The selective oxidation behaviour of WC–Co cemented carbides during the early oxidation stage
- 格式:pdf
- 大小:1.14 MB
- 文档页数:5
Letter
TheselectiveoxidationbehaviourofWC–Cocementedcarbidesduring
theearlyoxidation
stage
LiyongChena,DanqingYia,⇑,BinWanga,HuiqunLiua,ChunpingWua,XiangHuanga,HuihuiLia,
YuehongGaob
aSchoolofMaterialsScienceandEngineering,CentralSouthUniversity,Changsha410083,People’sRepublicofChinabZhuzhouCementedCarbideCuttingToolsCompanyLimited,Zhuzhou412007,People’sRepublicofChina
articleinfo
Articlehistory:Received4February2015Accepted18February2015Availableonline2March2015
Keywords:A.CeramicmatrixcompositeA.CobaltC.SelectiveoxidationB.EPMAB.AFMabstract
TheoxidationexperimentalofWC–Cocementedcarbideswascarriedoutat500°Cinair.Selectiveoxida-tionphenomenonofCophaseinWC–CocementedcarbideswasobservedandprovedbyEPMAandAFM.Atfirst,theOcontentinCophaseincreasesquickly,andthentendstobestableafteroxidationof20min.Insharpcontrast,nochangeofOcontentinWCphasewasobserved.Moreover,itwasfoundthattheoxidescalesthicknessofCophaseincreasedparabolicallywithoxidationtime.Andthermodynamicandkineticanalysisofoxidationwasdone.Ó2015ElsevierLtd.Allrightsreserved.
1.Introduction
Cementedcarbidesbelongtoaclassofhard,wear-resistant,
refractorymaterialsinwhichhardcarbideparticles(WC,TiC,
TaC,NbC,etc.)arebondedwithasoftandductilemetalbinder
(Co,Ni,Fe,etc.).Itisknowntoallthattheyareusedinawiderange
ofapplications,suchasmetalcutting,mining,construction,rock
drilling,metalforming,structuralcomponentsandwearparts.
However,theyareoftenexposedtovariouscorrosiveenviron-
ments,suchasacid,alkali,salt,elevatedtemperature,whichwill
resultinthedegradationofmechanicalpropertyofcementedcar-
bidesproducts,suchashardness,strengthandwearresistance,and
finallywillresultinthedecreasingoftheirservicelifetime.For
instance,theoxidationofWC–Cocementedcarbidescuttingtools
atelevatedtemperatureisoneofthekeyfactorsindetermining
thelifetimeofcementedcarbidesproducts.Asamatteroffact,
theirservicelifetimeisgreatlydeterminedbytheiroxidation.
Thereasonsareasfollows:firstofall,oxidefilmswithporous
andcrackswillformduringtheoxidation.Theseoxidefilmsare
veryeasytoflakeoff,andwilldefinitelydecreasewearresistance
[1–10].Additionally,ithasbeenprovedthatthestrengthofthe
cementedcarbidesisweakenedbecauseofsurfaceoxidation
[4–6,11–13].Thus,theinvestigationofoxidationofcementedcarbidesissignificanttothedesignandapplicationsofthese
materials.
Asfortheoxidationofcementedcarbides,manyresultshave
beenreported[1–3,7–10,13–17].Kineticanalysis,themacro-,
andmicro-structureandthephaseconstituteofoxidescalesare
themostimportantaspectsoftheinvestigationofoxidation.
Attainingthecurvesofmassgainorthethicknessoftheoxide
scalesvs.oxidationtimebyisothermalmethodandcalculating
theapparentactivationenergy(Ea)byisothermalornon-isother-
malmethodarethemajortaskofkineticanalysis.Barbattietal.
[7]havereportedthatthelinearlaworparaboliclawofmassgain
vs.oxidationtimewasinfluencedbytemperature.Eawasinflu-
encedbymanyfactors,suchasconsistofcementedcarbidesand
oxidationtemperature[2,3,8,9].ThereportedvaluesofEafor
WC–Cocementedcarbideswiththesamechemicalconstituents
areverydifferent.Forinstance,theEaofWC–15Co(inwt%)was
reportedtobe190kJ/molbyAristizabaletal.[9]and
234.1kJ/molbyVoitovichetal.[15],respectively.Thegreatdiffer-
enceofEamaybecausedbyinstrumentsand/orexperimental
methods.
Fromthepreviousliterature,weknowthattheoxidescales
formedonaWC–CosubstratemainlyconsistofWO3and
CoWO4,andasmallamountofCo2O3andCo3O4[1–3,7–10,13].
