当前位置:文档之家› 风力发电课程设计 风力机叶片设计

风力发电课程设计 风力机叶片设计

风力发电课程设计   风力机叶片设计
风力发电课程设计   风力机叶片设计

课程设计

设计题目:风力发电技术课程设计

课程设计要求

一、课程设计的目的和意义

通过课程设计使学生能综合运用所学基础理论、基本技能和专业知识,联系生产及科研实际完成某一课程设计题目。培养学生分析和解决工程问题的能力以及一定的科研、实践能力;培养学生严谨、求实的治学方法和刻苦钻研、勇于探索的精神;培养学生的业务素质、创新意识和团队精神等。课程设计过程中,深化有关理论知识,扩大知识面,获得阅读文献、调查研究、总结提炼以及使用工具书和写作等方面的综合训练。通过课程设计工作可以有效地检验“教”、“学”质量。

二、课程设计对学生的要求

1. 指导教师指导下,学生在规定时间内正确、相对独立地完成一项给定任务的全过程,包括资料收集、调研、方案比较、数据采集与处理、计算与结果分析、总结提炼观点、得出结论、绘制有关图表、编写设计报告、说明讲解与回答问题、课程设计考核等。严禁以任何方式抄袭他人成果或网上相关文章,也不能请他人代替完成设计,一经发现,课程设计成绩按不及格处理。

2. 根据设计任务书要求,学生在设计开始较短时间内(1-2天)应掌握所进行课程设计的内容,包括:资料收集与准备、设计任务与思路、工作任务分解、各阶段任务的时间分配、

暂时存在的问题等。

3. 设计过程中,学生应主动向指导教师汇报工作进度和遇到的疑难问题,争取指导教师的指导和监督。指导教师会随时进行指导,并抽查学生的设计进展情况。

4. 学生应严格遵守纪律。按指导教师要求,在规定时间、固定教室内进行设计,如有特殊情况,应及时告知指导教师,严格请假制度。

5. 设计考核前学生需提交课程设计报告,设计报告应按照相关规范进行撰写,并按指导教师要求整理、修改,及时上交。晚交设计报告,成绩降档处理;不交设计报告,按不及格处理。

6. 属下列情况之一者,不予考核并取消设计成绩:

(1)没有保证设计时间,缺席时间三分之一以上者或未完成规定任务的最低限度要求;

(2)剽窃他人设计结果或直接照抄他人设计报告;

(3)设计结果存在较大错误,经指导教师指出而未修改;

(4)设计结果在书写或其他方面未满足规定的最低要求。

三、课程设计考核

1.课程设计的过程考核

(1) 学生是否按设计任务书所提出的要求与时间,完成各阶段所规定的任务。

(2) 设计完成的质量和完成过程中所表现的创造性和学习态度,包括出勤情况等。

(3) 学生是否较好掌握设计所涉及的基础理论、基本技能和专业知识等。

(4) 设计报告思路是否清晰,文字、公式及图表等是否符合规范,报告上交是否及时等。

(5) 必要时学生需上交课程设计草稿,设计结束当天进行答辩或笔试考核等。

2.课程设计的成绩评定

课程设计成绩评定采用优秀、良好、中等、及格和不及格五级分制记分,成绩包括平时答疑成绩、设计说明书成绩和答辩成绩三部分,其中平时答疑占20分,设计说明书成绩占40分,答辩成绩占40分。

设计内容及要求

- 1 -

- 2 -

- 3 -

第一章绪论

1.引言

随着化石能源的过渡消耗以及其对环境带来的严重影响,风能凭其清洁、可循环利用等诸多优点而越来越受到重视,各国都在积极开发利用本国的风能资源,中国也不例外。探索小型风力发电机复合材料叶片设计与制造方能源是人类社会发展的不竭动力,现今化石能源的日益枯竭和其带来的环境污染问题成为困扰社会的两大难题。破解迷局的重要方式之一是用清洁

- 4 -

能源代替传统能源,而风力发电正是清洁能源中技术最成熟,价格最接近传统火力发电的新能源。

风力发电在全球方兴未艾,欧洲计划在2020年使风力发电量达到总发电量的12%,其他各发达国家也正在大力发展风力发电。中国风能资源丰富,非常适合发展风力发电技术。本文对占我国面积50%地域的风能可利用区进行了研究,这里居住着我国绝大多数的贫困人口、农牧民和边防军人,发展适合那里的偏低风速风力发电技术可以改善生活条件和生存环境并且可以促进当地的经济发展。

