当前位置:文档之家› 城市立交中箱型截面连续梁的受力特性以及内力计算

城市立交中箱型截面连续梁的受力特性以及内力计算

城市立交中箱型截面连续梁的受力特性以及内力计算
城市立交中箱型截面连续梁的受力特性以及内力计算

城市立交中箱型截面连续梁的受力特性以及内力计算

摘要:近年来,箱型截面连续梁因其具有较小的建筑高度、美观的外形等特点,已经成为城市中心首选的桥梁形式。本文首先介绍了箱型截面连续梁的尺寸拟定、受力特性以及内力计算过程,并通过箱型截面连续梁桥的设计,对桥的上下部结构设计计算、结构的受力进行分析,希望能为同类型的桥梁设计提供有价值的参考。

关键词:箱型截面;连续梁;受力特性;设计

0.引言

箱型截面具有结构性能良好,抗扭刚度大、能有效抵抗正负弯矩、整体性强,外形美观,便于养护,跨度能力大,能充分发挥材料强度等特点,因而箱梁桥是现代各种桥梁中广泛推广的一种桥梁体系。箱梁桥适应现代化施工方法的要求,传力结构和承重结构相结合,使部件共同受力,达到经济效果。截面效率高,适合修建曲线桥,适应性较大,并且能够很好的适应布置管线等公共设施。

1. 箱型截面连续梁桥的尺寸拟定

1.1 立面尺寸

等截面连续梁桥的梁高尺寸及其适用范围如表1。

表1 等截面连续梁梁高尺寸及其适用范围

等高度连续梁桥梁高尺寸及其适用范围如表2。

表2 连续梁在支点和跨中梁高尺寸的估算值(l>100m)

尺寸拟定

(1)顶板

顶板作用:为箱型截面结构承受弯距的主要部位。箱梁顶板和位于腹板以外

箱梁模板设计计算汇总

箱梁模板设计计算 1箱梁侧模 以新安江特大桥主桥箱梁为例。 现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。 F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2 F=26*4.5=117.0KN/m2 故F=64.45KN/m2作为模板侧压力的标准值。 q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力) q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力) 1.1侧模面板计算 面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。

按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。 由 Mx/Wx得计算得强度应力为4.89MPa,满足。 由fmax/L得挠跨比为1/304,不满足。 按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。 由 Mx/Wx得计算得强度应力为3.82MPa,满足。 由fmax/L得挠跨比为1/1662,满足。 由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。 1.2竖向次楞计算 次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。水平主楞间距为900mm,按3跨连续梁计算。

20m箱梁模板计算书

20米箱梁模计算书1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.9=31.5KN/m。D为背杠的间距 弯矩:Mmax=0.1ql2=0.1x31.5x0.32=0.2835KN.m

用CAD做计算截面特性教程

CAD求截面几何质量特性教程 为了方便大家学习,给大家做一个教程。希望能对大家有所帮助。 以桥梁设计例题第4页图为例及第7页表求成桥中梁支座截面几何特性为例。 1不必说,首先你要画出所求截面图形。如下图:(画图过程略,其作图准确度自然影响计算结果,因此要求在画图成图过程中准确性是最重要的) 2、然后创建面域。如果大家很少接触三维画图,那可能就不太了解这个命令,大家可以通 过region命令来实现面域的创建,也可以使用快捷键来实现面域的创建。什么是面域呢,其实简单的理解,面域就是以面为一个单位的一个区域。——就是一个面,而不是大家所看到的多条线围起来的框。具体什么是面域,如果不了解可以百度。 其实很简单,没有想象的难。继续。画完了上面的图形之后,我们就需要创建面域了。 输入region命令或是点击快捷键,选择对象:

