当前位置:文档之家› 设备常用名词及定义

设备常用名词及定义

设备常用名词及定义
设备常用名词及定义

设备管理常用名词及简释

1、设备

设备一般指生产或生产上所常的机械和装置,是固定资产的主要组成部分,它是工业企业中可供长期,使用并在使用中基本保持原有实物形态的物质资料的总称。

在机械系统,设备通常指机械和动力两大类生产设施。

2、设备管理

目前我国采用并逐步推行的设备管理是指对设备的一生实行综合管理,即以企业经营目标为依据,通过一系列的技术、经济、组织措施,对设备规划、购置(设计、制造)安装、使用、维护、修理、改造,及更新。调拨,直至报废各个过程的活动,设备管理包括设备的物质运动和价值运动两个方面。

3、生产设备

生产设备是指直接或间接参加生产过程的设备。它是企业设备固定资产的主要组成部分,生产设备主要包括成套设备,系统、单台机械,装置等有形资产。生产设备需要通过在生产成本中提取折旧,以补偿在长期使用中受到的物质和技术上的损耗。

4、设备规划

设备规划包括设备管理工作和新设备设置规划两个方面,设备管理工作规划是指提高设备管理水平的中、长期(三年或五年)和年度计划。新设备设置规划是指新设备设置、更新和改过规划、设备规划是企业开发和生产经营总体规划的重要组成部分。

5、设备综合工程学

设备综合工程学是指以设备一生为研究对象,是管理、财务、工程技术和其它应用于有形资产的实际活动的综合,其目标为追求经济的寿命周期费用。

设备综合工程学的活动内容包括:制定设备的可*性、维修性要求和可*性、维修性设计,及各项资产的安装、试运转、维修、改造和更新,并进行有关的信息反馈。

6、全员生产维修(TPM)

TPM是日求现代设备管理维修制度,它是以达到最高的设备综合效率为目标,确立以设备一生为对象的生产维修全系统,涉及设备的计划、使用、维修等所有部门,从最高领导到第一线工人全员参加,依*开展小组自主活动来推行的生产维修,概括为:T 全员、全系统、全效率,PM -生产维修(包括事后维修、预防维修、改善维修、维修预防)。

7、设备经济寿命

设备经济寿命(又称设备价值寿命),是根据设备的使用费(包括维持费和折旧费)来确定设备的寿命,通常是指年平均使用成本最低的年数,经济寿命用于确定设备的最佳折旧年限和最佳更新时机。

8、设备的技术寿命

设备在技术上有存在价值的期间,即从设备开始使用,至被技术上更为先进的新型设备所淘汰的全部经历期,技术寿命的长短决定于设备无形磨损的速度。

9、设备新度

设备新度=帐面值/设备原值,设备新度是反映企业装备的新旧程度,从一定的意义上说,反映了企业装备的技术水平状况,随着企业经济体制改革的不断深入设备新度已作为评价企业装备改造,更新的一个主要指标。

10、设备选型

设备选型是指购置设备时,根据生产工艺要求和市场供应情况,按照技术上先进、经济上合理,生产上适用的原则,以及可*性、维修性、操作性和能源供应

等要求,进行调查和分析比较,以确定设备的优化方案。

11、技术经济论证

技术经济论证是指根据技术与经济的瓣证关系,对设备规划从技术与经济两方面进行分析,比较和评价,论证方案的必要性,可行性和经济性,以达到技术先进和经济合理的最佳结合,取得最优的经济效益。

12、设备操作规程

是指对操作工人正确操作设备的有关规定和程序。各类设备的结构不同,操作设备的要求也会有所不同,编制设备操作规程时,应该以制造厂提供的设备说明书的内容要求为主要依据。

13、设备使用规程

设备使用规程是对操作工人使用设备的有关要求和规定。例如;操作工人必需经过设备操作基本功的培训,并经过考试合格,发给操作证,凭证操作;不准超负荷使用设备;遵守设备交接班制度等。

14、设备维护规程

设备维护现程是指工人为保证设备正常运转而必须采取的措施和注意事项。例如:操作工人上班时要对设备进行检查和加油,下班时坚持设备清扫,按润滑图表要求进行润滑等,维护工人要执行设备巡回检查,定期维护和调整等。

15、计划预修制度

按修理计划对设备进行预防性的日常维护保养,检查和大、中、小修理的制度,它首创于苏联,是以修理周期结构和修理复杂系数为主要支柱,是一种事前预防性修理计划。

16、设备检修计划

根据设备的实际开动台时,技术状态、监测数据,主要另部件修理类别,设备在生产中所处的地位等,采用不同的维修方法,制订预防对策计划,是一种预防性和状态性相结合的修理计划。

17、设备的分级管理

在设备管理领域要实行“分级管理”的原则,对国家或地方重点任务、重点产品计划完成有直接影响的关键设备,行业和地方主管部门要按照分工认真管好,对涉及全行业的设备管理规划、政策、法规和规章等必须统一制定,对执行情况进行检查监督,对设备管理的重要技术经济指标和规章制度,必须由行业主管部门统一制定和检查.

