当前位置:文档之家› 光学显微镜基础知识100条--中国显微图像

光学显微镜基础知识100条--中国显微图像

光学显微镜基础知识100条--中国显微图像
光学显微镜基础知识100条--中国显微图像

目录

1显微镜的光学原理图 (1)

2显微镜观察方式一明视野观察(Bright field, BF) (1)

3显微镜观察方式二暗视野观察(Dark field) (1)

4显微镜观察方式三相差镜检法(Phase contrast, PH) (2)

5显微镜观察方式四微分干涉镜检术(DIC) (3)

6显微镜观察方式五偏光显微镜(Polarizing Microscopy, POL) (4)

7显微镜观察方式六霍夫曼调制相衬(HMC) (5)

8显微镜观察方式七荧光显微镜(Fluorescence Microscopy, FL) (6)

9显微镜观察方式八塑料DIC(Plas DIC) (7)

10物镜 (7)

11消色差物镜(Achromatic) (8)

12复消色差物镜(Apochromatic) (8)

13平场消色差物镜(Plana chromatic) (8)

14平场复消色差物镜(PF, Planapochromatic) (8)

15半复消色差物镜(Semi Apochromatic) (8)

16放大率(Magnification) (8)

17视场数 (9)

18物镜参数:数值孔径 (9)

19物镜参数:焦深 (10)

20物镜参数:齐焦距离 (10)

21物镜参数:工作距离 (11)

22物镜参数:分辨率 (11)

23覆盖差 (11)

24齐焦合轴 (12)

25目镜 (12)

26阿贝聚光镜(Abbe condenser) (12)

27消色差聚光镜(Achromatic aplanatic condenser) (13)

28摇出式聚光镜(Swing out condenser) (13)

29暗视野聚光镜 (13)

30相差聚光镜 (14)

31微分干涉聚光镜 (14)

32视场光阑 (15)

33象差 (15)

34色差(Chromatic aberration) (15)

35球差(Spherical aberration) (15)

36彗差(Coma) (16)

38场曲(Curvature of field) (16)

39畸变(Distortion) (16)

40机械筒长 (16)

41偏振光 (17)

42萤石物镜 (18)

43体视显微镜 (18)

44冷光源 (18)

45变倍比 (19)

46同轴落射照明 (19)

47环形光照明 (20)

48倒置显微镜 (20)

49视频显微镜 (20)

50有限远与无限远光学系统 (20)

51临界照明(Critical illumination) (21)

52柯勒照明(Kohler illumination) (21)

53切片 (21)

54斯托克位移 (21)

55自发荧光 (22)

56次发荧光 (22)

57免疫荧光 (22)

58荧光光源 (22)

59显微图像软件 (24)

60三维反卷积 (24)

61目镜测微尺 (25)

62台微尺 (26)

63多人共览 (27)

64折射率 (27)

65载物台 (27)

66白平衡 (28)

67色温 (28)

68日光型滤光片 (29)

69绿色滤色片 (29)

70中灰度滤色片 (29)

71荧光滤色块 (29)

72荧光滤色块转盘 (30)

73荧光串色 (30)

74绿色荧光蛋白 (31)

75显微标本制作技术 (31)

76物镜转盘 (32)

77工具显微镜 (32)

78金相显微镜 (32)

79金相试样制备 (32)

80反射微分干涉技术 (33)

82 C接口 (33)

83活细胞工作站 (34)

84碟片共聚焦(转盘式共聚焦) (34)

85显微切割技术 (34)

86全自动病理扫描系统 (35)

87显微操作 (35)

88荧光共振能量转移(Fluorescence Resonance Energy Transfer, FRET) (35)

89荧光漂白恢复(Fluorescence Recovery After Photobleaching, FRAP) (36)

90光漂白中的荧光损失(Fluorescence Losing In Photobleach, FLIP) (36)

91荧光共定位分析(Colocalization) (36)

92激光扫描共聚焦显微镜(Confocal Laser Scanning Microscope, CLSM) (36)

93针孔(pinhole) (37)

94荧光寿命成像(Fluorescence Life-time Imaging Microscopy, FLIM) (37)

95双光子显微镜 (38)

96超高分辨率技术(Super Resolution Microscopy, SRM) (39)

97全内反射荧光显微镜(Total Internal Reflection Fluorescence, TIRF) (40)

98光激活定位显微技术(Photoactivated Localization Microscopy, PALM) (40)

99随机光学重建显微法(Stochastic Optical Reconstruction Microscopy, STROM) (41)

100受激发射损耗显微技术(Stimulated Emission Depletion, STED) (42)

光学显微镜基础知识100条

1显微镜的光学原理图

2显微镜观察方式一 明视野观察(Bright field , BF )

目镜

物镜 眼睛

明视野镜检是大家比较熟悉的一种镜检方式,广泛应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。

明视野图片

3显微镜观察方式二 暗视野观察(Dark field )

暗视野实际是暗场照明。它的特点和明视野不同,不直接观察到照明的光线,而观察到的是被检物体反射或衍射的光线。因此,视场为黑暗的背景,而被检物体则呈现明亮的像。

暗视野的原理是根据光学上的丁道尔现象,微尘在强光直射通过的情况下,人眼不能观察,这是因为强光绕射造成的。若把光线斜射它,由于光的反射,微粒似乎增大了体积,为人眼可见。暗视野观察所需要的特殊附件是暗视野聚光镜。它的特点是不让光束由下至上的

通过被检物体,而是将光线改变途径,使其斜射向被检物体,使照明光线不直接进入物镜,利用被检物体表面反射或衍射光形成的明亮图像。暗视野观察的分辨率远高于明视野观察,最高达0.02-0.004μm。

暗视野图片

4显微镜观察方式三相差镜检法(Phase contrast, PH)

在光学显微镜的发展过程中,相差镜检法的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度)。对于无色透明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。

相差显微镜利用被检物体的光程之差进行镜检,也就是有效的利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相差镜检法广泛应用于倒置显微镜。

相差图片

相差显微镜的基本原理是,把透过标本的可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种结构变得清晰可见。光线透过标本后发生折射,偏离了原来的光路,同时被延迟了1/4λ(波长),如果再增加或减少1/4λ,则光程差变为1/2λ,两束光合轴后干涉加强,振幅增大或减小,提高反差。在构造上,相差显微镜又不同于普通光学显微镜,具有两个特殊之处:

(1)环形光阑(annular diaphragm)位于光源与聚光器之间,作用是使透过聚光器的光线形成空心光锥,焦聚到标本上。

(2)相位板(annular phaseplate)在物镜中加了涂有氟化镁的相位板,可将直射光或衍射光的相位推迟1/4λ。分为两种:

①A+相板:将直射光推迟1/4λ,两组光波合轴后光波相加,振幅加大,标本结构比周围介质更加明亮,形成亮反差(或称负反差)。

②B+相板:将衍射光推迟1/4λ,两组光波合轴后光波相减,振幅变小,形成暗反差(或称正反差),结构比周围介质更暗。

相差原理

5显微镜观察方式四微分干涉镜检术(DIC)

微分干涉镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕状的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。

原理:微分干涉镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图像呈现出立体的三维感觉。

微分干涉图片

DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏

振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了偌玛斯基棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起两束光发生了光程差。在物镜的后焦面处安装了第二个偌玛斯基棱镜,即DIC滑行器,它把两束光波合并成一束。这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出明暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕。

微分干涉原理图

6显微镜观察方式五偏光显微镜(Polarizing Microscopy, POL)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。

(1)偏光显微镜的特点

将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同性)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛的应用在矿物、化学等领域,在生物学和植物学也有应用。

(2)偏光显微镜的基本原理

偏光显微镜的原理比较复杂,在此不做过多介绍,偏光显微镜必须具备以下附件:起偏

镜,检偏镜,补偿器或相位片,专用无应力物镜,旋转载物台。

(3)偏光镜检术的方式

①正相镜检(Orthscope):又称无畸变镜检,其特点是使用低倍物镜,不用伯特兰透镜(BertrandLens),被研究对象可直接用偏振光研究。同时为使照明孔径变小,推开聚光镜的上透镜。正相镜检用于检查物体的双折射性。

②锥光镜检(Conoscope):又称干涉镜检,研究在偏振光干涉时产生的干涉图样,这种方法用于观察物体的单轴性或双轴性。在该方法中,用强会聚偏振光束照明。

(4)偏光显微镜在装置上的要求

①光源:最好采用单色光,因为光的速度、折射率和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。

②目镜:要带有十字线的目镜。

③聚光镜:为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。

④伯特兰透镜:聚光镜光路中的辅助部件,这是把物体所有造成的初级相放大为次级相的辅助透镜。它可保证用目镜来观察在物镜后焦平面中形成的平涉图样。

(5)偏光镜检术的要求

①载物台的中心与光轴同轴。

②起偏镜和检偏镜应处于正交位置。

③制片不宜过薄。

(6)典型应用图例

偏光图像(纤维和淀粉)

7显微镜观察方式六霍夫曼调制相衬(HMC)

原理是利用斜射光照射,它将相位梯度转换为光强度变化,这样可以用来观察未经染色的样品和活细胞。这项技术可以视厚样品观察有立体感。罗伯特霍夫曼博士在1975年发明这项技术。

霍夫曼调制相衬

HMC照明的一个例子是使用在体外受精实验中,其中光照下几乎透明的卵母细胞是很难看清楚。所以HMC没有DIC的效果好。

HMC的系统通常包括一个带狭缝的聚光镜和带狭缝的物镜。聚光镜里还有一个可以旋转的起偏器。根据HMC的原理一些显微镜制造商引进该技术的变种,例如尼康的高级调制相衬(NAMC),奥林巴斯的浮雕相衬(RC)和徕卡的集成霍夫曼调制相衬(IMC)。

8显微镜观察方式七荧光显微镜(Fluorescence Microscopy, FL)荧光镜检术是用短波长的光线照射用荧光素标记过的被检物体,使之受激发后产生长波长的荧光,然后观察。

荧光图像

(1)优势:

①检出能力高(放大作用)

②对细胞的刺激小(可以活体染色)

③能进行多重染色

(2)用途:

①物体构造的观察——荧光素

②荧光的有无、色调比较进行物质判别——抗体荧光等

③发荧光量的测定对物质定性、定量分析。

荧光原理图

9显微镜观察方式八塑料DIC(Plas DIC)

塑料DIC不同于普通的透射微分干涉显微术(DIC),它不用偏振光这样的特殊光线照亮目标物,因此聚光镜侧也没有起偏器。在透过DIC棱镜后光线才形成线性偏振光,接下来的检偏镜使在同一平面震动的光透过,因此形成干涉。

聚光镜内的狭缝光阑足以使光线转变l/4波长,结果就形成清晰的干涉图像。另外,对比度也可方便调节以适应不同的观测目标物。塑料DIC是第一种让人们能够使用塑料容器观察的偏振光学DIC方法。

塑料DIC原理左为相差,右为塑料DIC的细胞图像

10物镜

物镜是由若干个透镜组合而成的一个透镜组。组合使用的目的是为了克服单个透镜的成像缺陷,提高物镜的光学质量。显微镜的放大作用主要取决于物镜,物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件,所以对物镜的校正是很重要的。

物镜的分类方式:

(1)按显微镜镜筒长度(以mm计):透射光用160镜筒,带0.17mm厚或更厚的盖玻片;反射光用190镜筒,不带盖玻片;透射光与反射光用镜筒,筒长无限大。

(2)按浸法特征:非浸式(干式)、浸式(油浸、水浸、甘油浸及其他浸法)。

(3)按光学装置:透射式、反射式以及折反射式。

(4)按数值孔径和放大倍数:低倍(NA≤0.2与β≤10X),中倍(NA≤0.65与β≤40X),高倍(NA>0.65与β>40X)。

(5)按校正象差的情况:消色差物镜,半复消色差物镜,复消色差物镜,平视场消色差物镜,平视场复消色差物镜和单色物镜。

11消色差物镜(Achromatic)

消色差物镜较常见,由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。同时校正了轴上点球差和近轴点彗差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛的应用在中、低倍显微镜上。在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。

12复消色差物镜(Apochromatic)

由多组特殊光学玻璃和萤石制成的高级透镜组组合而成。将红、蓝、黄光校正了轴向色差,消除了二级光谱,因此像质很好,但镜片多、加工和装校都较困难。色差的校正在可见光的全部波区。若加入蓝色或黄色滤光片效果更佳。它是显微镜中最优良的物镜,对球面差、色差都有较好的校正,适用于高倍放大。但仍需与补偿目镜配合使用,以消除残余色差。13平场消色差物镜(Plana chromatic)

采用多镜片组合的复杂光学结构,较好的校正像散和像场弯曲,使整个视场都能显示清晰,适用于显微摄影。该物镜对球差和色差的校正仍限于黄绿波区,且还存在剩余色差。14平场复消色差物镜(PF, Planapochromatic)

除进一步对场曲校正外,其它像差校正程度均与复消色差物镜相同,使映像清晰、平坦;

15半复消色差物镜(Semi Apochromatic)

部分镜片用萤石制成,故又称萤石物镜,性能比消色差物镜好,价格比复消色差物镜便宜。校正像差程度介于消色差与复消色差两种物镜之间,但其它光学性质都与后者相近。16放大率(Magnification)