风能可利用区大于3m/s风速每年只有2000~4000h,而如今的风能发电技术都属高风速技术,启动风速较高,不适合在这一地区应用。要更高效的利用这么广大地域的风能只有发展新型适合偏低风速地域的风力发电技术,而叶片又是风力发电机中最重要的单元。叶片设计的好坏决定了风力发电机的优劣。

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。

《风力机空气动力学课程设计》是风能与动力工程专业中重要的实践性教学环节。通过该教学环节,使学生熟练掌握风力机叶片工作原理,并能够通过结合动量叶素理论相关知识与给定的环境条件设计出工作叶片,巩固和提高其风力机叶片设计及制造知识,树立其理论知识指导设计的工作思想,加深其对现场生产实际的了解,培养其对工程技术问题严肃认真、负责的态度,为其以后从事实际工作打下坚实的基础。

2.设计任务简述。

(1)、课程设计的流程

- 5 -

(2).概念设计内容

a.叶轮直径计算与设计

b.额定风速与转速的确定

c.功率控制方式

e.叶片性能分析与计算

f.叶片造型的设计

第二章叶片设计理论

1、叶素理论

叶素理论的基本出发点是将风轮叶片沿展向分成许多微段,称这些微段为叶素。假设在每个叶素上的流动相互之间没有干扰,即叶素可以看成是二维翼型,这时,将作用在每个叶素的

- 6 -

- 7 -

力和力矩沿展向积分,就可以求得作用在风轮上的力和力矩。

对每个叶素来说,其速度可以分解为垂直于风轮旋转平面的分量0y V 和平行风轮旋转平面的分量0y V ,速度三角形和空气动力分量如图2-3所示。图中:Φ角为入流角,α为迎角,θ为叶片在叶素处的几何扭角。

合成气流速度0V 引起的作用在长度为dr 叶素上的空气动力d a F 可以分解为法向力n dF 和切向力t dF ,d a F 和t dF 可分别表示为

201

2n n dF cV C dr

=ρ (2-1)

201

2t t dF cV C dr

其中 ρ——空气密度;c ——叶素剖面弦长;;e 、q ——分别表示法向力系数和切向力系数,即

n cos sin l d C C C =φ+φ

(2-2)

sin cos t l d C C C =φ+φ

这时,作用在风轮平面dr 圆环上的轴向力可表示为

2

01cv 2

n dT B C dr =ρ (2-3) 式中 B--叶片数。

作用在风轮平面dr 圆环上的转矩为

- 8 -

2

01cv 2

t dM B C rdr =ρ (2-4)

2、动量叶素理论

为了计算作用在风轮叶片上的力和力矩,必须计算风轮旋转面中的轴向诱导 因子a 和周向诱导因子b ,这就需要用动量——叶素理论来求解。 因为

2

14v (1

)d T a a r d r π=ρ- 和

31=4v (1)dM b a r dr πρ- (2-5)

由叶素理论可得 201

cV 2

n dT B C dr =

ρ 和 (2-6) 2

01cV 2

t dM B C rdr =ρ

综上可得

2

02

1

(1)4n V a a C V σ-= (2-7) 式中

2Bc r

πσ=

(2-8)

由图(2-3)所示的速度三角形和式

010(1)

(1)x y V V a V r b =-=Ω+ (2-9)

可得 10

(1)s i n a V V -φ= (2-10)

整理后可得

214sin n C a a σ=-φ (2-11)

同理314(1)dM

V b a r dr π=ρΩ- (2-12)

由上述公式可得

- 9 -

2

01(1)4r

t V b a C V σ-Ω (2-13)

由图2-3所示的速度三角形和式(2-9)可得

cos (1)

r

b V Ωφ=+ (2-14) 将式(2-10)和式(2-14)代入式(2-13)可得

(1)4sin cos t C b b σ=+φφ (2-15)

如果考虑普朗特叶尖损失修正因子

2r arccos[exp()]2sin B R F r π-=-φ

(2-16)