全部选择,右键确定,这时我们发现 这是什么原因呢,这时region命令的原因。因为创建面域的过程中,要求是一条线围成的封闭范围。上面的截面虽然已经封闭,但并不是一条线画成的:(这个自不必说,因为我们画图就不可能一次直接用一条线画出这个封闭图形) 那怎么办呢? 我们只有麻烦自己再画一次了。创建另外一个图层,线颜色换成其他颜色,我用蓝色。然后单击多段线快捷键:,在这里右键打开对象捕捉设置,全部清除然后选择交点。确定,然后打开对象捕捉。此时画多段线,将截面图形再描一遍:

闭合式要使用C闭合,以免所画蓝色截面没有完全封闭。 最后画出: 现在就可以把之前红色的弦删除了:打开图层管理器,暂时关掉蓝色图层 ,然后画面出现:

全部选择删除即可。 再回到图层管理器,打开蓝色图层:显示:

.正截面承载力计算

3.2 正截面承载力计算 钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。 一、单筋矩形截面 1.单筋截面受弯构件沿正截面的破坏特征 钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢 筋配筋率ρ有关。ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。 根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。 ①适筋梁 配置适量纵向受力钢筋的梁称为适筋梁。 适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。 第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。 当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。Ⅰa阶段的应力状态是抗裂验算的依据。 第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。 当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服

30m箱梁模板计算书

中铁三局五公司右平项目 30m箱梁 模板计算书 山西昌宇工程设备制造有限公司 技术部 2015年11月21日

30米箱梁模计算书 本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。 1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.8=28KN/m。D为背杠的间距

任意截面及薄壁截面特性计算

能够简单快捷的计算任意形状截面以及薄壁截面的截面特性,包括扭转惯性矩,剪切中心,翘曲常数等。 ①、在XOY平面内绘制出需要计算的截面形状,如下图所示: ②、点击菜单:模板??工程??截面助手??平面截面。 ③、选择绘制好的平面,右键确定弹出任意截面特性计算对话框,如下图所示: 截面名称:设置截面名称 调整截面高宽:选定的平面可被比例缩放,在此设置缩放后平面的高度或宽度 剖分尺寸等级:设置平面剖分尺寸等级,等级越高平均单元尺寸越小,网格越密 开始计算:开始进行截面特性计算,平面缩放也在计算完成后生效 导入截面库:将计算好的截面导入到截面库中 ④、按下图所示输入截面计算的各种参数,设置好后点击按钮。

⑤、计算完成后自动显示截面特性列表(如下图),检查无误后点击按钮将该截面导入到截面库中,完成平面截面定义。

薄壁截面: ①、在XOY平面内绘制出需要计算的薄壁截面线集,如下图所示: ②、点击菜单:模板??工程??截面助手??薄壁截面。 ③、选择绘制好的线集,右键确定弹出薄壁截面特性计算对话框,如下图所示: 截面名称:设置截面名称 统一值:统一设置所有线的宽度 tn:设置第n条线的宽度 调整截面高宽:选定的线集可被比例缩放,在此设置缩放后线集的高度或宽度 曲线尺寸等级:设置曲线剖分尺寸等级,等级越高曲线被剖分的越密 开始计算:开始进行截面特性计算,线集缩放也在计算完成后生效 导入截面库:将计算好的截面导入到截面库中 ④、按下图所示设置线宽和截面计算的各种参数,设置好后点击 按钮。

注意:图中玫红色线表示当前线,蓝色的线表示宽度大于0的线,大红色线表示线宽为0的线。开始计算之前要保证所有线都已设置线宽,且不应该存在线宽为0的线。 ⑤、计算完成后自动显示截面特性列表(如下图),检查无误后点击 按钮将该截面导入到截面库中,完成该薄壁截面的定义。