物镜和目镜放大倍数的乘积。

观察倍率(M) = 物镜倍率 X 目镜倍率

照相倍率(M) = 物镜倍率 X 照相目镜倍率

17视场数

视场数也叫视野数,视场数是指目镜的视场光圈直径用mm表示的值。能够观察的样品表面范围由视场数决定。

实际视场[Field of View(F.O.V.)]:通过目镜能观察到的物体表面的实际范围(实际视场)。F.O.V.(Field of View)用下式表示

FOV 计算公式

18物镜参数:数值孔径

子午光线能进入或离开纤芯(光学系统或挂光学器件)的最大圆锥的半顶角之正弦,乘以圆锥顶所在介质的折射率,数值孔径是判断物镜性能(分辨率、焦深、亮度等)的重要指数。

数值孔径又叫镜口率,简写为NA。它是由物体与物镜间媒质的折射率(n)与物镜孔径角的一半(θ\2)的正弦值的乘积,其大小由下式决定:NA=nXsin θ/2。

数值孔径简写NA(蔡司公司的数值孔径简写CF),数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低(即消位置色差的能力,蔡司公司的数值孔是代表消位置色差和倍率色差的能力)的重要标志。其数值的大小,分别标在物镜和聚光镜的外壳上。

孔径角又称“镜口角”,是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。

显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质率n值。基于这一原理,就产生了水浸系物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1。

数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。

与其他参数的关系:

数值孔径是显微镜物镜的重要参数,决定了物镜的分辨率。与物镜的放大倍数,工作距离,景深有直接关系。

一般来说,它与分辨率成正比,与放大率成正比,焦深与数值孔径的平方成反比,NA 值增大,视场宽度与工作距离都会相应的变小。

容易产生的误区:

数值孔径与分辨率成正比,但这并不是说在选择物镜的时候一定要选择数值孔径(NA)最大才是最好,因为物镜还会有很多其他重要参数,比如荧光透过率、工作距离等等,最好根据自己的实验选择。

19物镜参数:焦深

焦深也叫景深,其定义是:指使用显微镜观察和拍摄样品表面时,从对准焦点的位置开始,改变物镜与样品表面的距离时,对焦能够保持清晰的范围。肉眼的调整能力因人而异,所以焦深也会出现因人而异的情况。现在常用的是与实验结果比较一致的Berek公式。

焦深计算公式

20物镜参数:齐焦距离

齐焦距离是指,对准焦点时的物镜镜体定位面到物体表面的距离。OLYMPUS UIS2/UIS 光学系统物镜的齐焦距离为45 mm,ZEISS ICCS光学体统、LEICA HC光学系统的齐焦距离也是45mm,NIKON CFI 60光学系统的齐焦距离是60mm。

齐焦距离示意图

21物镜参数:工作距离

工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。

镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。在物镜数值孔径一定的情况下,工作距离短孔径角则大。数值孔径大的高倍物镜,其工作距离小。

工作距离图示

22物镜参数:分辨率

分辨率是指在物体表面能够分解的最小间隔。数值孔径(NA)越大,分辨率越高。通常,分辨率的大小可以用下式表示。

分辨率公式

23覆盖差

显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空

气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。

国际上规定,盖玻片的标准厚度为0.17mm,许可范围0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度为0.17mm。

24齐焦合轴

齐焦即在镜检时,当用某一倍率的物镜观察图像清晰后,再转换另一倍率的物镜时,其成像亦应基本清晰。而且像的中心偏离也应该在一定的范围内,也就是合轴程度。

齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。

25目镜

目镜的作用是把物镜放大的实像(中间像)再放大一次,并把物像映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放得再大,也仍然不能分辨出。

目镜的结构比物镜简单得多,一般由2-5片透镜分2组或3组构成,上面的一块透镜叫“接目镜”,下面的叫“场镜”。在目镜筒内,目镜的物方焦点平面处装了一个金属的光阑叫“视场光阑”,它的作用是限定有效的范围,而除去周围不清楚的像,物镜放大后的中间像落在视场光阑平面处,所以目镜中的指示标志,目镜测微尺和分划板都装在这个位置。

从目镜中透射出来的光线,在目镜的接目镜以上相交,这个相交点叫“眼点”,观察时眼点应该处在眼点的位置上,这样才能接受从目镜射出的全部光线,看到最大的视场,否则观察的效果不好。

26阿贝聚光镜(Abbe condenser)

这是由德国光学大学大师恩斯特·阿贝(Ernst Abbe)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差、球差就显示出来。因此,多用于普通显微镜上。

阿贝聚光镜

27消色差聚光镜(Achromatic aplanatic condenser)

色差球差的校正程度很高,能得到理想的图像,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。

消色差聚光镜

28摇出式聚光镜(Swing out condenser)

在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。

摇出式聚光镜

29暗视野聚光镜

用于暗视野照明。

暗视野聚光镜

30相差聚光镜

用于观察无色透明样本的相差聚光镜,要配合相差物镜使用,倒置显微镜上用的几乎都是相差聚光镜。正置显微镜则会根据用户要求选配。

相差聚光镜

31微分干涉聚光镜

该聚光镜是最复杂的一种,也可以叫多功能聚光镜,因为它一般可以实现:明视野,暗视野,相差,DIC等几乎所有观察方式的照明。只有高档研究用显微镜才配置这种聚光镜。

微分干涉聚光镜

32视场光阑

限制成像范围的光阑称为“视场光阑”。例如,照相系统中的底片框就是视场光阑。光源的视场光阑是显微镜照明光路系统中的重要部件之一。通常是装设在显微镜的底座面上,有保护外罩兼作视场光阑的调节转盘,为便于转动,转盘外围做得较厚大而且滚了花边并在周边上标有刻度作参考。视场光阑由10片或更多的页片组成一个接近于圆形的多边形通光光圈,从显微镜的样品视域中可以看到视场光阑经聚光镜所成的多边形,但是视场光阑不可以任意开大或缩小,它只能按照柯勒照明系统的要求并依据所使用的物镜倍数来调节其适当的大小。透射光显微镜的光源,不论是外接的或内置的灯室,都要经底座内的集光——聚光系统和反光镜,把原来水平传送的照明光折转90°而垂直向上经视场光阑出射到聚光镜系统中。

33象差

象差(aberration),是指透镜或反射镜所呈的像与原物面貌并非完全相同的现象。象差又可以分为几类,例如球面象差是由于一点光源发散的光线被分聚在不同的点上的缘故。色彩象差的原因是透镜的折光指数随光波的长短而变化,从而引起像的边缘呈现色彩。

可以理解为实际像与根据单透镜理论确定的理想像的偏离。这些偏离是折射定律造成的。象差是由透镜对色光的不同弯曲能力所致,并造成带有色晕的像。与色无关的象差(“单色象差”)包括使像变形的象差(“畸变”、“场曲”)和使像模糊的象差(“球差”、“彗差”、“散光”)。象差在照相机、望远镜和其他光学仪器中可以通过透镜的组合减小到最低限度。镜面也有与透镜一样的单色象差,但没有象差。