则式(2-11)和式(2-16)可表示为

n 2144s i n C a

a F σ=-φ (2-17)

这样,根据上面的关系式就可以通过迭代方法求得轴向诱导因子a 和周向诱导因子b ,迭代步骤如下

①_x0001_ 设a 和b 的初值,一般可取0 ;

③计算入流角1

(1)arctan (1)a V b r

-φ=+Ω

③计算迎角θα=φ-

④根据翼型空气动力特性曲线得到叶素的升力系数l C .和阻力系数d C : ⑥计算叶素的法向力系数n C .和切向力系数t C 。

cos sin sin cos n l d t l d C C C C C C =φ+φ=φ+φ

⑥计算a 和b 的新值

- 10 -

214sin 14sin cos n t C a a F C b b F σ=

σ=

+φφ

⑦比较新计算的a 和b 的值与上一次的a 和b 值,如果误差小于设定 的误差值(一般可取0.001),则迭代终止;否则,再回到②继续迭 代。

需要指出的是:当风轮叶片部分进入涡环状态时,动量方程不再适用;这时, 可用下面的经验公式对动量——叶素理论进行修正。 ①_x0001_ 尔森(Wilson)修正方法 当a >0.38时,将第⑥步中的

214sin n C a a F σ=-φ

. 由

22

(0.5870.96)(1)4sin n C a a F σ+=-φ

(2-18) 代替。 ②葛劳渥特(Glarert)修正方法

当a >0.2时,将第⑥步中的214sin n C a

a F σ=-φ

由1[2(12)]2

c a k a =+- (2-19) 代替。

式中 24s i n n

F k C φ=σ

0.2c a ≈ (2-20)

需要指出的是:在上述计算轴向诱导因子a 和周向诱导因子b 时,都假定风 轮的锥角Z 为零,当风轮的锥角不为零时,则式(2-11)、(2-15)可分别表示为

22c o s 14s i n 14s i n c o s

n x t

C X a

a C

b b σ=-φσ=+φφ (2-21)

- 11 -

式中2rcosx

x Bc

πσ=

(2-22)

根据上面的方法就可以用选代方法求得风轮有锥角时的轴向诱导因子a 和 周向诱导因子b 。

3、葛劳渥旋涡理论及叶片外形的确定

葛劳渥旋涡理论是由美国马萨诸塞州阿默斯特大学的研究者建立的一种风轮理论模型,它考虑了气流通过风轮后的旋涡效应以及气流由旋涡效应而产生的诱导速度。 (1)、风轮的旋涡系

风轮的叶片是有限长度的,葛劳渥旋涡理论表明在通过风轮的气流中,在风轮平面及风轮后方都会产生后缘旋涡系,旋涡系由两个主要旋涡组成:一个靠近轮毂,另一个在叶尖.当风轮旋转时,通过叶尖和轮毅的气流随后成螺旋状,各后缘旋涡本身也成螺旋形,并证明了通过风轮平面的气流旋转速度是风轮后方气流旋转速度的一半.空间给定一点处的风速可以看作是未受干扰的风速和旋涡系诱导速度的合成,而旋涡诱导速度本身又可看成是以下三个旋涡系诱导速度的合速度:

(a)以风轮轴线为中心的旋涡: (b)附着在各个叶片上的旋涡; (c)从各个叶尖流出的螺旋状旋涡。 葛劳渥漩涡系如图2-4所示.

图2-4风轮漩涡系

(2)、叶片外形的确定

所谓叶片外形的确定即确定叶片不同旋转半径处叶素的弦长、安装角等,并根据这些叶素构造出整个叶片的形状。本文根据葛劳渥旋涡理论,给出风力机叶片在给定旋转半径,处叶素

- 12 -

的弦长和安装角的计算公式·参照图2-7,设风轮叶片数为b ,风轮的转速为ω,在风轮后方的气流中,相对于叶片的转速为+ωΩ,设

+=h ωΩω,h

称为周向诱导因子,则

(1)h Ω=-ω,根据葛劳渥旋涡理论,则气流通过风轮平面时相对于叶片的角速度可表达为:

1+h

()22

Ωω+=ω (2-23)

在距转轴,处,叶素的圆周线速度为:

1()2

h U r +=ω (2-24)

参照贝茨理论中对风速的定义,设21V kV =,k 称为轴向诱导因子,通过风轮的轴向速度可表达为:

121+1k

22

V V V V +=

= (2-25) 根据叶素理论和图2-6,在半径为r ,处叶素的倾角I 和相对速度W(此处只研究速度的大小,故采用标量形式)为:

'111cot 11U r h h l V V k k

ω++===λ++ (2-26)

()11(1)2sin 2cos r h V h W I I

ω++== (2-27) 根据叶素理论有:

2121

21

2

l d d dR C W Idr

dR C W Idr =ρ=ρ (2-28)

将dR 投影到转轴上,再投影到圆周速度U 方向上,可dR 的轴向分力:

21

cos sin (cos sin )2

V t d l d dF dR I dR I lW dr C I C I =+=ρ+ (2-29)

dR 的切向分力:

- 13 -

21

sin cos (sin cos )2

M f d l d dF dR I dR I lW dr C I C I =-=ρ- (2-30)

由图2-6得到关系式//d l d l tg dR dR C C ε==,ε为叶素升力dRf 与总的空气动力dR 之间的夹角,由此关系式可将上两式 写为:

21cos()2cos v l I dF lw C dr -ε=ρε (2-31)

21sin()2cos u l I dF lw C dr -ε=ρε

(2-32)

则整个风轮位于( r,r+dr)之间的叶素所产生的轴向推力可写为:

2

1c o s ()2c o s

v l

I dF bdF lbw C dr -ε==ρε (2-33) 所产生的空气动力扭矩为:

2

1sin()2cos u l I dM rbdF brlw C dr -ε==ρε

(2-34)

接着考虑气流通过风轮时的动量变化情况。由动量定量可知,推力dF 等于通过圆环形单元的质量rtl 与轴向速度变化量的乘积,即:

12d ()F m v m V V =?=-,由于12(1+k)m rdrV rdr V ππ=ρ=ρ,则:

221(1)dF rdrV k π=ρ- (2-35)

同理。考虑角动量矩可得单元扣矩dM :

22dM r m mr =?ω=Ω (2-36)

式中()1h ?ω=Ω=-ω,于是得到:

31dM dr rV (1)(1)r k h π=ρω+- (2-37)

结合叶素理论和动量定理的结果:

由dF 表达式并将1V 及其函数W 代换后得到:

22212

2(1)cos 8(1)cos sin bl=cos()(1+k)cos()

l rV k r k I

C W I I ππ-ξ-ξ=-ξ-ξ (2-38) 转换后得到;

- 14 -

2cos(118cos sin )

l C bl I k k r I π-ξ)-=+ξ (2-39) 由dM 的表达式可得:

212

2(1)(1)cos 4(1)sin 2cos sin()(1)sin()

l rV k h r h I C bl W I h I ππ+-ξ-ξ==-ξ+-ξ (2-40) 转换后得到:

sin((1)(1)8sin 2cos )

l C bl I h h r I π-ξ)-=+ξ (2-41)

将(2-39)、(2-41)两式相除得:

(1)(1)

cot()cot (1)(1)

k h I I h h -+=-ξ-+ (2-42)

在确定轴向诱导因子K 和周向诱导因子h 倾角I 及弦长l ,时,根据使功率系数p C ,能得到最大值,同时假设风轮无阻力,即0,/0,0d d l C tg C C =ξ==ξ=。 此时式(2-42)可写为:

22

22

(1)(1)(1)

cot (1)(1)(1)k h h I h k k -+λ+==-++ (2-43)

整理后解得:

h = (2-44)

当风通过环形区域(r ,r+dr)时风机所能得到的功率为:

231V (+k)(h-)r dp dM dr =ω=ρπω11 (2-45)

结合贝茨理论中的功率系数的概念得到:

231

(+k)(h-)V p dp C ==λρπ11 (2-46)

将式(2-44)代入此功率系数表达式得:

2

(+k)1p C ??=λ-???