18、维护与计划捡修相结合

设备的维护是指为保持设备规定的功能而进行的日常活动,计划检修是指恢复设备规定功能的全都检查修理工作。(检修计划是根据设备的实际技术状况而编制的)。

设备的维护和计划检修是设备维修工作的有机构成部分,两者不可偏废,应该合理安排、密切结合、以保证设备处于良好的技术状态。

19、修理、改过与更新相结合设备的修理是指为恢复设备规定的功能而进行的技术活动,是对设备物质损耗的局部补偿,设备的改造是指用新技术、新结构和另部件对在用设备进行改装;

是对设备技术损耗的局部补偿,更新是指用技术先进或性能优良的新设备代替原有设备:走对设备损耗的彻底补偿。

把设备的修理,改造与更新相结合考虑,能使设备更好地发挥经济效益,也是设备管理维修的主要方法。

20、专业管理与群众管理相结合

设备的专业管理与解众管理相结合是我国推行设备管理的组织形式,专业管理是指企业设备动力系统的综向的职能管理,群众管理是指在操作工人中开展群众性的设备管理活动,专业管理与群众管理相结合的组织形式已在实践中得到肯定。

21、技术管理与经济管理相结合

技术管理是指企业有关生产技术组织和管理工作的总称。经济管理是指在社会物质生产活动中,用较少的人力、物力、财力和时间,获得较大成果的管理活动的总称。

在设备的寿命周期内,同时存在着实物运动与价值运动两种运动形态。实物运动形态的控制属于技术管理范畴,价值运动形态的控制属于经济管理范畴,加强设备技术和经济管理的目的在于获得经济的设备寿命周期费用,两者必须紧密结合。

22、设备完好

设备完好是指符合规定的功能,处于完好状态的设备,设备完好状态的具体标准,由各行业主管部门,根据行业设备特点和总的要求制定,报国家经委备案,作为行业内部检查设备完好的统一尺度。

23、重点设备

企业根据自已的生产性质和要求,确定在生产中占重要地位,起重要作用的设备,为保证生产正常进行而把这些设备作为维修与管理的重点。重点设备确定后不是长期不变的,它随企业生产结构,生产计划和产品工艺要求的改变而定期进行调整。

24、设备的突发性故障

通过事先的测试或监控不能预测到的,及事先并无明显征兆,亦无发展过程的随机故障,发生故障的概率与使用时间无关.

25、设备的渐发性故障

通过事先的测试或监控可以预测的故障,发生故障的慨率与时间有关,使用时间超长,发生故障的概率越高,如另件磨损、腐蚀、疲劳、老化等。

26、三不放过

对发生有重大的设备事故应做到三不放过,事故原因分折不清不放过;事故责任者与群众未受到教育不放过;没有防范措施不放过。目的是防止重复发生类似事故。

27、平均故障间隔期(MTBF)

MTBF分析法是指可以修理的设备从故障起到下一次故障为止,若干次的时间平均值。各企业应用MTBF 分析法来分析“设备的所有停机进行维修作业”是怎样发生的,把发生的各种问题记录后作成分析表,从而找出“减少维修作业研完”的重点,提高设备的可*性和维修性。

28、设备的日常点检和定期检查

日常点检是指由操作工人按规定标准,以五官感觉为主,对设备各部位进行技术状态检查的设备状态管理维修方法,定期检查是由指维修工人按规定的检查周期,以五官惑觉或仪器对设备性能和精度全面检查和测量的设备状态管理维修方法。

29、使用设备的“五颂纪律”

使用设备的“五项纪律”是指:

(1)凭操作证使用设备,遵守安全操作规程。

(2)经常保持设备清洁,并按规定加油。

(3)遵守设备交接班制度。

(4)管理好工具、附件,不得遗失。

(5)发现异常,立即停车,自己不能处理的问题应及时通知有关人员检查处理。

30、维修设备的“四项要求”

维护设备的“四项要求”是指;

(1)整齐,即工具、工件、附件、安金防护装置、线路及管道,整齐、齐全、安全完整。

(2)清洁,即设备内外清洁无油垢,设备四周切屑垃圾清扫干净。

(3)润滑,即按时加油换油,油质符合要求,各润滑器具、油毡、油线、油标保持清洁,油路畅通。(4)安全,即严格执行设备的操作规程和使用规程,合理使用,精心维护,安全无事故。

31、动力设备管理的“八字”方针

经济运行动力设备管理的“八字”方针是;安全、可*、经济、合理、动力设备经济运行是指动力系统在保证负荷供应的条件下,使整个系统达到损耗最小,费用最低的一种运行方式。

32、润滑五定和三级过滤

设备润滑的五定是指:定人(定人加油);定时(定时换油);定点(定点给油),定质(定质进油),定量(定量用油),三级过滤是指:液体润滑剂在进入企业总油库时要经过过滤,放入润滑容器要过滤,加到设备中时也要过滤。

33、设备检修专业化

按地区或不同设备类别,组织专业修理厂或地区性维修中心的网点规划并实施,专业修理厂通过经济合同方式,为不具备修理力量或条件的企业检修设备,这是组织检修专业化的重要形式。

34、设备检修社会化

把设备检修工作从企业中分离出来,建立、健全各种独立的公用专业修理网点,承担修理任务,逐步形成社会性的修理体系。这是实现工业生产组织结构改革的一项战略目标。

总有一天你会渐渐明白,对自己笑的人不一定是真爱,对方表面的伪善是为博取信赖,暗里他可能会伺机将你伤害。

总有一天你会渐渐明白,不是所有人都对你心门敞开,即使你用善良和真心对待,有的人依然会悄悄将你出卖。

总有一天你会渐渐明白,哪怕你拿到了幸福的号码牌,命运之神也不一定对你温柔相待,你的余生仍有可能会被忧伤覆盖。

总有一天你会渐渐明白,人世间每个人都会有孽缘和无奈,有的人不值得你为他付出和慷慨,命中注定的灾祸你想躲也躲不开。

总有一天你会渐渐明白,不管你在人群中出不出彩,不管你对生活认真抑或懈怠,该来的一切总是会因你而来。

总有一天你会渐渐明白,人生总有预料不到的惊喜和意外,纵然你处在绝望的谷底和天台,转身就有可能看到晴天驱走阴霾。

总有一天你会渐渐明白,无论人生之路宽畅还是狭窄,如果你能用勇敢和坦然对待,一切困难都不是前进的阻碍。

天下总有地方是专属于你的舞台,你的江湖你才是真正的主宰,对于前尘和过往少问应不应该,无论何处你都要展现自己的风采。

别去管自己是不是栋梁人才,世上每个人都是特别的存在,无论你踏步于尘世内外,尽力和无悔才是对命运最好的交差。

这段时间,被电视剧《知否》刷屏了。明兰和顾二叔幸福甜蜜的婚姻,让不少网友唏嘘羡慕,有人说,“这部剧简直就是现代婚姻的教科书。”