34色差(Chromatic aberration)

发生在多色光为光源的情况下,单色光不产生色差。

色差

白光由红、橙、黄、绿、青、蓝、紫七种光组成,各种光的波长不同,所以在通过透镜时的折射率也不同,这样物方的一个点,在像方则可能形成一个色斑。

35球差(Spherical aberration)

球差是轴上点的单色相差,是由于透镜的球形表面造成的。球差造成的结果是,一个点成像后,不再是个亮点,而是一个中间亮、边缘逐渐模糊的亮斑。从而影响成像质量。

消除方法:使用凸、凹透镜组合。

球差

36彗差(Coma )

慧差

彗差象散属轴外点的单色相差。轴外物点以大孔径光束成像时,发出的光束通过透镜后,不再相交一点,则一光点的像便会得到一逗点状,形如彗星,故称“彗差”。

消除方法:使用轴向平行光。

37象散(Astigmatism )

也是影响清晰度的轴外点单色象差。当视场很大时,边缘上的物点离光轴远,光束倾斜大,经透镜后则引起象散。象散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。

消除方法:通过复杂的透镜组合来消除。

38场曲(Curvature of field )

场曲即像场弯曲。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。这样在镜检时不能同时看清整个像面,给观察和照相造成困难。

研究用显微镜的物镜一般都是平场物镜,这种物镜已经矫正了场曲。

39畸变(Distortion )

前面所说各种象差除场曲外,都影响像的清晰度。畸变是另一种性质的象差,光束的同心性不受到破坏。因此,不影响像的清晰度,但像与原物体相比,在形状上造成失真。 40机械筒长

为了使不同的物镜和目镜在安装组合后能正确对焦,物镜镜筒连接面和目镜安装面(目镜与镜筒的连接面)的距离,以及物镜的一次成像位置到目镜安装面的距离a 必须固定。这个距离叫做机械筒长,标准机械筒长为160 mm 。

XSP显微镜使用图示教程(20210203101516)

XSP系列显微镜使用图示教程 XSP02显微镜结构基础知识: 目镜 物镜转换器 粗调旋钮物镜 微调族钮调光

XSP06显微镜结构基础知识: 3乱物镜转换器 栽物台微调旋钮 可调光阑 双面反射镜 —基座 一、取镜和安放 1右手握住镜臂,左手托住镜座

2.把显微镜放在实验台上,略偏左(显微镜放在距 实验台边缘7厘米左右处)。安装好目镜和物镜。 、对光 3.转动转换器,使低倍物镜对准通光孔(物镜的前端与载物台要保持2厘米的距离) 4.把一个较大的光圈对准通光孔。左眼注视目镜内 (右眼睁开,便于以后同时画图)。转动反光镜,使光线通过通光孔反 射到镜筒内。通过目镜,可以看到白亮的视野 三、观察 5.把所要观察的玻片标本放在载物台上,用压片夹 压住,标本要正对通光孔的中心

6.转动粗准焦螺旋,使镜筒缓缓下降,直到物镜 接近玻片标本为止(眼睛看着物镜,以免物镜碰到玻片标 本)。 .左眼向目镜内看,同时反方向转动粗准焦螺旋,使镜 筒缓缓上升,直到看清物像为止。再略微转动细准焦螺 旋,使看到的物像更加清晰。 注意事项:实验完毕,把显微镜的外表擦拭干净。并将镜筒缓缓下降到最低处。最后把显微镜放进镜箱里,送回原处。 显微镜使用常犯的错误 王建宏 显微镜是学习和研究生物学的重要工具。学会正确使用显微镜是学生必须掌握的一项基本技能。但据调查,很多初中生甚至高中生不能正确使用显微镜。现根据我多年的教学实践,谈谈学生在使用显微镜过程中常犯的错误。 (1)显微镜安放位置不当,有碍操作 显微镜安放不是靠前就是靠后,或位置靠右,甚至把镜筒向着自己。 显微镜应安放在离桌边缘5 cm镜筒向前,并讲清显微镜位置稍靠左 侧的道理(两眼同时睁开观察,眼不易疲劳,便于绘图。) (2)对光顾此失彼

光学显微镜的结构与使用方法

光学显微镜的结构与使用方法 【目的要求】 1、熟悉光学显微镜的主要构造及其性能。 2、掌握低倍镜及高倍镜的使用方法。 3、初步掌握油镜的使用方法。 4、了解光学显微镜的维护方法。 【实验原理】 光学显微镜(light microscope)是生物科学和医学研究领域常用的仪器,它在细胞生物学、组织学、病理学、微生物学及其他有关学科的教学研究工作中有着极为广泛的用途,是研究人体及其他生物机体组织和细胞结构强有力的工具。 光学显微镜简称光镜,是利用光线照明使微小物体形成放大影像的仪器。目前使用的光镜种类繁多,外形和结构差别较大,有些类型的光镜有其特殊的用途,如暗视野显微镜、荧光显微镜、相差显微镜,倒置显微镜等,但其基本的构造和工作原理是相似的。一台普通光镜主要由机械系统和光学系统两部分构成,而光学系统则主要包括光源、反光镜、聚光器、物镜和目镜等部件。 光镜是如何使微小物体放大的呢?物镜和目镜的结构虽然比较复杂,但它们的作用都是相当于一个凸透镜,由于被检标本是放在物镜下方的1~2倍焦距之间的,上方形成一倒立的放大实相,该实相正好位于目镜的下焦点(焦平面)之内,目镜进一步将它放大成一个虚像,通过调焦可使虚像落在眼睛的明视距离处,在视网膜上形成一个直立的实像。显微镜中被放大的倒立虚像与视网膜上直立的实像是相吻合的,该虚像看起来好像在离眼睛25cm处。 分辨力是光镜的主要性能指示。所谓分辨力(resolving power)也称为辨率或分辨本领,是指显微镜或人眼在25cm的明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,即分辨出标本上相互接近的两点间的最小距离的能力。据测定,人眼的分辨力约为100 μm。显微镜的分辨力由物镜的分辨力决定,物镜的分辨力就是显微镜的分辨力,而目镜与显微镜的分辨力无关。光镜的分辨力(R)(R值越小,分辨率越高)可以下式计算: 这里n为聚光镜与物镜之间介质的折射率(空气为1、油为1.5); 为标本对物镜镜口张角的半角,sin的最大值为1; 为照明光源的波长(白光约为0.5m)。放大率或放大倍数是光镜性能的另一重要参数,一台显微镜的总放大倍数等于目镜放大倍数与物镜放大倍数的乘积。 一、光学显微镜的基本构造及功能 (一)机械部分 1、镜筒:为安装在光镜最上方或镜臂前方的圆筒状结构,其上端装有目镜,下端与物镜转换器相连。根据镜筒的数目,光镜可分为单筒式或双筒式两类。单筒光镜又分为直立式和倾斜式两种。而双筒式光镜的镜筒均为倾斜的。镜筒直立式光镜的目镜与物镜的中心线互成45度角,在其镜筒中装有能使光线折转45度的棱镜。