1 (2-47)

- 15 -

对于给定的λ值,当要使功率系数有最大值,则必须d 0p C dk

=。

经过计算,当k 满足方程:

2

213431

k k k -+λ=- (2-48)

时可得到最大值。

将式(2-48)改写为:

22243(1)10k k -λ++λ+= (2-49)

并设:

k θ= (2-50)

将式(2-50)值代入式(2-48)后除以3

2

2

1)(λ+非并由此计算得到中间变量θ的表达式:

111cos arctan 333

3θ-??ππ

θ=+=λ+ (2-51) 对于每个λ值,可以根据式(2-50)、(2-51)确定k 和θ。 计算倾角I 和参量l C bl 的公式也可由前面的推导得出:

1cot 1h I k

+=λ+ (2-52)

()28(1)cos sin 1cos()

l r h I C bl k I θπ-ε=+- (2-53)

为了便于计算l C bl 的值,仍然假设风轮无阻力即ξ=0。 此时Ctbl /r 的表达式可以写为:

811

l k C bl r π-= (2-54)

利用此关系式即可确定在某一半径R 处叶素的弦长l

- 16 -

图2-5

说明:由于假设0d C =,即d tg C ξ=/c,=o ,简化了计算,但实际的风机是不可能没

有阻力的,即tg ξ≠o 。而是等于所在运行攻角的/d l C C 值.这时计算出的倾角、弦长等参数会和用公式(2-54)算得的有差别,只是此时tg ξ值很小,只有0.02,如图2-5所示,其值对结果的影响很小,故不再探讨其影响的大小。

本章小结:

本章主要介绍了风力机的相关基本理论,这些理论是随着流体力学和空气动力学的

发展并通过实践而建立起来的,其中贝茨理论是其他两种理论的基础,葛劳渥旋涡理论是一种比较完善的风力机叶片的设计理论理论,它综合利用前两种理论,并考虑气流的旋转效应同时结合动量定理得出叶片形状的设计公式,在第三章中将利用这些公式进行叶片的设计。

17

第三章 叶片的设计过程

(1)、计算风轮直径。利用公式

=2.8m 则风轮半径R=1.4mm 。

(2)、计算叶片长度。假设轮毂半径为80mm ,那么叶片长度b L 为

b L =R-r hub =1400-80=1320mm

(3)、等分叶片。把它分成15等份,则每等份为88mm ,取成整数后可以把

前14个截面段分为90mm ,这样,最后一个截面段为60mm 。

(4)计算各截面周速比。首先计算出额定叶尖速比r λ

r λ=1/(30)n R U π =

240 3.14 1.4

307.8

???

=4.51 计算各截面的周速比

0λ=r λ×0r R =4.51×80

1400=0.26

1=λr λ×1r R =170

4.510.551400

?

=

18

22260= 4.510.841400r r R λλ?=?= 33350

= 4.51 1.131400r r R λλ?=?=

44440

4.51 1.421400r r R λ=λ?=?=

55530

4.51 1.711400r r R λ=λ?=?=

66r 620

4.51 2.001400r R λ=λ?=?=

77710

4.51 2.291400r r R λ=λ?=?=

88800

4.51 2.581400r r R λ=λ?=?=

99890

4.51 2.871400r r R λ=λ?=?=

1010980

4.51 3.161400r r R λ=λ?=?=

11111070

4.51 3.451400r r R λ=λ?=?=

12121160

4.51 3.741400r r R λ=λ?=?=

13131250

4.51 4.031400r r R λ=λ?=?=

14141340

4.51 4.321400r r R λ=λ?=?=

5151400

4.51 4.511400

r r R λ=λ?=?=

(5)、确定各个截面的安装角和弦长。

1)、确定翼型的设计升力系数和最佳攻角

根据Profili 软件输入翼型型号NACA23012,可得到表3-1和图3-1、图3-2、图3-3及图3-4如下所示

风力发电场课程设计报告

课程设计(综合实验)报告( 2014 -- 2015 年度第1学期) 名称:风力发电场 院系:可再生能源学院 班级:风能1101班 学号: 学生姓名: 指导教师:韩爽刘永前 设计周数:2周 成绩: 提交日期:2014 年1月23 日