剧中庶女出身,却高嫁侯府,被顾二叔万千宠爱的明兰,把一段很多人都不看好的婚姻,过成了最幸福的样子。

细细思量,与她身上鲜明而独特的三种品质是分不开的。

自信独立,不卑不亢

明兰嫁入侯府后,面对侯府小秦氏等人的挑衅,毫不胆怯。从巧妙应对顾家长辈的发难,到立院别住、人前立威,明兰都能靠着她的聪慧和果敢,不卑不亢地处理。

屡屡想出面维护明兰的顾廷烨,也被明兰的表现所惊喜到,连小秦氏也只能兀自生气感叹,“我真是小看了这个庶女,能演会装,识字记账都不在话下……”

在大多数女人都靠婚姻才能实现自我价值的宋代,明兰一直就看得通透,这实在难能可贵。

出阁前,她就对祖母说,“若为了在男人面前争一口饭吃,反倒把自己变成面目可憎的疯婆子,这一生多不划算”.结婚后,婢女问她,“若是侯爷心不在了该如何”?她坦然回答,“那我们便只有守住自己。”

对她而言,爱情,有,则锦上添花,没有,也没有关系。只要守住自己,亦能守住自己生命中的一方晴空。这样的女人,不管经历什么,也既能与男人比肩同行,又能独自傲然绽放。

去年很火的《我的前半生》里的罗子君,尽管以前的她穿金戴银,背名牌包,喷贵香水,过着养尊处优的生活,看似很有品位,实际上却恰恰相反。她所拥有的东西都是因为“陈太太”这个身份得来的,所以一旦失去了这个身份后,她变得一无所有。

后来她终于明白了这样的人生只是美丽的泡沫,浮华的表面,糟糠的内里。当她努力抛弃这种依附于人的生活后,成为独立的女性后,她的品位也渐渐浮现出来了,连职场精英贺涵都被吸引住了。

正如亦舒在书里也写到的那样,“没有任何人会成为,你以为的今生今世的避风港”.

幸福的婚姻,从来都不是谁攀缘了谁,不是谁滋养了谁,而是两个独立的个体,彼此独立,相互成就。

理解宽容,不急不躁

明兰的丈夫顾庭烨自幼失恃,深陷繁复驳杂的家事囹圄,他看似玩世不恭,不学无术,实则有勇有谋,重情重义。他自幼缺少母爱,受尽家族的白眼和欺凌,内心渴望家庭的安定和温暖。

顾廷烨建功立业后,外人只看重他的地位和富贵,而明兰,却明白他所有的艰辛和不易,她有礼有节地与小秦氏对抗,认真细致地看护经营着他用命搏来的家产,视如己出地教导蓉儿读书学习,支持顾廷烨去寻找流落在外的儿子昌儿,甚至大度地接受顾廷烨姑母送来的妾室,只为了能让夫君不被内室家务所烦扰,全心全力地拼事业。

明兰深知,每个人都有缺点,都有过去,但人总要向前看。她善解人意,不急不躁,大度地包容了他被人所鄙夷嘲笑的过去,用心地护着他心中重要的人,给了他一个安宁温馨的家。

这份理解和宽容,对深受家庭之苦的顾廷烨而言,极为可贵,因此,也让他对明兰的爱,更深了一层。

黄磊和孙莉算得上是娱乐圈的模范夫妻,在一起二十多年未曾红过脸。黄磊曾说过,“我太太这样的女人,其实不罕见,应该属于普及型。但在我心中,却是只此一款,不退不换。”

两人在相处的过程中也从不把爱当作理所当然,而是互相理解,互相体贴。婚后孙莉慢慢退出了演艺圈,将大半的精力放在了家庭和孩子身上。黄磊从不让孙莉进厨房,“家里有一个人会做饭就够了,我愿意为她做一辈子的饭。”正是双方将彼此的付出看在眼里,才会相互理解,相互支持,共同拥有了一段甜蜜的婚姻。

正如泰戈尔所说,“爱情是理解和体贴的别名”.

好的婚姻,就是双方在对彼此的理解和包容里,一次次地爱上。

懂得放弃,不怨不艾

剧情刚开始的时候,明兰就遇见了齐衡,身为平宁郡主的独子,齐衡注定是齐国公府未来的继承人。这个温润如玉的谦谦君子,对明兰一片痴心,明兰也在心底燃起了爱情的火花。

但是,邕王的女儿对齐衡一见倾心,为了让女儿得到今生至爱,邕王扣押了齐衡的父亲,并以此相逼,最后,齐衡只能无奈放手,两人也就此错过。

在初恋夭折时,明兰也哭过消沉过。但她深知,这样做是没有任何意义的,便又逼迫自己尽快振作了起来。

与顾庭烨结婚后,她便努力彻底忘掉了这段刻骨铭心的初恋,一心一意地与顾庭烨过日子。在齐衡多次在朝堂上参奏丈夫,屡惹事端的情况下,她更是勇敢教说齐衡,霸气护夫。

当一段恋情衰败的时候,她并没有把爱情看得比天高,为之寻死觅活,也没有执迷不悟,陷入自怨自艾的泥潭,而是懂得适时放手,努力过好自己以后的人生。她的这份睿智和对爱情的忠贞,也让丈夫顾庭烨爱她爱得更深。