练习使用光学显微镜

练习使用光学显微镜 蔡清柑 1、教学目标 ①知识目标:正确说明显微镜的结构与功能 ②能力目标:能独立、规范地使用显微镜,能观察到清晰的物像;在认识、使用显微镜的过程中发现问题,并尝试解决问题; ③情感目标:认同显微镜的规范操作方法,养成爱护显微镜的习惯,初步形成实事求是的科学态度。 2、教学重点、难点的分析: ①教学重点显微镜的使用方法。 ②教学难点规范使用显微镜,并观察到物象。 3、课前准备 教师:准备显微镜,并逐个检查(准备两个不同倍数的目镜);两种标本(写有“上”字的玻片;永久装片),纱布,显微镜的使用课件;课前每班培训几名学生,以便课上帮助教师辅导其他学生。 4、教学程序 4.1导入新课复习显微镜的结构名称及其用途。(让学生指着显微镜说出结构名称及其用途)(展示图片:细胞图)让学生了解细胞非常小(提示图中物象之所以看的很清楚是被放大了百倍以上)而且形状各异。应该要会使用显微镜。 4.2新课过程 1、认识材料和用具引导学生观察实验桌上显微镜、玻片标本、擦镜纸、纱布等。

2、取镜和安放右手握,左手托;略偏左,安目镜。指导学生看书35页及课件展示:取镜和安放。强调安放目镜时,手指不要触摸镜头,对学生进行爱护显微镜的教育。 3、显微镜的构造学生四人一组,看书对照实物回顾显微镜各部分名称。 4、显微镜的使用教师对学生的回答进行鼓励,引出显微镜的使用。介绍两种观察标本: (1)写有“上”字的玻片;(2)永久装片 5、对光要求学生先看书,然后指导学生动手观察。按照先看到一个白亮的视野→放入标本→-看到清晰像的顺序。 (1)低倍物镜对准通光孔。(2)左眼看,右眼睁。(注:两眼都睁开)(3)转动反光镜,看到明亮视野。(注:双手转动反光镜) 6、观察学生边看书或课件展示自学边操作显微镜进行观察。 (1)标本放在载物台上,压住,正对通光孔。 (2)镜筒先下降,直到接近标本。 (3)左眼注视目镜,使镜筒缓缓上升,直到看清物像。 7、强调 ⑴用低倍物镜(4×,即最短的物镜)对准通光孔。 ⑵转动转换器的手法要正确,对学生进行爱护显微镜的教育。 ⑶镜筒先下降后上升,镜筒下降时,眼睛一定要看着物镜,以免压碎标本。 ⑷左眼看目镜,右眼睁开是为了画图。引导学生继续观察。 8、讨论并回答问题: ⑴视野中“上”字是否倒置,其物像比实际大小放大了多少倍? ⑵若视野中“上”字位于左上方,怎样操作才能将其移至视野中央? ⑶物像放大倍数越大,视野会越暗还是越亮? ⑷物像放大倍数越大,视野中看到的细胞数目越多还是越少?

一显微镜的构造及使用方法

实验一显微镜的构造及使用方法 一、目的要求 1.了解显微镜的构造、性能及成像原理。 2.掌握显微镜的正确适用及维护方法。 二、实验器材 1.显微镜、纱布、绸布 2.酵母菌示教标本 三、普通光学显微镜简介 微生物的最显著的特点就是个体微小,必须借助显微镜才能观察到它们的个体形态和细胞结构。熟悉显微镜并掌握其操作技术是研究微生物不可缺少的手段。 显微镜可分为电子显微镜和光学显微镜两大类。光学显微镜包括:明视野显微镜、暗视野显微镜、相差显微镜、偏光显微镜、荧光显微镜、立体显微镜等。其中明视野显微镜为最常用普通光学显微镜,其它显微镜都是在此基础上发展而来的,基本结构相同,只是在某些部分作了一些改变。明视野显微镜简称显微镜。 (一)显微镜的构造 普通光学显微镜的构造可以分为机械和光学系统两大部分。 图1-1 显微镜构造 1.目镜 2.镜筒 3. 转换器 4. 物镜 5. 载物台 6. 聚光器 7. 虹彩光圈 8. 聚光镜调节钮9.反光镜10. 底座11. 镜臂12. 标本片移动钮 13. 细调焦旋钮14. 粗调焦旋钮15.电源开关16.光亮调节钮17.光源 1.机械系统: (1)镜座Base:在显微镜的底部,呈马蹄形、长方形、三角形等。 (2)镜臂Arm:连接镜座和镜筒之间的部分,呈圆弧形,作为移动显微镜时的握持部分。 (3)镜筒Tube:位于镜臂上端的空心圆筒,是光线的通道。镜筒的上端可插入接目镜,下面可与转换器相连接。镜筒的长度一般为160mm。显微镜分为直筒式和斜筒式; 有单筒式的,也有双筒式的。 (4)旋转器Nosepiece:位于镜筒下端,是一个可以旋转的圆盘。有3~4个孔,用于安

显微镜基础知识

显微镜基础知识 第一章:显微镜简史 随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。 显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到1847年德国蔡司研制的结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于金属材料,生物学,化工等领域。 第二章显微镜的基本光学原理 一.折射和折射率 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现像,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 二.透镜的性能 透镜是组成显微镜光学系统的最基本的光学元件,物镜、目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。 当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称“焦点”,通过交点并垂直光轴的平面,称“焦平面”。焦点有两个,在物方空间的焦点,称“物方焦点”,该处的焦平面,称“物方焦平面”;反之,在像方空间的焦点,称“像方焦点”,该处的焦平面,称“像方焦平面”。 光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。 三.影响成像的关键因素—像差 由于客观条件,任何光学系统都不能生成理论上理想的像,各种像差的存在影响了成像质量。下面分别简要介绍各种像差。 1.色差(Chromatic aberration) 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色

显微镜基础知识及主要参数说明

第一章:显微镜的几个重要光学技术参数 在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。 显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、工作距离、覆盖差等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。 1.数值孔径:(Numerical aperture)简写NA 数值孔径是判断物镜性能(分辨率,焦深和亮度)的关键要素,计算公式如下: N.A.=n×Sin(u/2) n = 试样与物镜之间介质的折射率(空气:n=1、油:n=1.515) u:孔径角又称“镜口角”,是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,也是光轴与离物镜中心最远折射光形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。 空气的折射率为n=1,孔径角最大不能超过180度,否则会因为物镜工作距离等于零而

无法工作。Sin(180/2)=1,所以空气介质的NA值小于1。 显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸系物镜和油浸物镜,因介质的折射率n值大于1,NA 值就能大于1。 数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。 这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值,数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。 2.分辨率(Resolving power)