目录 一、课程设计目的 (1) 二、课程设计任务 (1) 三、课程设计要求 (1) 四、课程设计内容 (1) (一)测风数据处理 (1) (二)导入文件准备 (2) (三)W AsP软件计算 (3) 1.New Projection建立以及场址地图导入 (3) 2.风图谱的计算 (3) 3.测风塔的选定 (4) 4.宏观选址与风资源预测 (6) 5.Wind farm的建立与微观选址 (6) 6.风电场年发电量预测 (7) (四)WindFarmer优化计算 (9) 1.建立文件向导 (9) 2.载入地图文件 (10) 3.载入风资源数据 (10) 4.在栅格区域确定计算边界 (11) 5.安插风机 (12) 6.载入风力发电机机型文件 (13) 7.优化计算 (13) 8.生成报告 (14) (五)计算结果分析对比 (20) 1.年发电量 (20) 2.布机图 (21) 3.分析 (22) 五、课程设计个人总结 (22)

一、课程设计目的 通过使用W AsP、WindFarmer等软件,掌握风电场风能资源评估、微观选址原理及方法。 二、课程设计任务 根据风场测风数据及地形图,分别使用W AsP和WindFarmer软件,进行风资源评估和微观选址。具体包括: 1.对给定的风场测风数据进行处理; 2.使用经过处理后的测风数据,进行风资源评估,得到风图谱; 3.依据微观选址的基本原则,进行优化布机; 4.对两套不同软件的计算结果进行对比分析; 5.撰写设计报告。 三、课程设计要求 1.掌握风资源评估和微观选址的基本原理和方法; 2.掌握上述软件的使用方法; 3.独立撰写设计报告。 四、课程设计内容 (一)测风数据处理 分别选取各组数据,查看平均风速,70米高度处平均风速分别为7.574m/s 和 6.535m/s,在其他各高度处读出的平均风速分别为7.475m/s、7.219m/s、 6.897m/s、6.223m/s。由此判断70米高度处数据有一组异常。选取该组数据,应 用表格数据栏里的筛选功能,只选取0.3m/s、0.4m/s两个值,发现其他组数据有相应变化的风速,而该组数据始终为0.3m/s、0.4m/s。 删除异常数据,利用Windographer软件打开剔除后的测风数据,在相关性一栏查看两组70米高度处的数据相关性,得到相关性公式,在表格中利用该公式计算出需要修正的数据。至此,异常数据处理完成。 图4.1.1 测风数据

风力发电机组设计与制造课程设计报告

\ 《风力发电机组设计与制造》 课程设计报告 : 院系:可再生能源学院 班级:风能0902班 % 姓名:陈建宏 学号:04 指导老师:田德、王永

提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 ; 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)、 3)关键零部件(齿轮箱、发电机和变流器)技术参数; 4)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数; 5)完成叶片设计任务; 6)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装 MW 至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 . 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p曲线和C t曲线,风力机基本参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p曲线和C t曲线,计算几种关键零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。(3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机结构图分析风力发电机原理

风力发电机结构图分析风力发电机原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。风力研究报告显示:依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。下面先看风力发电机结构图。 风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。

风力发电机结构图指出:风力发电机因风量不稳定,故其输出的是13~25v变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220v市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。风力发电机结构图显示:目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200w风力发电机也可以通过大电瓶与逆变器的配合使用,获得500w甚至1000w乃至更大的功率出。 现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。 最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机。最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值。为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等。 齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分)。同时也使得发电机易于控制,实现稳定的频率和电压输出。偏航系统可以使风轮扫掠面积总是垂直于主风向。要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度。 风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距。对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距。在停机时,叶片要顺桨,以便形成阻尼刹车。 早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距。 就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率。然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机。 现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏。理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒。 风力发电机结构图显示:风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时监视齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元

西南交通大学钢桥课程设计75.4m详解

西南交通大学钢桥课程设计 单线铁路下承式栓焊简支钢桁梁桥 课程设计 姓名: 学号: 班级: 电话: 电子邮件: 指导老师: 设计时间:2016.4.15——2016.6.5