每个人的人生,或许都会经历几段刻骨铭心的感情,但一旦机缘不再,不得不分开的时候,就一定要懂得放下过去,让心彻底归零,不要让自己陷入烦恼和忧伤的深渊,而是要勇敢自信地去面对一段新的生活。

半导体物理基本概念-2014年

半导体物理基本概念: 离子晶体, 共价晶体, 晶胞, 肖脱基缺陷,费仑克尔缺陷,施(受)主杂质, 施(受)主电离能, 直(简)接复合, 复合率, 量子态密度, 状态密度, 有效状态密度, 绝缘体(半导体\导体)能带特点, 深(浅)杂质能级, 费米能级, 平衡态, 非平衡态, 载流子漂移运动,空穴,陷阱, 陷阱中心, 扩散系数, 扩散长度, 散射几率,电离杂质散射,迁移率, 复合中心,直接复合,间接复合, 简并半导体, 非简并半导体, 爱因斯坦关系 离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成。 共价晶体:由共价键结合而成的晶体叫共价晶体。 (补充:晶体的分类(按原子结合力的性质分) 离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成。 原子晶体:晶格格点上交替排列的是原子,依靠共价键结合而成。 分子晶体:占据晶格中格点位置的是分子,依靠范德瓦耳斯力结合而成。 金属晶体:晶格格点上排列着失去价电子的离子实,依靠金属键结合而成。) 晶胞:反映布拉菲点阵对称性的前提下,构成布拉菲点阵的平行六面体。除顶点上外,内部和表面也可以包含格点。 肖脱基缺陷:晶体结构中的一种因原子或离子离开原来所在的格点位置而形成的空位式的点缺陷 费仑克尔缺陷:指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为间隙原子(或离子),并在其原先占据的格点处留下一个空位,这样的空位-间隙对就称为弗仑克尔缺陷 施主杂质:杂质在硅、锗等半导体中电离时,能够释放电子而产生导电电子并形成正电中心。 施主电离能:多余的一个价电子脱离施主杂质而成为自由电子所需要的能量。 受主杂质:杂质在硅,锗等半导体中能接受电子而产生导电空穴,并形成负电中心。 受主电离能:使空穴挣脱受主杂质成为导电空穴所需要的能量。 直接复合:电子在导带和价带之间直接跃迁而产生复合 间接复合:电子和空穴通过禁带的能级进行复合 载流子复合率:单位时间单位体积内复合掉的电子-空穴对数。 量子态密度:k空间单位体积内具有的量子态数目。 状态密度:能量E附近单位能量间隔内的量子态数。 有效状态密度: 绝缘体能带特点:价带全部被电子填满,禁带上面的导带是空带,且禁带宽度较大。 半导体能带特点:价带全部被电子填满,禁带上面的导带是空带,但禁带宽度相对较小。 导体能带特点: 深杂质能级:若杂质提供的施主能级距离导带底较远;或提供的受主能能级距离价带顶较远,这种能级称为深能级,对应的杂质称为深能级杂质。 浅杂质能级:通常情况下,半导体中些施主能级距离导带底较近;或受主能能级距离价带顶较近。这种能级称为浅能级,对应的杂质称为浅能级杂质。

半导体产业介绍

半导体整个生态链 主要分为:前端设计(design),后端制造(mfg)、封装测试(package),最后投向消费市场。 不同的厂商负责不同的阶段,环环相扣,最终将芯片集成到产品里,销售到用户手中。半导体厂商也分为2大类,一类是IDM (Integrated Design and Manufacture),包含设计、制造、封测全流程,如Intel、TI、Samsung这类公司;另外一类是Fabless,只负责设计,芯片加工制造、封测委托给专业的Foundry,如华为海思、展讯、高通、MTK(台湾联发科)等。 前端设计是整个芯片流程的“魂”,从承接客户需求开始,到规格、系统架构设计、方案设计,再到Coding、UT/IT/ST(软件测试UT:unit testing 单元测试IT: integration testing 集成测试ST:system testing 系统测试),提交网表(netlist或称连线表,是指用基础的逻辑门来描述数字电路连接情况的描述方式)做Floorplan,最终输出GDS(Graphics Dispaly System)交给Foundry做加工。由于不同的工艺Foundry提供的工艺lib库不同,负责前端设计的工程师要提前差不多半年,开始熟悉工艺库,尝试不同的Floorplan设计,才能输出Foundry想要的GDS。 后端制造是整个芯片流程的“本”,拿到GDS以后,像台积电,就是Foundry 厂商,开始光刻流程,一层层mask光刻,最终加工厂芯片裸Die。 封装测试是整个芯片流程的“尾”,台积电加工好的芯片是一颗颗裸Die,外面没有任何包装。从晶圆图片,就可以看到一个圆圆的金光闪闪的东西,上面横七竖八的划了很多线,切出了很多小方块,那个就是裸Die。裸Die是不能集成到手机里的,需要外面加封装,用金线把芯片和PCB板连接起来,这样芯片才能真正的工作。 台积电是目前Foundry中的老大,华为麒麟系列芯片一直与台积电合作,如麒麟950就是16nm FF+工艺第一波量产的SoC芯片。 半导体行业的公司具主要分为四类: 集成器件制造商IDM (Integrated Design and Manufacture):指不仅设计和销售微芯片,也运营自己的晶圆生产线。Intel,SAMSUNG(三星),东芝,ST(意法半导体),Infineon(英飞凌)和NXP(恩智浦半导体)。 无晶圆厂供应商Fabless:公司自己开发和销售半导体器件,但把芯片转包给独立的晶圆代工厂生产。例如:Altera(FPL),爱特(FPL),博通(网路器件),CirrusLogicCrystal(音频,视频芯片),莱迪思(FPL),英伟达(FPL),