高中生物实验:普通光学显微镜的使用方法

高中生物实验:普通光学显微镜的使用方法 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 机械部分 镜座:是显微镜的底座,用以支持整个镜体。 镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。 镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快

速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 照明部分 装在镜台下方,包括反光镜,集光器。 反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。 集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。 聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。 光学部分 目镜:装在镜筒的上端,通常备有2-3个,上面刻有5*、10*或15*符号以表示其放大倍数,一般装的是10*的目镜。 物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10*”符号的为低倍镜,较长的刻有“40*”符号的为高倍镜,最长的刻有“100*”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。 在物镜上,还有镜口率(N.A.)的标志,它反应该镜头分辨力的大小,其数字越大,表示分辨率越高,各物镜的镜口率如下表:

光学显微镜的使用步骤和维护保养

光学显微镜的使用步骤和维护保养 一、操作步骤和注意事项 (一)正置显微镜 1、安放右手握住镜臂,左手托住镜座,使镜体保持直立。桌面要清洁、平稳,要选择临窗或光线充足的地方。单筒的一般放在左侧,距离桌边3~4厘米处。 2、清洁检查显微镜是否有毛病,是否清洁,镜身机械部分可用干净软布擦拭。透镜要用擦镜纸擦拭,如有胶或粘污,可用少量二甲苯清洁之。 3、对光镜筒升至距载物台1~2厘米处,低倍镜对准通光孔。调节光圈和反光镜,光线强时用平面镜,光线弱时用凹面镜,反光镜要用双手转动。若使用的为带有光源的显微镜,可省去次步骤,但需要调节光亮度的旋钮。 4、安装标本将玻片放在载物台上,注意有盖玻片的一面一定朝上。用弹簧夹将玻片固定,转动平台移动器的旋钮,使要观察的材料对准通光孔中央。 5、调焦调焦时,先旋转粗调焦旋钮慢慢降低镜筒,并从侧面仔细观察,直到物镜贴近玻片标本,然后左眼自目镜观察,左手旋转粗调焦旋钮抬升镜筒,直到看清标本物像时停止,再用细调焦旋钮回调清晰。操作注意:不应在高倍镜下直接调焦;镜筒下降时,应从侧面观察镜筒和标本间的间距;要了解物距的临界值。若使用双筒显微镜,如观察者双眼视度有差异,可靠视度调节圈调节。另外双筒可相对平移以适应操作者两眼间距。 6、观察若使用单筒显微镜,两眼自然张开,左眼观察标本,右眼观察记录及绘图,同时左手调节焦距,使物象清晰并移动标本视野。右手记录、绘图。镜检时应将标本按一定方向移动视野,直至整个标本观察完毕,以便不漏检,不重复。光强的调节:一般情况下,染色标本光线宜强,无色或未染色标本光线宜弱;低倍镜观察光线宜弱,高倍镜观察光线宜强。除调节反光镜或光源灯以外,虹彩光圈的调节也十分重要。 (1)低倍镜观察观察任何标本时,都必须先使用低倍镜,因为其视野大,易发现目标和确定要观察的部位。 (2)高倍镜观察从低倍镜转至高倍时,只需略微调动细调焦旋钮,即可使物像清晰。使用高倍镜时切勿使用粗调焦旋钮,否则易压碎盖玻片并损伤镜头。转动物镜转换器时,不可用手指直接推转物镜,这样容易使物镜的光轴发生偏斜,转换器螺纹受力不均匀而破坏,最后导致转换器就会报废。(3)油镜的观察先用低倍镜及高倍镜将被检物体移至视野中央后,再换油镜观察。油镜观察前,应将显微镜亮度调整至最亮,光圈完全打开。使用油镜时,先在盖玻片上滴加一滴香柏油(镜油),然后降低镜筒并从侧面仔细观察,直到油镜浸入香柏油并贴近玻片标本,然后用目镜观察,并用细调焦旋钮抬升镜筒,直到看清标本的焦段时停止并调节清晰。香柏油滴加要适量。油镜使用完毕后一定要用擦镜纸沾取二甲苯擦去香柏油,并再用干的擦镜纸擦去多余二甲苯。 7、结束操作观察完毕,移去样品,扭转转换器,使镜头V字型偏于两旁,反光镜要竖立,降下镜筒,擦抹干净,并套上镜套。若使用的是带有光源的显微镜,需要调节亮度旋钮将光亮度调至最暗,再关闭电源按钮,以防止下次开机时瞬间过强电流烧坏光源灯。 (二)倒置显微镜倒置显微镜与正置显微镜的主要区别在于物镜位于载物台下方,这样有利于观察时在上方对样品进行一些实时操作。 倒置显微镜操作过程基本与双筒的正置显微镜相似,需注意以下几点:观察时可调节铰链式双目目镜至舒适的位置。组织培养液或水溅到载物台上、物镜上或显微镜镜架上可能会损伤设备。如果溅上后,应该立即从墙上插座拔下电源线,擦去溅出液或水。一定要轻柔转动光强调节钮,不要试图将旋钮转过终点位置。使用后一定要先将灯的强度调至最小再关电源。使用后要旋转三孔转换器,使物镜镜片置于载物台下侧,防止灰尘的沉降。 (三)实体显微镜又称体视显微镜或解剖显微镜。操作步骤基本和双筒正置显微镜类似:取用解剖镜时,移动需用双手,保持稳重。若需连镜箱搬动,应将镜箱锁好,同时镜箱的钥匙必须拔除。镜管上若有防尘罩,应取下并换上目镜及眼罩。将样品置于玻片上或蜡盘中再放到载物盘上待观察。拧开锁紧螺丝,把镜

