,M13关闭,则N 3点电位为高,M5关 闭,差分放大器尾电流为0,差分放大器没有工作,整个电路也没有工作,处于省功耗状态;当CTR 为高电平时,M12关闭,M13导通,则M11~M16组成的偏置电路为N 3点提供合适的偏置电压V N 3,使得差分放大器以及整个电路正常工作。M1~M5组成差分放大器,M6和M9组成共源放大器,差分放大器输出端接到M6的栅上,则M1~M6以及M9组成二级运放,电容C0为补偿电容。同时,M9进行电流映射,使流过双极型晶体管Q1、Q2和Q3的电流相等。Q1和Q2支路上的N 1、N 2点反馈到差分放大器的差分输入端,形成负反馈;运放增益较大时,电路处于深度负反馈,当电路平衡时,节点N 1、N 2点电位相等 。 图1 带隙基准电压源核心电路   设流过Q2和Q2和Q3的电流都为I ,则有: V BE2=V BE1+IR 1 (2) 得到: I = V BE2-V BE1 R 1 (3) 设Q1发射区面积是Q2的M 倍,则 V BE1=k T q ln I M I s (4)V BE2= k T q ln I I s (5) 将式(4)、式(5)代入式(3),则 ? 31?第30卷第3期2004年3月 电子工程师 EL ECTRON IC EN GIN EER Vol.30No.3  Mar.2004

电压基准源选型

摘要:电压基准源简单、稳定的基准电压,作为电路设计的一个关键因素,电压基准源的选择需要考虑多方面的问题并作出折衷。本文讨论了不同类型的电压基准源以及它们的关键特性和设计中需要考虑的问题,如精确度、受温度的影响程度、电流驱动能力、功率消耗、稳定性、噪声和成本。 几乎在所有先进的电子产品中都可以找到电压基准源,它们可能是独立的、也可能集成在具有更多功能的器件中。例如: 在数据转换器中,基准源提供了一个绝对电压,与输入电压进行比较以确定适当的数字输出。在电压调节器中,基准源提供了一个已知的电压值,用它与输出作比较,得到一个用于调节输出电压的反馈。在电压检测器中,基准源被当作一个设置触发点的门限。 要求什么样的指标取决于具体应用,本文讨论不同类型的电压基准源、它们的关键指标和设计过程中要综合考虑的问题。为设计人员提供了选择最佳电压基准源的信息。 理想情况 理想的电压基准源应该具有完美的初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。实际应用中,设计人员必须在初始电压精度、电压温漂、迟滞以及供出/吸入电流的能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。 齐纳二极管和并联拓扑 齐纳二极管优化工作在反偏击穿区域,因为击穿电压相对比较稳定,可以通过一定的反向电流驱动产生稳定的基准源。 齐纳基准源的最大好处是可以得到很宽的电压范围,2V到200V。它们还具有很宽范围的功率,从几个毫瓦到几瓦。

齐纳二极管的主要缺点是精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如:BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V之间变化,即精确度为±8%,这只适合低精度应用。 齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 埋入型齐纳二极管是一种比常规齐纳二极管更稳定的特殊齐纳二极管,这是因为采用了植入硅表面以下的结构。 作为另一种选择,可以用有源电路仿真齐纳二极管。这种电路可以显著改善传统齐纳器件的缺点。MAX6330就是一个这样的电路。负载电流在10 0μA至50mA范围变化时,具有1.5% (最大)的初始精度。此类IC的典型应用如图1所示。 图1.

相关主题
文本预览
相关文档 最新文档