半导体制造基本概念

半导体制造基本概念 晶圆(Wafer) 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8?? 硅晶棒,约需2天半时间长成。经研磨、??光、切片后,即成半导体之原料晶圆片。 光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻 下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。 电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。 晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行:

1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。 CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。较为常见的CVD薄膜包括有: ■二气化硅(通常直接称为氧化层) ■氮化硅 ■多晶硅 ■耐火金属与这类金属之其硅化物 可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectrics)是目前CVD技术最广泛的应用。这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:内层介电层(ILD)、内金属介电层(IMD)、以及保护层。此外、金层化学气相沉积(包括钨、铝、氮化钛、以及其它金属等)也是一种热门的CVD应用。 物理气相沉积技术 如其名称所示,物理气相沉积(Physical Vapor Deposition)主要是一种物理制程而非化学制程。此技术一般使用氩等钝气,藉由在高真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质(通常为铝、钛或其合金)如雪片般沉积在晶圆表面。制程反应室内部的高温与高真空环境,可使这些金属原子结成晶粒,再透过微影图案化(patterned)与蚀刻,来得到半导体组件所要的导电电路。 解离金属电浆(IMP)物理气相沉积技术

半导体FAB里基本的常识简介

半导体F A B里基本的 常识简介精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层

何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass)

半导体物理学基本概念汇总

半导体物理学基本概念 有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。 空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。 回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。施主-----在半导体中起施予电子作用的杂质。受主-----在半导体中起接受电子作用的杂质。 杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。 n-型半导体------以电子为主要载流子的半导体。 p-型半导体------以空穴为主要载流子的半导体。 浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。浅能级杂质对半导体的导电性质有较大的影响。 深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。 杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体?; I* s# N* v8 Y! H3 a8 q4 a1 R0 \- W 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何' u* k9 `+ D1 v1 U# f5 [7 G 答:硅(Si)、锗(Ge)和砷化家(AsGa): j* z$ X0 w& E4 B3 m. M( N( _; o4 D 何谓VLSI' b5 w; M# }; b; @; \8 g3 P. G 答:VLSI(Very Large Scale Integration)超大规模集成电路5 E3 U8 @- t& \ t9 x5 L4 K% _2 f 在半导体工业中,作为绝缘层材料通常称什幺0 r7 i, `/ G1 P! U" w! I 答:介电质(Dielectric). w- j" @9 Y2 {0 L0 f w 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线?4 Z* y3 A, G f+ z X* Y5 ? 答:良好的导体仅次于铜 介电材料的作用为何?% Y/ W) h' S6 J, l$ i5 B; f9 [ 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质5 |3 X. M$ o; T8 Y, N7 l5 q+ b 何谓IMD(Inter-Metal Dielectric)9 u9 j4 F1 U! Q/ ?" j% y7 O/ Q" m; N, b 答:金属层间介电质层。1 X8 g' q a0 h3 k4 r" X$ l. l 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass): u0 F0 d! A M+ U( w/ Q 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG?& ~- I3 f8 i( Y! M) q, U 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass)6 f/ g4 U& D/ }5 W 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体" q) ]0 H- @9 p7 C8 P; D8 Y. P) X 二氧化硅其K值为3.9表示何义( Y! @1 J! X+ P; b* _$ g 答:表示二氧化硅的介电质常数为真空的3.9倍6 H9 v' O5 U U" R9 w! o$ ` 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体4 Z& Z5 a* E6 m+ F 简述Endpoint detector之作用原理.6 [2 d$ j" l7 p4 V. f 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

半导体厂GAS系统基础知识解读

GAS 系 统 基 础 知 识

概述 HOOK-UP专业认知 一、厂务系统HOOK UP定义 HOOK UP 乃是藉由连接以传输UTILITIES使机台达到预期的功能。HOOK UP是将厂务提供的UTILITIES ( 如水,电,气,化学品等),经由预留之UTILITIES连接点( PORT OR STICK),藉由管路及电缆线连接至机台及其附属设备( SUBUNITS)。 机台使用这些UTILITIES,达成其所被付予的制程需求并将机台使用后,所产生之可回收水或废弃物( 如废水,废气等),经由管路连接至系统预留接点,再传送到厂务回收系统或废水废气处理系统。HOOK UP 项目主要包括∶CAD,MOVE IN ,CORE DRILL,SEISMIC ,VACUU,GAS,CHEMICAL, D.I ,PCW,CW,EXHAUST,ELECTRIC, DRAIN. 二、GAS HOOK-UP专业知识的基本认识 在半导体厂,所谓气体管路的Hook-up(配管衔接)以Buck Gas (一般性气体如CDA、GN2、PN2、PO2、PHE、PAR、H2等)而言,自供气源之气体存贮槽出口点经主管线(Main Piping)至次主管线(Sub-Main Piping)之Take Off点称为一次配(SP1

Hook-up),自Take Off出口点至机台(Tool)或设备(Equipment)的入口点,谓之二次配(SP2 Hook-up)。以Specialty Gas(特殊性气体如:腐蚀性、毒性、易燃性、加热气体等之气体)而言其供气源为气柜(Gas Cabinet)。自G/C出口点至VMB(Valve Mainfold Box.多功能阀箱)或VMP(Valve Mainfold Panel多功能阀盘)之一次测(Primary)入口点,称为一次配(SP1 Hook-up),由VMB或VMP Stick之二次侧(Secondary)出口点至机台入口点谓之二次配(SP2 Hook-up)。