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

框架梁模板计算书

框架梁模板(扣件钢管高架)计算书 本高支撑架计算采用PKPM施工安全设施计算软件计算。计算书中钢管全部按照Φ48×3.0计算。 本高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 计算梁段:BKL-407(3A)。高支架搭设高度为18.08米,基本尺寸为:梁截面B×D=500mm×700mm,梁支撑立杆的横距(跨度方向) l=1.00米,立杆的步距h=1.50米,梁底增加1道承重立杆。 一、参数信息 1.模板支撑及构造参数 梁截面宽度 B(m):0.50;梁截面高度 D(m):0.70; 混凝土板厚度(mm):120.00;立杆沿梁跨度方向间距La(m):1.00; 立杆上端伸出至模板支撑点长度a(m):0.10; 立杆步距h(m):1.50;板底承重立杆横向间距或排距Lb(m):1.00;

梁支撑架搭设高度H(m):18.28;梁两侧立柱间距(m):0.80; 承重架支设:1根承重立杆,方木支撑垂直梁截面; 采用的钢管类型为Φ48×3; 扣件连接方式:单扣件,考虑扣件质量及保养情况,取扣件抗滑承载力折减系数:0.85; 2.荷载参数 模板自重(kN/m2):0.35;钢筋自重(kN/m3):1.50; 施工均布荷载标准值(kN/m2):2.5;新浇混凝土侧压力标准值(kN/m2):18.0; 倾倒混凝土侧压力(kN/m2):2.0;振捣混凝土荷载标准值(kN/m2):2.0; 3.材料参数 木材品种:杉木;木材弹性模量E(N/mm2):10000.0; 木材抗弯强度设计值fm(N/mm2):17.0;木材抗剪强度设计值fv(N/mm2):1.7; 面板类型:胶合面板;面板弹性模量E(N/mm2):9500.0; 面板抗弯强度设计值fm(N/mm2):13.0; 4.梁底模板参数 梁底方木截面宽度b(mm):50.0;梁底方木截面高度h(mm):100.0; 梁底纵向支撑根数:4;面板厚度(mm):18.0; 5.梁侧模板参数 主龙骨间距(mm):500;次龙骨根数:4; 主龙骨竖向支撑点数量为:2; 支撑点竖向间距为:100mm; 穿梁螺栓水平间距(mm):500; 穿梁螺栓直径(mm):M12; 主龙骨材料:钢管;截面类型为圆钢管Φ48×3.0; 主龙骨合并根数:2; 次龙骨材料:木枋,宽度50mm,高度100mm; 二、梁模板荷载标准值计算 1.梁侧模板荷载

迈达斯-截面特性值计算器

<图 1-(1)> 生成Plane 截面的过程 建立截面的轮廓 生成Plane 截面 利用网格进行计算

※注意事项 MIDAS/Civil和Gen数据库中提供的规则截面的抗扭刚度计算方法参见附录一。 对于MIDAS/Civil和Gen数据库中提供的规则截面,利用 MIDAS/Civil、Gen的截面特性计算功能计算截面特性值比SPC更好一些。 MIDAS/Civil和Gen数据库中提供的PSC截面,当用户输入的截面属于薄壁型截面时,应使用本截面特性值中的Line方式重新计算抗扭刚度,然后在截面特性值增减系数中对抗扭刚度进行调整。 对于Plane形式的截面,程序是通过有限元法来近似计算抗扭刚度的。在抗扭问题里使用的近似求解法有Ritz法(或者Galerkin法)、Trefftz法,所有的近似求解都与实际结果多少有点误差,其特征如下: J Ritz≤J Exact≤J Trefftz 像SPC一样利用有限元法近似地计算抗扭刚度时,通常使用Ritz法, 故其计算结果有可能比实际的抗扭刚度小。用户可通过加大网格划分密度方法来提高结果的精确度。 对于Line形式的截面, 如薄壁截面,线的厚度很薄时几乎可以准确地计算其抗扭刚度。但是如果是闭合截面(无开口截面),这种计算方式会导致其抗扭刚度的计算结果随着线厚度的增加而变小,所以对于不是薄壁截面的闭合截面应尽量避免使用Line的方式计算截面特性。 在SPC中对薄壁闭合截面,对闭合部分一定要使用model>closed loop>Register指定闭合。 SPC可以在一个窗口里任意的建立很多个截面,并分别进行分析,且可根据名称、位置、截面特性值等可以很方便地对截面进行搜索及排列。 <图2> 将DXF文件中的截面形状导入后,生成截面并进行排列