TheWO3phasehasratherlowresistancetooxidationbecauseit
containsnumerousporesandcrackswhichmaybecomeachannel
forthediffusionofO2andCO2.Comparatively,theCoWO4phaseis
denserthanWO3,andhasbetterresistancetotheoxidation.The
http://dx.doi.org/10.1016/j.corsci.2015.02.0330010-938X/Ó2015ElsevierLtd.Allrights
reserved.⇑Correspondingauthor.Tel.:+8673188830263;fax:+8673188836320.E-mailaddress:yioffice@csu.edu.cn(D.
Yi).CorrosionScience94(2015)1–5
ContentslistsavailableatScienceDirect
CorrosionScience
journalhomepage:www.elsevier.com/locate
/
c
orscipreviousresearcheshaveindicatedthattheoxidationresistanceof
cementedcarbideswasimprovedbytheincreaseofCocontentand
theadditionofcubiccarbides,suchasTiCand/or(Ta,Nb)C
[1–3,7,9,14].However,theoxidationresistancewasdecreased
whenCobinderwaspartlysubstitutedbyNibinderbecauseof
thedecreaseofcomplexoxide(Co,Ni)WO4content[15].
However,theaboveresearchesweremainlyaboutthelater
oxidationstageofcementedcarbidesthattheoxidescaleshad
alreadycoveredthesurfaceofthesamples.Thephenomenarelated
totheearlyoxidationstage,suchasselectiveoxidationandoxida-
tionlocation(intra-grain,grainboundaryorphaseboundary),are
notreportedinanypaper.Andactuallyselectiveoxidationisa
commonphenomenoninalloys,suchasiron-basedalloy
[18–20],cobalt-basedalloy[21,22],steel[23–25],andsoon.Asa
compositematerial,WC–Cocementedcarbidesconsistofatleast
twophases,andhavethepotentialforselectiveoxidation.
Additionally,theresultsofthermodynamiccalculationofthe
oxidationofWCandCoindicatethattheoxidationofWCiseasier
thantheoxidationofCo.However,inourexploratoryexperiment
thecontraryphenomenawerefound,andthepreliminaryresults
showedthatCowasfirstlyoxidisedandWCdidnot.
Therefore,basedontheresultsofexploratoryexperiments,a
detailedstudyoftheselectiveoxidationofWC–Cocementedcar-
bidesduringtheearlyoxidationstagewascarriedoutinthispaper.
ThreeapproacheswereusedtoprovethattheoxidationofCo
phaseispriortotheoxidationofWCphase.Thefirstapproachis
torevealthechangesoftheoxygendistributionatthesameloca-
tionofasamplewiththeincreasingoxidationtimebyelement
mapanalysisofelectronprobeX-raymicro-analyzer(EPMA).The
secondoneistomeasurethecontentchangeofW,C,CoandO,
whichisparticularlyimportant,ofWCphaseandCophasewith
theincreasingoxidationtimebyquantitativeanalysisofEPMA.
Andthethirdapproachistomeasurethethicknessofoxidescales
withtheincreasingoxidationtimebyatomicforcemicroscope
(AFM).
2.Materialsandexperimental
WC–15Co(inwt%)cementedcarbideswereprovidedby
ZhuzhouCementedCarbideGroupCompanyLimited.Themostof
WCgrainsofsampleare6–8lm.Thesizeofspecimensis
5mmÂ5mmÂ10mm.Inordertoobtainasmoothsurfacebefore
oxidation,oneofthe5mmÂ10mmsurfacewasgroundandpol-
ished.Allspecimenswerewetgroundusing40lmand20lmdia-
monddiscs.Afterthat,theywouldbepolishedusing9lmand
1lmwater-baseddiamondsuspension.
Sampleswereoxidisedinairat500°Cbetween5and150min
inamuffle(±2°C).Fourteensampleswereusedinthispaper.One
ofthemwasoxidisedfordifferenttimes.Whiletheotherthirteen
sampleswereseparatelyoxidisedfor0,5,10,15,...,55,60min.
Theelementmappingandquantitativecompositionanalysisof
samplesweredonebyEPMA(JXA-8230)withtungstenfilament.
TheEPMAwasoperatedunderthefollowingsettings:accelerating
voltageis15kV;probecurrent,dwelltimeandstepsizeareabout
11.3nA,70msand93.8nmforelementmapping,10.1nA,50ms
and50nmforquantitativecompositionanalysis.Thethickness
ofoxidescaleswasmeasuredbytappingmodeAFM(multimode
V)usingsilicontip.Scanareasare20lmÂ20lmand
10lmÂ10lmand512linesperimagewerescannedwith512
samplesperline.