目录 第一章设计资料 (1) 第一节基本资料 (1) 第二节设计内容 (2) 第三节设计要求 (2) 第二章主桁杆件内力计算 (3) 第一节主力作用下主桁杆件内力计算 (3) 第二节横向风力作用下的主桁杆件附加力计算 (7) 第三节制动力作用下的主桁杆件附加力计算 (8) 第四节疲劳内力计算 (10) 第五节主桁杆件内力组合 (11) 第三章主桁杆件截面设计 (14) 第一节下弦杆截面设计 (14) 第二节上弦杆截面设计 (16) 第三节端斜杆截面设计 (17) 第四节中间斜杆截面设计 (19) 第五节吊杆截面设计 (20) 第六节腹杆高强度螺栓计算 (22) 第四章弦杆拼接计算和下弦端节点设计 (23) 第一节 E2节点弦杆拼接计算 (23) 第二节 E0节点弦杆拼接计算 (24) 第三节下弦端节点设计 (25) 第五章挠度计算和预拱度设计 (27) 第一节挠度计算 (27) 第二节预拱度设计 (28) 第六章桁架桥梁空间模型计算 (29) 第一节建立空间详细模型 (29) 第二节恒载竖向变形计算 (30) 第三节活载内力和应力计算 (30) 第四节自振特性计算 (32) 第七章设计总结 (32)

第一章设计资料 第一节基本资料 1设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。 2结构轮廓尺寸:计算跨度L=70+0.2×27=75.4m,钢梁分10个节间,节间长度d=L/10=7.54m,主桁高度H=11d/8=11×7.46/8=10.3675m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵梁计算宽度B0=5.30m,采用明桥面、双侧人行道。 3材料:主桁杆件材料Q345q,板厚 40mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35II、辊轴采用35号锻钢。 4 活载等级:中—活载。 5恒载 (1)主桁计算 桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m, 联结系p4=2.74kN/m,检查设备p5=1.02kN/m, 螺栓、螺母和垫圈p6=0.02(p2+ p3+ p4),焊缝p7=0.015(p2+ p3+ p4); (2)纵梁、横梁计算 纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。 6风力强度W0=1.25kPa,K1K2K3=1.0。 7工厂采用焊接,工地采用高强度螺栓连接,人行道托架采用精制螺栓,栓径均为22mm、孔径均为23mm。高强度螺栓设计预拉力P=200kN,抗滑移系数μ0=0.45。

DL_T_5383-2007风力发电场设计技术规范

风力发电场设计技术规范DL/T5383-2007 Technical specification of wind power plant design 1.范围本标准 规定了风力发电场设计的基本技术要求。本标准适用于 装机容量5MW及以上风力发电场设计。 2.规范性引用文件 GB5005935~110KV变电所设计规范 GB5006166KV及以下架空电力线路设计规范 DL/T5092110KV~500KV架空送电线路设计技术规程 DL/T5218220KV~500KV变电所设计技术规程 3.总则 3.0.1风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理 的要求。 3.0.2风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期 发展的关系,考虑后期发展扩建的可能。 3.0.3风力发电场的设计,必须坚持节约用地的原则。 3.0.4风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6风力发电场的设计应本着“节能降耗"的原则,采用先进技术、先进方法,减少 损耗。 3.0.7风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规 定。 4.风力发电场总体布局 4.0.1风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准 文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、 行业有关的法律、法规等技术资料、 4.0.2风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路 8.其他防护功能设施(防洪、防雷、防火) 4.0.3风力发电场总体布局,应以下因素: 1.应避开基本农田、林地、民居、电力线路、天然气管道等限制用地的区域。 2.风力发电机组的布置应根据机组参数、场区地形与范围、风能分布方向确定,并与本声规划容量、接入系统方案相适应。 3.升压站、中央监控室及场区建筑物的选址应根据风力发电机组的布置、接入系统的方案、地形、地质、交通、生产、生活和安全要素确定,不宜布置在主导风能分布的下风各或不安全区域内。 4.场区集电线路的布置应根据风力发电机组的布置,升压站的位置及单回集电线路的输送距离、输送容量、安全距离确定。

风力发电机组设计与制造课程设计报告

《风力发电机组设计与制造》 课程设计报告 院系:可再生能源学院 班级:风能0902班 姓名:陈建宏 学号 指导老师:田德、王永 提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数; 3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数;

4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机基本 参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种关键 零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。 4、进度计划