箱梁模板施工计算_pdf

箱梁模板施工计算 一、简介 A19~A24箱梁一联五孔125m(5×25m)。A19~A21单箱三室,渐

G .B18~B23箱梁一联五孔120m(20+4×25)单箱三室,在一般结

筑 龙 网 W W W .Z H U L O N G 1、箱梁模板支架体系 2、底模下方木铺设 采用10×15cm 的方木纵向(顺桥向)铺设作为模板主肋,其间距为91.4cm,采用10×10cm 方木横向铺设作为模板次肋,间距30cm,上部面板采用1220×2440×18mm 的竹胶板。 3、结构受力分析 以墩柱两侧4.0m 结构过渡区荷载最大段进行验算,如果满足要求,则一般结构区也满足要求。 (1)、模板主肋

建立受力模型见图3-8 抗弯=M/W=0.077×q×L2/w=0.077×30×1.222×106/375 ]=15MPa ≈9.2MPa<[f m qL4/100EI 挠度:w=K 挠度系数 =0.632×30×1.224/100×0.1×2812.5=1.5×10-3m=1.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形

筑 龙网 W W W . 值不超出模板构件计算跨度的1/400。 2.44×1/400=0.0061=6.1mm 抗剪τ=σ/A=K 剪力系数 ×ql÷bh=0.607×30×1.22/0.1× 0.15=1.48MPa<1.5Mpa W=bh 2/6=167cm 3,I=bh 3 /12=833cm 4 ,q=32.8×0.3=10KN/m 抗弯=M/W=0.077×q×L 2 /w=0.077×10×0.9142 ×106/167 ≈3.9MPa<[f m ]=15MPa 挠度:w=K 挠度系数qL 4 /100EI =0.632×10×0.9144 /100×0.1×833=0.5×10-3 m=0.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。 2.44×1/400=0.0061=6.1mm 抗剪 τ=σ/A=K 剪力系数×ql÷bh=0.607×10×0.914/0.1×0.1 =0.55MPa<1.5Mpa

显示截面特性值

显示截面特性值 截面惯性矩(Iyy、Izz: Moment of Inertia) 面积:横截面面积。 Asy:单元局部坐标系y轴方向的有效抗剪面积(Effective Shear Area)。 Asz:单元局部坐标系z轴方向的有效抗剪面积(Effective Shear Area)。 Ixx:对单元局部坐标系x轴的扭转惯性距(Torsional Resistance)。 Iyy:对单元局部坐标系 y轴的惯性距(Moment of Inertia)。 Izz:对单元局部坐标系z轴的惯性距(Moment of Inertia)。 Cyp:沿单元局部坐标系+y轴方向,单元截面中和轴到边 缘纤维的距离。 Cym:沿单元局部坐标系-y轴方向,单元截面中和轴到边缘纤维的距离。 Czp:沿单元局部坐标系+z轴方向,单元截面中和轴到边缘纤维的距离。Czm:沿单元局部坐标系-z轴方向,单元截面中和轴到边缘纤维的距离。 Zyy:对y 轴的截面塑性模量。 Zzz:对z轴的截面塑性模量。 Qyb:沿单元局部坐标系z轴方向的剪切系数。 Qzb:沿单元局部坐标系y轴方向的剪切系数。 Peri:O :截面外轮廓周长。 Peri:I :箱型或管型截面的内轮廓周长。 注 象H型钢那样没有内部轮廓的截面的Peri:1值为'0'。 Cent:y :从截面最左 侧到质心距离。 Cent:z :从截面最下端到质心的距离。 y1、z1:截面左上方最边缘点的y、z坐标。 y2、z2:截面右上方最边缘点的y、z坐标。