3.Resultsanddiscussion
Fig.1(a)showsthebackscatterelectron(BSE)imageofWC–
15Cosample,inwhichthedarkareasrepresentCophasecontain-
ingsmallamountsofdissolvedWandC,andthegreyareasrepresentWCphasecontainingaverysmallamountofdissolved
Co.ElementmapanalysesbyEPMAwereexecutedintheregion
displayedinFig.1(a).Inordertoensuretheelementmapanalyses
byEPMAareatthesimilarsameregion,thesamplewasmarkedby
Vickersindentationonthepolishedsurfacebeforeoxidation.The
averageOcontentsofmappedregionsvs.oxidationtimesareplot-
tedinFig.1(b).ItshouldbenotedthattheresultsofOmappingare
qualitativeratherthanquantitative.Beforeoxidation,theaverage
Ocontentis4%.HighOcontentcomesfromchemicalandphysical
adsorptionofoxygeninair,andfewoxideparticlesadheredtothe
polishedsurface.TheaverageOcontentis10%,17%,20%,25%after
oxidisingfor5,35,90,150min,respectively.Thecurveofaverage
Ocontentvs.oxidationtimeroughlyfollowsaparabola.From0to
5min,theaverageOcontentincreasesrapidly;from5to35min,
thegrowthratebecomeslower;after35min,theincreasingof
averageOcontentbecomesslow.Fig.1(c)–(f)showstheOdistri-
butionsafteroxidisingfor0,5,35,150min,respectively.From
Fig.1(c)–(f),itisfoundthatOcontentinCophasegoesupwith
theincreasingoxidationtime.Incontrast,OcontentinWCphase
hasscarcelychangedwiththeincreasingoxidationtime.
FromFig.1,itisseenthatonlyCophasewasoxidisedat500°C.
Inordertofurtherconfirmtheaboveresult,sampleswereoxidised
at500°Cfrom0to60minandthenquantitativelyanalysedby
EPMAtoascertaintheelementscontent.Foreachtimeinterval,5
pointsofCophaseand5pointsofWCphaseweremeasured
respectively.
Fig.2showsthevariationoftheW,C,CoandOcontentinthe
CophaseandtheWCphasewithoxidationtime.Thereislittle
changeofCcontentinCophase.AndtheWcontentinCophase
fluctuatesaround9%withoutobviouschange.However,Coand
Ocontentvariesgreatlywithoxidationtime.Within20min,Co
contentfirstlygoesdownquicklywiththeincreasingoxidation
time;over20min,Cocontentgoesdownslowlyandtendstobe
constant.ThechangeofOcontentinCophaseiscontrarytothe
changeofCocontent.Firstly,itincreasesquicklyandthentends
tobestable.ItiscertainthatCophasewasoxidisedat500°C.In
Fig.2(b),theW,C,CoandOcontentofWCphaseallfluctuated
aroundaconstantvalue.Ocontentisaboutzero.Itisimpliedthat
WCphasewasnotoxidisedat500°C.Tosumuptheaboveresults,
WC–Cocementedcarbideshavetheselectiveoxidationcharacter-
isticat500°C.
TheselectiveoxidationofCophaseinWC–Cocementedcar-
bidesresultedinthechangeofsurfacetopographycharacterised
bythethickeningoftheoxidescalesofCophase.AFMisavery
powerfultechniqueforprovidinghigh-resolutionthree-dimen-
sional(3-D)surfacetopographyonthesubmicronscalehasbeen
usedasanalternativeorsupplementarytooltoothertechniques
forstudyingtheselectiveoxidationbehaviourofsomematerials
duringtheearlyoxidationstage[26].Inthisresearchwealsoused
AFMtomeasurethevariationofsurfacetopographieswithoxida-
tiontime.Fig.3(a)showsthethicknessvariationofoxidescalesof
Cophasewithoxidationtimeat500°C.Eachdataisanaverageof
20randommeasuredvalues.Beforeoxidation,theheightofWC
phaseis31±5nmhigherthanCophase.However,after5min,
theoxidescalesthicknessofCophaseincreasedto93±6nm.
ThissuggestedthattheCophasehasbeenoxidised.Andthen,
theoxidescalesthicknessofCophaseincreasedfrom141±9nm
to215±14nmcorrespondingtooxidisingfor15minand
35min.After35min,theincreasingoftheoxidescalesthickness
ofCophaseisslow.AFMtopographiesfor0,5,15,35,60min
oxidationareshowninFig.3(b)–(f),respectively.Theselective
oxidationofCophaseisclearlyseenfromFig.3.
TheoxidescalesthicknessofpureCoinpreviousliteratureare
775nm(temperature500°C,time20min,P(O2)/Ph=0.1)[27],
440nm(467°C,20min,P(O2)/Ph=0.21)[28],360nm(505°C,
19min,P(O2)/Ph=1)[29]and500nm(500°C,15min,P(O2)/2L.Chenetal./CorrosionScience94(2015)1–5