半导体物理学基本概念

半导体物理学基本概念 1.离子晶体:由正负离子或正负离子集团按一定比例组成的晶体称作离子晶体。离子晶体中, 正负离子或离子集团在空间排列上具有交替相间的结构特征。离子间的相互作用以库仑静电作用为主导。 2.共价晶体:主要由共价键结合而成的晶体。共价晶体中共价键的方向性与饱与性规定了共 价晶体中原子间结合的方向性与配位数。由于共价键非常稳定,所以一般来说,共价晶体的结构很稳定,具有很高的硬度与熔点。由于所有的价电子都参与成键,不能自由移动,因而共价晶体通常不导电。 3.晶胞:晶格中最小的空间单位。一般为晶格中对称性最高、体积最小的某种平行六面体。 4.弗仑克耳缺陷(肖特基缺陷):在一定温度下,晶格原子不仅在平衡位置附近做振动运动,而 且一部分原子会获得足够的能量,克服周围原子对它的束缚,挤入晶格原子间的间隙,形成间隙原子,原来的位置便成为空位。这时间隙原子与空位就是成对出现的,称为弗仑克耳缺陷。若只在晶体内形成空位而无间隙原子时,称为肖特基缺陷。 5.施主(受主)杂质及施主(受主)电离能:V族杂质在硅、锗中电离时,能够释放电子而产生导 电电子并形成正电中心,称它们为施主杂质或n型杂质。使多余的价电子挣脱束缚成为导 电电子所需的能量称为杂质电离能,用△表示。 Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或p型杂质。使空穴挣脱受主杂质束缚成为导电空穴所需的能量称为受主杂质电离能, 用Δ、 6.直接(间接)复合:电子在导带与价带之间的直接跃迁,引起电子与空穴的直接复合。电子与 空穴通过禁带的能级(复合中心)进行复合。根据复合过程发生的位置,又可以把它区分为体内复合与表面复合。 7.复合率:n与p分别表示电子浓度与空穴浓度。单位体积内,每一个电子在单位时间内都有 一定概率与空穴复合,这个概率显然与空穴浓度成正比,可以用rp表示,那么复合率R就有如下的形式:R=rnp ,比例系数r 称为电子--空穴复合概率。 8.量子态密度:单位k空间中的量子态数,称为k空间的量子态密度。 9.状态密度:在能带中能量E附近每单位能量间隔内的量子态数,g(E)=、 10.有效状态密度:把导带中所有量子态都集中在导带底(把价带中所有量子态都集中在价 带顶)、 11.绝缘体(导体、半导体)能带特点:绝缘体的禁带宽度很大,激发电子需要很大能量,在通常 温度下,能激发到导带去的电子很少,所以导电性很差。 半导体禁带宽度比较小,数量级在1eV左右,在通常温度下已有不少电子被激发到导带中去,所以具有一定的导电能力。半导体在热力学温度为零时,满带(价带)被价电子占满,在外电场作用下并不导电。当温度升高或有光照时,导带的电子与价带的空穴均参与导电。 导体原子中的价电子占据的能带就是部分占满的,在外电场作用下,电子可从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用。 12.深(浅)杂质能级:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生施主能级距离导带底较远,它们产 生的受主能级距离价带顶也较远,通常称这种能级位深能级。相应的杂质称为神能级杂

半导体物理学基本概念(版)

半导体物理学基本概念 1.离子晶体:由正负离子或正负离子集团按一定比例组成的晶体称作离子晶体。离子晶体 中,正负离子或离子集团在空间排列上具有交替相间的结构特征。离子间的相互作用以库仑静电作用为主导。 2.共价晶体:主要由共价键结合而成的晶体。共价晶体中共价键的方向性和饱和性规定了 共价晶体中原子间结合的方向性和配位数。由于共价键非常稳定,所以一般来说,共价晶体的结构很稳定,具有很高的硬度和熔点。由于所有的价电子都参与成键,不能自由移动,因而共价晶体通常不导电。 3.晶胞:晶格中最小的空间单位。一般为晶格中对称性最高、体积最小的某种平行六面体。弗仑克耳缺陷(肖特基缺陷):在一定温度下,晶格原子不仅在平衡位置附近做振动运动,而且一部分原子会获得足够的能量,克服周围原子对它的束缚,挤入晶格原子间的间隙,形成间隙原子,原来的位置便成为空位。这时间隙原子和空位是成对出现的,称为弗仑克耳缺陷。若只在晶体内形成空位而无间隙原子时,称为肖特基缺陷。 施主(受主)杂质及施主(受主)电离能:V族杂质在硅、锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。使多余的价电子挣脱束缚成为 导电电子所需的能量称为杂质电离能,用△表示。 Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或 p型杂质。使空穴挣脱受主杂质束缚成为导电空穴所需的能量称为受主杂质电离能,用Δ. 直接(间接)复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的直接复合。电子和空穴通过禁带的能级(复合中心)进行复合。根据复合过程发生的位置,又可以把它区分为体内复合和表面复合。 复合率:n和p分别表示电子浓度和空穴浓度。单位体积内,每一个电子在单位时间内都有一定概率和空穴复合,这个概率显然和空穴浓度成正比,可以用rp表示,那么复合率R就有如下的形式:R=rnp ,比例系数r 称为电子--空穴复合概率。 量子态密度:单位k空间中的量子态数,称为k空间的量子态密度。 状态密度:在能带中能量E附近每单位能量间隔内的量子态数,g(E)=. 有效状态密度:把导带中所有量子态都集中在导带底(把价带中所有量子态都集中在价带顶). 绝缘体(导体、半导体)能带特点:绝缘体的禁带宽度很大,激发电子需要很大能量,在通常温度下,能激发到导带去的电子很少,所以导电性很差。 半导体禁带宽度比较小,数量级在1eV左右,在通常温度下已有不少电子被激发到导带中去,所以具有一定的导电能力。半导体在热力学温度为零时,满带(价带)被价电子占满,在外电场作用下并不导电。当温度升高或有光照时,导带的电子和价带的空穴均参与导电。