y3、z3:截面右下方最边缘点的y、z坐标。 y4、z4:截面左下方最边缘点的y、z坐标。 注1 除面积和周长外,以上输入的所有数据仅使用于梁单元。 注2 不指定有效抗剪面积时,程序将忽略剪切变形。Cyp, Cym, Czp和Czm仅用于计算弯曲应力。Qyb和Qzb用于计算剪应力。周长(Peri)用于计算着色面积。 注3 Zyy/Zzz:使用设计 > 静力弹塑性(Pushover)分析 > 定义铰特性值功能进行静力弹塑性分析时,计算数值类型钢截面的刚度所需的截面塑性模量。 注4 输入截面刚性数据 截面面积(Area:Cross Section Area) 利用截面惯性矩(Moment of Inertia)可以计算弯矩(Bending Moment)作用下的截面的抗弯刚度(Flexual Stiffness)。对截面的中和轴的截面惯性矩的大小可按下式计算。对单元坐标系y轴的截面惯性矩 对单元坐标系z轴的截面惯性矩

箱梁支架计算书(初稿)

箱梁支架计算书 本计算书分别以箱梁标准断面的横隔梁处及跨中截面、40m+60m+40m 跨箱梁最不利位置为例,对荷载进行计算及对其支架体系进行检算。 5.1荷载计算 5.1.1荷载分析 根据本工程现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 箱梁自重荷载,新浇混凝土密度取2600kg/m 3。 ⑵ q 2—— 箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算, 经计算取q 2=1.0kPa 。 ⑶ q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板 及其下肋条时取2.5kPa ;当计算肋条下的梁时取1.5kPa ;当计算支架立柱及替他承载构件时取1.0kPa 。 ⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。 ⑸ q 5—— 新浇混凝土对侧模的压力。 因现浇箱梁采取水平分层以每层30cm 高度浇筑,查简明手册V 取2.5m/h 浇筑速度控制,砼入模温度T=25℃控制,因此新浇混凝土对侧模的最大压力 2 1 21022.05q V t c ββγ= =0.22×2.4×9.8×200/(25+15)×1.2×1.0×2.51/2 =49.1KN/m2=49.1KPa 式中: q5──新浇筑混凝土对模板的最大侧压力(kN/m2); c γ──混凝土的重力密度(kN/m3),取2400kg/ m3; V ──混凝土的浇筑速度(m/h ); 0t ──新浇混凝土的初凝时间(h ),可按试验确定。当缺乏试验资料时,可采用)15/(2000+=T t (T 为混凝土的温度oC ); 1β──外加剂影响修正系数。不掺外加剂时取1.0,掺具有缓凝作用的外

现浇箱梁支架及模板计算书资料

附件1:连续箱梁施工工艺流程图

附件3:质量保证体系 制度保证 经济法规 经济责任制 优 质 优价 完善计量支付手续 制定 奖罚措施 签定包保责任状 奖优罚劣 经济兑现 质 量 保 证 体 系 思想保证 提高质量意识 TQC 教育 检查落实 改进工作质量 组织保证 项目经理部质量 管理领导小组 项目队质量小组 总结表彰先进 技术保证 贯彻ISO9000系列质量标准,推行全面质量管理 各项工作制度和标准 提高工作技能 技术岗位责任制 质量责任制 质量评定 反 馈 实 现 质 量 目 标 质量第一 为用户服务 制定教育计划 质量 工作检查 现场Q C 小组活动 岗前 技术培训 熟悉图纸掌握规范 技术 交底 质量 计划 测量 复核 应用新技 术工艺 施工保证 创优规划 检查 创 优 效 果 制定 创 优措施 明确创优 项目 接受业主和监理监督 定期不定期质量检查 进行自检互检交接检 加强现场试验控制 充分利用现代化检测手段