显微镜的知识总结及常考知识点

生物科学:显微镜的知识总结 有关显微镜的知识在生物学中非常重要,也多次考过,现将有关知识总结如下: 1、若要把视野中上方的物像移到视野的正中心,则要将装片继续向上移动。若要把视野中左方的物像移到视野的正中心,则要将装片继续向左方移动,因为显微镜视野中看到的是倒像。 2、换高倍物镜后,应调节细准焦螺旋使物像变得清晰;视野会变暗,可调大光圈或改用反光镜的凹面镜来使视野变亮。 3、目镜越长,放大倍数越小;物镜越长,放大倍数越大。 4、物镜与载玻片之间的距离越小,放大倍数越大。 5、总放大倍数等于目镜放大倍数与物镜放大倍数的乘积;放大倍数是指细小物体长度或宽度的放大倍数。 6、放大倍数越大,视野中细胞越大、数目越少、视野越暗。 7、更换目镜,若异物消失,则异物在目镜上;更换物镜,若异物消失,则异物在物镜上、移动载玻片,若异物移动,则异物在载玻片上。 8、如何区别显微镜视野中的细胞核和液泡?一般来说,细胞核透光性不好,是深色的,液泡是浅色的。 此外仔细观察,液泡中液体是流动的,细胞核里面的结构是固定的,看起来有杂质的样子。1.显微镜的放大倍数等于目镜的放大倍数与物镜的放大倍数的乘积。放大倍数指的物体的宽度和长度的放大倍数,而不是面积和体积的放大倍数。 例1.一个细小物体若被放大50倍,这里“被放大50倍”是指该细小物体的() A.体积B.表面积C.像的面积D.长度或宽度 例2.如果使用10倍的目镜和10倍的物镜在视野中央观察到一个细胞,在只换40倍物镜的情况下,该细胞的物象比原先观察到的细胞直径放大了() A.4倍B.16倍C.100倍D.400倍 2.掌握目镜和物镜的结构特点以及镜头长短与放大倍数之间的关系。 目镜是无螺纹的,物镜是有螺纹的;镜头长度与放大倍数的关系:目镜的长度与放大倍数成反比,物镜的长度与放大倍数成正比;物镜越长与装片之间的距离就越短,物镜越短与装片之间的距离就越长。 例1.有一架光学显微镜的镜盒内有2个镜头,甲的一端有螺纹,乙无螺纹,甲乙分别为()A.目镜、物镜B.物镜、目镜C.均为物镜D.均为目镜答案:B 例2.显微镜头盒中的4个镜头。甲、乙镜头一端有螺纹,丙、丁皆无螺纹。甲镜头长3厘米,乙镜头长5厘米,丙镜头长3厘米,丁镜头长6厘米。请问:使用上述镜头观察某装片,观察清楚时物镜与装片之间距离最近的是;在同样的光源条件下,视野中光线最暗的一组镜头是。 解析:根据显微镜的结构可知,甲、乙镜头一端有螺纹为物镜,丙、丁无螺纹为目镜。物镜

光学显微镜的历史及基础知识

光学显微镜的历史及基础知识

光学显微镜的历史及基础知识 光学显微镜 optical microscope 利用光学原理把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 简史早在公元前 1世纪,人们就已发现通过球形透明物体去观察微小物体时可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的J.开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。17世纪中叶,英国的R.胡克和荷兰的 A.van列文

胡克都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中9台保存至今。胡克和列文胡克利用自制的显微镜在动、植物机体微观结构的研究方面取得了杰出的成就。19世纪,高质量消色差浸液物镜的出现使显微镜观察微细结构的能力大为提高。1827 年G.B.阿米奇第一个采用浸液物镜。19世纪70年代,德国人E.阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括R.科赫、L.巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术,1893年出现了干涉显微术,1935年荷兰物理学家F.泽尔尼克创造了相衬显微术,他为此在1953年被授予诺贝尔物理学奖金。

实验一 普通光学显微镜的构造和使用

实验一普通光学显微镜的构造和使用 一、目的要求 1.掌握普通光学显微镜的基本构造、使用方法、保护要点。 2.掌握普通光学显微镜油浸系的原理。 3.使用油镜观察几种细菌的基本形态。 二、显微镜的基本构造 显微镜由机械装置和光学系统两大部分组成(图1-1)。 光学显微镜的构造(图1-1) 1. 物镜转换器 2. 接物镜 3.游标卡尺 4.载物台 5.聚光器 6. 彩虹光阑 7.光源 8. 镜座 9. 电源开关 10. 光源滑动变阻器 11. 粗调螺旋 12. 微调螺旋 13. 镜臂 14.镜筒 15.目镜 16.标本移动螺旋 1.机械装置 镜座(base)和镜臂(arm)镜座位于显微镜底部,呈马蹄形,它支持全镜。镜臂有固定式和活动式两种,活动式的镜臂可改变角度。镜臂支持镜筒。 镜筒(body tube)是由金属制成的圆筒,上接目镜,下接转换器。镜筒有单筒和双筒两种,单筒又可分为直立式和后倾式两种。而双筒则都是倾斜式的,倾斜式镜筒倾斜45°。双筒中的一个目镜有屈光度调节装置,以备在两眼视力不同的情况下调节使用。

转换器(no sepiece)为两个金属碟所合成的一个转盘,其上装3—4个物镜,可使每个物镜通过镜筒与目镜构成一个放大系统。 载物台(stage)又称镜台,为方形或圆形的盘,用以载放被检物体,中心有一个通光孔。在载物台上有的装有两个金属压夹称标本夹,用以固定标本;有的装有标本推动器,将标本固定后,能向前后左右推动。有的推动器上还有刻度,能确定标本的位置,便于找到变换的视野。 调焦装置是调节物镜和标本间距离的机件,有粗动螺旋(coarse adjustment)即粗调节器和微动螺旋(fine adjustment)即细调节器,利用它们使镜筒或镜台上下移动,当物体在物镜和目镜焦点上时,则得到清晰的图像。2.光学系统 物镜(objective)物镜安装在镜筒下端的转换器上,因接近被观察的物体,故又称接物镜。其作用是将物体作第一次放大,是决定成像质量和分辨能力的重要部件。物镜上通常标有数值孔径、放大倍数、镜筒长度、焦距等主要参数。如:NA0.30;10×;160/0.17;16mm。其中“NA0.30”表示数值孔径(numerical aperture,简写为NA),“10×”表示放大倍数,“160/0.17”分别表示镜筒长度和所需盖玻片厚度(mm),16mm表示焦距。 目镜(ocular lens)装于镜筒上端,由两块透镜组成。镜把物镜造成的像再次放大,不增加分辨力,上面一般标有7×、10×、15×等放大倍数,可根据需要选用。一般可按与物镜放大倍数的乘积为物镜数值孔径的500—700倍,最大也不能超过1000倍的选择。目镜的放大倍数过大,反而影响观察效果。 聚光器(condenser)光源射出的光线通过聚光器汇聚成光锥照射标本,增强照明度和造成适宜的光锥角度,提高物镜的分辨力。聚光器由聚光镜和虹彩光圈(iris diaphragm)组成,聚光镜由透镜组成,其数值孔径可大于1,当使用大于1的聚光镜时,需在聚光镜和载玻片之间加香柏油,否则只能达到1.0。虹彩光圈由簿金属片组成,中心形成圆孔,推动把手可随意调整透进光的强弱。调节聚光镜的高度和虹彩光圈的大小,可得到适当的光照和清晰的图像。 光源(light source)较新式的显微镜其光源通常是安装在显微镜的镜座内,通过按钮开关来控制;老式的显微镜大多是采用附着在镜臂上的反光镜,反光镜是一个两面镜子,一面是平面,另一面是凹面。在使用低倍和高倍镜观察时,用平面反光镜;使用油镜或光线弱时可用凹面反光镜。 滤光片(filter)可见光是各种颜色的光组成的,不同颜色的光线波长不同。如只需某一波长的光线时,就要用滤光片。选用适当的滤光片,可以提高分辨力,增加影像的反差和清晰度。滤光片有紫、青、蓝、绿、黄、橙、红等各种颜色的,分别透过不同波长的可见光,可根据标本本身的颜色,在聚光器下加相应的滤光片。 三、油镜物镜的基本原理 微生物学研究用的显微镜的物镜通常有低倍物镜(16mm,10×)、高倍物镜(4mm,40—45×)和油镜(1.8 mm,95—100×)三种。油镜通常标有黑圈或红圈,也有的以“OI(oil immer-sion)字样表示,它是三者中放大倍数最大的。根据使用不同放大倍数的目镜,可使被检物体放大1000—2 000多倍。从图Ⅲ-3中可看出油镜的焦距和工作距离(标本在焦点上看得最清晰时,物镜与样品之间的距离)最短,光圈则开得最大,因此,在使用油镜观察时,镜头离标本十分近,需特别小心。