半导体全制程介绍

半导体全制程介绍 《晶圆处理制程介绍》 基本晶圆处理步骤通常是晶圆先经过适当的清洗 (Cleaning)之后,送到热炉管(Furnace)内,在含氧的 环境中,以加热氧化(Oxidation)的方式在晶圆的表面形 成一层厚约数百个的二氧化硅层,紧接着厚约1000到 2000的氮化硅层将以化学气相沈积Chemical Vapor Deposition;CVP)的方式沈积(Deposition)在刚刚长成的二氧化硅上,然后整个晶圆将进行微影(Lithography)的制程,先在晶圆上上一层光阻(Photoresist),再将光罩上的图案移转到光阻上面。接着利用蚀刻(Etching)技术,将部份未被光阻保护的氮化硅层加以除去,留下的就是所需要的线路图部份。接着以磷为离子源(Ion Source),对整片晶圆进行磷原子的植入(Ion Implantation),然后再把光阻剂去除(Photoresist Scrip)。制程进行至此,我们已将构成集成电路所需的晶体管及部份的字符线(Word Lines),依光罩所提供的设计图案,依次的在晶圆上建立完成,接着进行金属化制程(Metallization),制作金属导线,以便将各个晶体管与组件加以连接,而在每一道步骤加工完后都必须进行一些电性、或是物理特性量测,以检验加工结果是否在规格内(Inspection and Measurement);如此重复步骤制作第一层、第二层的电路部份,以在硅晶圆上制造晶体管等其它电子组件;最后所加工完成的产品会被送到电性测试区作电性量测。 根据上述制程之需要,FAB厂内通常可分为四大区: 1)黄光本区的作用在于利用照相显微缩小的技术,定义出每一层次所需要的电路图,因为采用感光剂易曝光,得在黄色灯光照明区域内工作,所以叫做「黄光区」。

半导体全制程介绍

《晶圆处理制程介绍》 基本晶圆处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,送到热炉管 (Furnace)内,在含氧的环境中,以加热氧化(Oxidation)的方式在晶圆的表面形 成一层厚约数百个的二氧化硅层,紧接着厚约1000到2000的氮化硅层 将以化学气相沈积Chemical Vapor Deposition;CVP)的方式沈积(Deposition)在刚刚长成的二氧化硅上,然后整个晶圆将进行微影(Lithography)的制程,先在 晶圆上上一层光阻(Photoresist),再将光罩上的图案移转到光阻上面。接着利用蚀刻(Etching)技术,将部份未被光阻保护的氮化硅层加以除去,留下的就是所需要的线路图部份。接着以磷为离子源(Ion Source),对整片晶圆进行磷原子的植入(Ion Implantation),然后再把光阻剂去除(Photoresist Scrip)。制程进行至此,我们已将构成集成电路所需的晶体管及部份的字符线(Word Lines),依光罩所提供的设计图案,依次的在晶圆上建立完成,接着进行金属化制程(Metallization),制作金属导线,以便将各个晶体管与组件加以连接,而在每一道步骤加工完后都必须进行一些电性、或是物理特性量测,以检验加工结果是否在规格内(Inspection and Measurement);如此重复步骤制作第一层、第二层...的电路部份,以在硅晶圆上制造晶体管等其它电子组件;最后所加工完成的产品会被送到电性测试区作电性量测。 根据上述制程之需要,FAB厂内通常可分为四大区: 1)黄光本区的作用在于利用照相显微缩小的技术,定义出每一层次所需要的电路图,因为采用感光剂易曝光,得在黄色灯光照明区域内工作,所以叫做「黄光区」。 2)蚀刻经过黄光定义出我们所需要的电路图,把不要的部份去除掉,此去除的步骤就> 称之为蚀刻,因为它好像雕刻,一刀一刀的削去不必要不必要的木屑,完成作品,期间又利用酸液来腐蚀的,所 以叫做「蚀刻区」。 3)扩散本区的制造过程都在高温中进行,又称为「高温区」,利用高温给予物质能量而产生运动,因为本区的机台大都为一根根的炉管,所以也有人称为「炉管区」,每一根炉管都有不同的作用。 4)真空本区机器操作时,机器中都需要抽成真空,所以称之为真空区,真空区的机器多用来作沈积暨离子植入,也就是在Wafer上覆盖一层薄薄的薄膜,所以又称之为「薄膜区」。在真空区中有一站称为 晶圆允收区,可接受芯片的测试,针对我们所制造的芯片,其过程是否有缺陷,电性的流通上是否 有问题,由工程师根据其经验与电子学上知识做一全程的检测,由某一电性量测值的变异判断某一 道相关制程是否发生任何异常。此检测不同于测试区(Wafer Probe)的检测,前者是细部的电子 特性测试与物理特性测试,后者所做的测试是针对产品的电性功能作检测。