附件4:安全、质量保证体系图 制度保证 经济法规 经济责任制 优 质优价 完善 计 量支 付 手 续 制 定奖罚措施 签定包保责任状 奖优罚劣 经济兑现 质 量 保 证 体 系 思想保证 提高质量意识 TQC 教育 检查落实 改进工作质量 组织保证 项目经理部质量 管理领导小组 项目队质量小组 总结表彰先进 技术保证 贯彻ISO9000系列质量标准,推行全面质量管理 各项工作制度和标准 提高工作技能 技术岗位责任制 质量评定 反 馈 实 现 质 量 目 标 质量 第一 为用户服务 制定教育计划 质量工作检查 现场QC 小组活 动 岗前 技 术培训 熟 悉图纸掌握规 范 技术交底 质量计划 测量复核 应 用新技术工艺 施工保证 创优规划 检查创优效果 制定创优措施 明确创优项目 接受业主和监理监督 定期不定期质量检查 进行自检互检交接检 加强现场试验控制 充分利用现代化检测手段

正截面承载力计算

最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。 对于受弯构件, 按下式计算: (2)基本公式及其适用条件 1)基本公式 式中: M —弯矩设计值; f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。 2)适用条件 l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。 在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能 min t y max(0.45f /f ,0.2% ) ρ= (3.2.1) s y c 1A f bx f =α(3.2.2) ()20c 1x h bx f M -≤α(3.2.3) () 20y s x h f A M -≤(3.2.4) 或

承受的最大弯矩的表达式: (3)计算方法 1)截面设计 己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h 求:所需受拉钢筋截面面积A s 计算步骤: ①确定截面有效高度h 0 h 0=h -a s 式中h —梁的截面高度; a s —受拉钢筋合力点到截面受拉边缘的距离。承载力计算时, 室内正常环境下的梁、板,a s 可近似按表3.2.4取用。 表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜) ②计算混凝土受压区高度x ,并判断是否属超筋梁 若x ≤ξb h 0,则不属超筋梁。否则为超筋梁,应加大截面尺寸,或 构件种类 纵向受力 钢筋层数 混凝土强度等级 ≤C20 ≥C25 梁 一层 40 35 二层 65 60 板 一层 25 20

受弯构件正截面承载力计算测试分析

钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行 、 验算。 2、简支梁中的钢筋主要有 、 、 、 四种。 3、钢筋混凝土保护层的厚度与 、 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 、=cu ε 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时 、两排钢筋时 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 、两排钢筋时 。 7、单筋梁是指 的梁。 8、双筋梁是指 的梁。 9、梁中下部钢筋的净距为 ,上部钢筋的净距为 。 10、受弯构件min ρρ≥是为了防止 ,x a m .ρρ≤是为了防止 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 和 。 12、受弯构件正截面破坏形态有 、 、 三种。 13、板中分布筋的作用是 、 、 。 14、双筋矩形截面的适用条件是 、 。 15、单筋矩形截面的适用条件是 、 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 、 、 。 18、受弯构件梁的最小配筋率应取 和 较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξφ,说明 。 二、判断题:

1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s =ρ。( ) 三、选择题: 1、受弯构件是指( )。 A 截面上有弯矩作用的构件 B 截面上有剪力作用的构件 C 截面上有弯矩和剪力作用的构件 D 截面上有弯矩、剪力、扭矩作用的构件 2、梁中受力纵筋的保护层厚度主要由( )决定。 A 纵筋级别 B 纵筋的直径大小 C 周围环境和混凝土的强度等级 D 箍筋的直径大小 3、保护层的厚度是指( )。 A 从受力纵筋的外边缘到混凝土边缘的距离 B 箍筋外皮到混凝土边缘的距离 C 纵向受力筋合力点到混凝土外边缘的距离 D 分布筋外边缘到混凝土边缘的距离 4、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( )。 A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 5、界限相对受压区高度,当( )。 A 混凝土强度等级越高,b ξ越大 B 混凝土强度等级越高,b ξ越小 C 钢筋等级越