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

初中物理大题集练——能源与可持续发展

初中物理大题集练——能源与可持续发展 1、我市地处沿海,风力资源极为丰富,随着各项大型风力发电项目的建设,我市将成为广东省知名风力发电基地。如图甲是某地风力发电的外景。风力发电机组主要由风机叶片和发电机组成。请回答下列问题: (1)风力发电利用的是风能,风能是清洁的(选填“可再生”或“不可再生”)能源; (2)风机叶片具有质量轻、强度高、耐磨损等性能,通常用密度(选填“大”或“小”)、硬度大的复合材料制成;叶片形状像飞机的机翼,若叶片位置和风向如图乙所示,由于叶片两面空气流速不同而产差,使风叶旋转; (3)风叶产生的动力通过传动系统传递给发电机,发电机是利用原理,把机械能转化为电能; (4)某风力发电机的输出功率与风速的关系如图丙所示,由图像可以知道,当风速在v1到v2之间时,风速越大,发电机组的电功率; (5)请你根据图像判断,台风来临时,能否给风力发电带来最大的经济效益?(选填“能”或“不能”)。 2、如下图甲是我国某公路两旁风光互补路灯系统的外景,其中的风力发电机组主要由风机叶片和发动机组成;该风力发电机的输出功率与风速的关系图像如图乙所示。请回答: (1)风力发电利用的是风能,风能是清洁的、_____(填“可再生”或“不可再

生”)能源; (2)风力发电机利用_________原理把_________转化为电能; (3)由图乙图像可知,能使该风力发电机组产生电能的风速范围是_________(用图像中的字母表示); (4)下表给出的是在不同风速下该风力发电机的输出功率。请根据表中信息回答: ①当风速为8 m/s时,该风力发电机的输出功率为_________W; ②当风速为16 m/s时,这台风力发电机工作1 s所产生的电能可供1只“12 V 60W”电灯正常工作2 s,那么风力发电机发电的效率为_________。 3、2015年3月,全球最大的太阳能飞机“阳光动力2号”(如图所示)开始首次环球飞行,途径我国重庆和南京两个城市,此行的重要目的是传播新能源概念。 (1)该飞机白天飞行时,利用高效太阳能电池版将电磁能(太阳能)转化为____________能;夜间飞行时,利用其超轻薄离子电池储备的____________能转化为电能,首次实现昼夜飞行而不耗费一滴燃油。 (2)该机从重庆飞往南京的航程约为1260千米,用时17.5小时。则它的飞行速度为多少千米/小时? (3)为降低飞行时的能量消耗,该机选用新型轻质材料,取面积为1平方米,厚度为1毫米的新型材料,测得其质量为250克,则该材料的密度为多少?(4)该机计划从南京起飞后直飞美国夏威夷,是此次环球航行中最具挑战性的一段航程,飞行时间长达120小时,飞行过程中依靠平均功率为10千瓦的电动机提供动力,其消耗的能源全部由电池板吸收的太阳能提供,则此段航行中至少需要吸收多少太阳能?(太阳能电池板的转化功率约为30%) 4、如图所示,2015年3月31日,无需一滴燃料的世界最大太阳能飞机“阳光动力”2号降落在重庆江北国际机场,并于当天在重庆巴蜀中学开启中国首个

风力发电课程设计

1.风力发电发展的现状 1.1世界风力发电的现状 近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。 到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。 欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。 有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。 1.2我过风力发电的发展现状 我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。 自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。 我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。 2 风力发电机 2.1恒速恒频的笼式感应发电机 恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。 恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。 2.2变速恒频的双馈感应式发电机 变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。 双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。 双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的围按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

风力发电场设计技术规范----DL

风力发电场设计技术规范DL/T 2383-2007 Technical specification of wind power plant design 1. 范围本标准规定了风力发电场设计的基本技术要求。本标准适用于装机容量5MW 及以上风力发电场设计。 2. 规范性引用文件 GB 50059 35~110KV 变电所设计规范 GB 50061 66KV 及以下架空电力线路设计规范 DL/T 5092 110KV~500KV 架空送电线路设计技术规程 DL/T 5218 220KV~500KV 变电所设计技术规程 3. 总则 3.0.1 风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理的要求。 3.0.2 风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期发展的关系,考虑后期发展扩建的可能。 3.0.3 风力发电场的设计,必须坚持节约用地的原则。 3.0.4 风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5 风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6 风力发电场的设计应本着“节能降耗”的原则,采用先进技术、先进方法,减少损耗。 3.0.7 风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规定。 4. 风力发电场总体布局 4.0.1 风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、行业有关的法律、法规等技术资料、 4.0.2 风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

相关主题
文本预览
相关文档 最新文档