半导体制造工艺期末考试重点复习资料

1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET。 2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯 度多晶硅,维持熔融液初始掺杂浓度不变。 3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑 硅:p型掺杂材料是硼,n型是磷。 4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从 晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化 工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成)。 6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。 7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。 8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构 完全不是周期性结构。 9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。在1000℃和1个大气压下, 干氧的浓度C0是5.2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。

10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化 X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1.24Ev,湿氧氧化是0.71eV)。 11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和 硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。 12、较薄的氧化层MOSFET栅氧化层用干氧氧化,较厚的用湿氧氧化,如MOS集成 电路中的场氧化层和双极型器件,以获得适当隔离和保护,20nm为界限。 13、给定氧化条件下,在<111>晶面衬底上生成的氧化层厚度大于<100>晶面衬底, 因为<111>方向线性速率常数更大。值得注意的是温度和时间相同时,湿氧氧化厚度是干氧的5~10倍。 14、氧化掩膜厚度一般用实验测量方法获得,主要取决于特定温度和时间下,不能 使低掺杂硅衬底发生反型,典型厚度为0.5um~1.0um。 15、二氧化硅中各掺杂杂质扩散常数依赖氧的密度、性能和结构。 16、MOS器件受氧化层中的电荷和位于二氧化硅-硅界面处势阱影响。 17、势阱和电荷的基本类别:界面势阱电荷Qit(由于二氧化硅-硅界面特性产生, 取决于这个界面的化学组分,势阱位于二氧化硅-硅界面处,能态在硅禁带中,界

半导体制造技术基本概念

半导体制造技术基本概念 晶圆(Wafer) 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8吋硅晶棒,约需2天半时间长成。经研磨、拋光、切片后,即成半导体之原料晶圆片。 光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行: 1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。 CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。较为常见的CVD薄膜包括有: ■二气化硅(通常直接称为氧化层) ■氮化硅 ■多晶硅 ■耐火金属与这类金属之其硅化物 可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectrics)是目前CVD技术最广泛的应用。这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:

半导体厂商介绍

半导体厂商介绍 MOSFET的定义与分类。 MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)在集成电路中叫做绝缘性场效应管。中文名为金属-氧化物-半导体场效应管。MOSFET分为增强型(N型)和耗尽型(P型)。 MOSFET的工作原理 MOSFET的工作原理是在MOSFET G极上外加电压,金属电极相对于P型半导体的情况下,外加正电压,相对于N型半导体外加负电压,在氧化膜下会产生空乏层(depletion layer),若针对氧化膜下为P型半导体的情况,如果再提高电压,就会累积电子,若是N型半导体则会累计空穴,我们称此层为“反转层”(reversion layer)。MOS型场效应管就是利用这个层,作为一个切换开关。MOSFET是电压控制器件。 肖特基二极管的定义 肖特基二极管是以其发明人肖特基博士(Schottky)命名的。SBD(SchottkyBarrierDiode)即肖特基势垒二极管。 肖特基二极管的工作原理 肖特基二极管的工作原理是以贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 半导体厂商:国外,台湾,国内。 国外: AOS:万代半导体公司 ST:意法半导体公司 FAIRCHILD:仙童半导体公司(飞兆半导体公司) VISHAY:威世集团 IR:国际整流器公司 APT:美国先进功率技术公司(己被Microsemi公司收购) ONSEMI:安森美半导体公司 Microsemi:美高森美公司 TI:德州仪器 Toshiba:东芝公司 IXYS:艾赛斯公司 RECTRON:美国伟创电子公司 Diodes:美台二极体股份有限公司

半导体制造技术的一些名词含义!

晶圆(Wafer) 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8吋硅晶棒,约需2天半时间长成。经研磨、拋光、切片后,即成半导体之原料晶圆片。 光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。 电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行: 1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材 质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一 个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜 可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。 CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足 够均匀。较为常见的CVD薄膜包括有: ■ 二气化硅(通常直接称为氧化层) ■ 氮化硅 ■ 多晶硅 ■ 耐火金属与这类金属之其硅化物 可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectric s)是目前CVD技术最广泛的应用。这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:内层介电层(ILD)、内金属介电层(IMD)、以及保护层。此外、金层化学气相沉积

半导体基础知识说课讲解

半导体基础知识

半导体基础知识(详细篇) 2.1.1 概念 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。 1. 导体:容易导电的物体。如:铁、铜等 2. 绝缘体:几乎不导电的物体。如:橡胶等 3. 半导体:半导体是导电性能介于导体和半导体之间的物体。在一定条件下可导电。半导体的电阻率为10-3~109 Ω·cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs 等。 半导体特点: 1) 在外界能源的作用下,导电性能显著变化。光敏元件、热敏元件属于此类。 2) 在纯净半导体内掺入杂质,导电性能显著增加。二极管、三极管属于此类。 2.1.2 本征半导体

1.本征半导体——化学成分纯净的半导体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。它在物理结构上呈单晶体形态。电子技术中用的最多的是硅和锗。 硅和锗都是4价元素,它们的外层电子都是4个。其简化原子结构模型如下图: 外层电子受原子核的束缚力最小,成为价电子。物质的性质是由价电子决定的。 外层电子受原子核的 束缚力最小,成为价电 子。物质的性质是由价电 子决定的。 2.本征半导体的共价键结构 本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。共价键中的价电子为这些原

子所共有,并为它们所束缚,在空间形成排列有序的晶体。如下图所示: 硅晶体的空间排列与共价键结构平面示意图 3.共价键 共价键上的两个电子是由相 邻原子各用一个电子组成的,这 两个电子被成为束缚电子。束缚 电子同时受两个原子的约束,如 果没有足够的能量,不易脱离轨道。因此,在绝对温度 T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。只有在激发下,本征半导体才能导电

相关主题
文本预览
相关文档 最新文档