30箱梁模板计算书

目录 30m预制箱梁模板计算书 (2) 一、工程概况 (2) 二、预制箱梁模板体系说明 (2) 三、箱梁模板力学验算原则 (2) 四、计算依据 (3) 五、箱梁模板计算 (3) 4.1 荷载计算及组合 (3) 4.2 模板材料力学参数 (6) 4.3 力学验算 (8) 4.3.2 横肋力学验算 (9) 4.3.3 竖肋支架验算 (10) 4.3.4 拉杆验算 (10)

30m预制箱梁模板计算书 一、工程概况 呼和浩特市2012年南二环快速路工程二标段,在2013年5月份进场施工。原设计为3km整体现浇,考虑到整体现浇工期长,前期投入大,经项目部前期策划,变更为装配式30m预制箱梁,预制部分梁长为29.4m,梁高为1.6m,设计图纸为国家标准通用图,移梁采用兜底吊,预制数量为1327片,采用预制厂集中生产。 二、预制箱梁模板体系说明 箱梁模板分为底模、侧模、芯模三部分,底模焊接在预制台座上,台座设计时需考虑箱梁在预制过程中分阶段受力状态,即:浇注时,底座承受箱梁混凝土自重下的均布力;在预应力张拉后,台座承受箱梁两端支点的集中力。所以在台座设计时,需在台座两端设置扩大基础来满足集中荷载形式下的承载力需要。 内模在箱梁预制过程中承受腹板混凝土侧向力以及顶板混凝土竖向力,侧模承受底腹板混凝土侧压力。 箱梁侧模承载箱梁外露面混凝土的重量,混凝土侧压力向外传递顺序为:面板→横肋→纵肋→拉杆。 三、箱梁模板力学验算原则 1、在满足结构受力(强度)情况下考虑挠度变形(刚度)控制; 2、根据侧压力的传递顺序,先后对面板、横肋、纵肋支架、拉杆进行力学验算。 3、根据受力分析特点,简化成受力模型,进行力学验算。

小箱梁模板计算

小箱梁模板强度、刚度验算 一、模板情况说明: 津宁四标预制小箱梁设计为30m、35m两种,小箱梁高度1.4m和1.7m两种,模板采用定型钢模板,钢模板构造为:模板面板为5mmA3钢板,面板下为8#槽钢横向分布肋,竖向外肋为10#槽钢,外肋上下两端用φ20对拉螺杆对拉。附模板设计图。两种模板结构相同,验算按侧压力较大的1.7m系梁模板进行验算。 二、模板验算 (一)、模板材料的力学特性 1、模板面板A3厚5mm钢板(取0.5m宽计算) 弹性模量:E=2×105MPa 截面惯性矩:I=(b×h3)/3= 500×53/3=20833 mm4 截面抗矩:W=(b×h2)/3= 500×52/3=2083mm3 =145MPa 容许弯应力:δ 容 容许剪应力:τ =85MPa 容 截面积:S=500×5=2500mm2 2、8#槽钢横向分布肋(内肋) 弹性模量:E=2×105MPa 截面惯性矩:I=101.3cm4 截面抗矩:W=25.3cm3 =145MPa 容许弯应力:δ 容 =85MPa 容许剪应力:τ 容 截面积:S=10.24cm2 3、10#槽钢竖向肋(外肋) 弹性模量:E=2×105MPa 截面惯性矩:I=198.3cm4 截面抗矩:W=39.4cm3 =145MPa 容许弯应力:δ 容 容许剪应力:τ =85MPa 容 截面积:S=12.74cm2

3、φ20拉杆 容许拉力:F 容 =38.2KN (二)、模板验算 1、最大模板侧压力 小箱梁侧模板为外斜模板,外斜角度较小,不计算垂直压力,只计算模板侧压力(见计算手册174页)。 新浇砼侧压力:F1=0.22×γ c ×T×β 1 ×β 2 ×V0.5 =0.22×24×4×1.0×1.15×0.850.5 =22.39KN/m2 砼振捣产生压力:F2=2KPa 组合压力F=F 1+F 2 =22.39+2=24.39KN/m2 V=0.85m 砼的浇筑速度(m/h)按最快两个小时浇注完成计算 T=4h 新浇筑砼的初凝时间 β 1 =1.0 外加剂影响修正系数,不掺外加剂时取1.0: β 2 =1.15 砼坍落度影响修正系数,当坍落度<30mm,取0.85;50~90mm 时,取1.0;110~150mm时,取1.15; γ c= 2.4 KN/m3混凝土容重: 2、面板 按模板最大侧压力取0.5m宽验算面板强度,模板面板下横向分布肋间距0.26m,按4跨连续结构进行验算,跨径L=0.26m。 均布荷载:q=24.39×0.5=12.195KN/m 跨中内力:M=0.111×q×L2=0.111×12.195×0.262=0.0915KN.m 跨中应力:δ=M/W=0.0915KN.m×106/2083mm3=43.93MPa δ<δ 容 模板强度满足要求。 跨中挠度:f=0.573×q×L4/100EI =0.573×12.195×2604/(100×2×105×20833) =0.07mm f 容 =L/400=260/400=0.65mm f< f 容 模板刚度满足要求

梁模板计算实例

模板计算 1、工程概况 柱网尺寸8.4m×12m,柱截面尺寸900mm×900mm 纵向梁截面尺寸450mm×1200mm,横向梁截面尺寸450mm×900mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土) 2、工程参数(技术参数)

3计算 3.1KL1梁侧模板计算 图3.1 梁侧模板受力简图 3.1.1 KL1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C 210t 22.0ββγ= 4.1.1-1 H F c γ= 4.1.1-2

式中 : γc -- 混凝土的重力密度,取24kN/m 3; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为5.7 小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取1.2m ; β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,取1.15。 V F C 210t 22.0ββγ==0.22× 24×5.7×1.2×1.15×3.32=138.13 kN/m 2 H F c γ==24×1.2=28.8kN/m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值28.8kN/m 2。 3.1.2 KL1梁侧模板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; 截面惯性矩I= 1000×18×18×18/12=486000mm 4; 1、面板按三跨连续梁计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算

30m小箱梁模板计算书Word 文档

30m 小箱梁模板计算书 (一)设计原始数据 1、 模板材料:面板:5mm ;连接法兰:-80×12;横肋:[8#;桁架:槽钢组合(详见图纸)。 2、 桁架最大间距为800mm 一道。 3、 施工数据:上升速度V=2.8m/h ;混凝土初凝时间:t o =3h 。 (二)模板侧压力计算 F=0.22γc t o β1β2V 1/2 其中:γc 为混凝土重力密度,γc =26kN/m 3; t o 为混凝土初凝时间; β1为外加剂影响修正系数,β1=1.1 ; β2为混凝土坍落度影响修正系数. β2=1.15。 计算得:F=0.22*26*3*1.1*1.15*2.81/2=36.32kN/m 2。 考虑可能的外加剂最大影响,取系数1.2,则混凝土计算侧压力标准值: F 1=1.2*36.32=43.58 kN/m 2 当采用泵送混凝土浇筑时,侧压力取6 kN/m 2 ,并乘以活荷载分项系数1.4。 F 2=1.4×6=8.4 kN/m 2 侧压力合计:F 3= F1+ F2=43.58+8.4=51.98 kN/m 2 1.面板强度、刚度验算 竖肋间距为0.8米,横肋间距为0.3米 计算跨径l=0.3米 取板宽b=1米,面板上的均布荷载q q=F 3×l=51.98×1=51.98 kN/m 考虑到板连续性,其强度、刚度可按下计算: 最大弯矩:M max = 210 1 ql =0.1*51.98*0.3*0.3=0.468KN.m 截面系数:W=3622106006.016 1 61m b -?=??=δ 最大应力:MPa MPa W M 215][7810610468.06 3 max max =<=??==-σσ

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

相关主题
文本预览
相关文档 最新文档