显微镜基础知识问答

Q:什么是数值孔径NA? A:数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其是对物镜而言)性能高低的重要标志。数值孔径越高,分边率越高,焦深则越小。 Q:是否可以在无限远光学系统上使用有限远筒长的物镜? A:您可能能够将物镜拧上物镜转盘,但由于无限远光学系统光路上的结像透镜的关系,使用有限远系统的物镜不能得到最佳的图像。 Q:是否可以在有限远筒长的显微镜上使用无限远系统的物镜? A:不能。因为像有限远光学系统不包含可使平行光路聚焦在目镜光栏面的结透镜。 Q:相差物镜是否可以用于其他观察方法? A:是的,可以。仅需移动相差聚光镜到“0”位置同时使用柯勒照明。相差物镜在其后焦平面上有相板,但是大部分光不受这个相板的影响。因此,对图像质量仅有轻微的影响,对明场图像依然有用。Ol ympus制造的相差物镜还可应用于荧光观察。 Q:相差物镜上标记的Ph1、Ph2、Ph3是什么意思? A:相差物镜要配合安装在聚光镜的环状光阑来使用。光阑的直径要与物镜的NA值相匹配。Olympu s UIS的物镜,Ph1表示物镜的NA值不超过0.50;Ph2表示NA值在0.55至1.0之间;Ph3表示N A值大于1.0(油镜)。长工作距离的物镜使用专用的相差环。 Q:是否可以为视频显微方法选择高NA值的物镜观察微小标本的细节? A:是的,可以。当您通过目镜观察时眩光可能图像的细节变暗,但必要的信息往往包含在其中,那么视频增强技术可以处理这些信息并且获得极好的视频图像。 Q:是否应该购买我所能买得起的最好的物镜? A:通常是这样的,但不总是。如果你所观察的标本的厚度有几个微米,平场消色差或平场半复消色差物镜就很好了,因为比起平场复消色差物镜有更好的焦深。如果用于彩色照相,平场半复消色差比平场消色差物镜得到的图像要好。平场复消色差物镜在微小细节上可以得到极好的观察和照相的效果,但往往要花费比平场半复消色差物镜高几倍的价格。 Q:如何避免在滴油时损伤40倍的干式物镜? A:如果您经常使用100倍的油镜,您可能想用50倍的油镜来替换掉40倍的干镜。50倍的平场消色差油镜(NA0.90)比标准的40倍平场消色差或消色差干镜(NA 0.65)得到更加明亮的图像,更好的清晰度。 Q:如何减少在40倍干镜上沾上香柏油? A:当您在转换40倍干镜和100倍油镜时,尽量避免40倍的干镜浸到油上。实验室经常将这两款物镜装在相对的方向上 Q:为什么有时候40倍的物镜成象效果比20倍差? A:当标本的厚度大于标准厚度0.17MM,或在盖玻片上有其他物质。为了改善成象效果,您可以用带校正环干式物镜,或用40倍和50倍的油镜来取代40倍的干式物镜,因为油浸物镜对盖玻片厚度

光学显微镜的结构及使用

光学显微镜的结构及使用 使用日期:2017年9月26日 一、教材分析 人类在很长时间,都是依靠肉眼来观察世界上形形色色的事物的,不过我们周围还有很多肉眼看不到的微小物体,要看到它们就要借助显微镜,这节课就来介绍如何使用显微镜。 二、实验目的 1、练习使用显微镜,学会规的操作方法。 2、能够独立操作显微镜。 3、能够将标本移动到视野中央,并看到清晰的图像。 三、重点与难点 重点:显微镜的结构和使用方法 难点:正确使用显微镜;理解实物与物像之间的关系到;理解玻片移动方向和物像移动方向之间的关系。 三、学情分析 学生们平时没有接触显微镜的机会,但是都通过很多途径见过显微镜,对它有一定的认识和了解。 四、教学环境及资源准备 显微镜,有“e”字的玻片,动、植物标本,擦镜纸,纱布。 在上课前分好组,并把显微镜发放到各组的操作台上,放置到指定的位置;发放实验时所用的器材及材料。 【新课导学】: 知识回顾:生命活动的基本层次包括哪些? 上节课我们学习到了细胞是生命活动结构和功能的最基本单位,那么同学们是否知道我们如果想观察细胞的话,应该用什么工具呢? 答:初中的时候我们用低倍光学显微镜观察细胞的,现在,让我们尝试用高倍镜来观察多种类的细胞。 基本容: 一.展示显微镜,学生回顾基本的结构(学生课堂讨论,教师总结)

对照图片,认清基本结构,并总结。 目镜----长放大倍数小 镜头 物镜----长放大倍数大(学生观察镜头,并总结)光学结构 平面镜----调暗视野 反光镜 凹面镜----调亮视野(学生亲自操作,总结)准焦螺旋----使镜筒上升或下降 (有粗细之分) 机械结构转换器----更换物镜 光圈----调节视野亮度 (有大小之分) 导:同学们已经学会了显微镜的基本结构,那你们想不想用显微镜来看看微观的世界是什么样子的? 答:想。那下面我们就来看看细胞吧。 二.用显微镜观察物象 给出永久性装片,让学生利用显微镜观察,并分成小组讨论,总结基本的操作方法。 基本操作步骤: 1.用低倍物镜观察 放置装片(标本正对通光孔的中心)→侧面观察降镜筒(转动粗准焦螺旋)→左眼观察找物像(转动粗准焦螺旋升高镜筒)→转动细准焦螺旋将物像调清晰。 2.用高倍物镜观察

零基础光学显微镜使用方法

零基础光学显微镜使用方法 编撰:杨历佳 我在本文中主要介绍的内容有:光学显微镜的组成、各部件的作用和原理、具体的操作方法及注意事项、保养和清洁。 普通光学显微镜按物镜放大倍数可以分10倍、40倍和100倍等。根据微生物等样本的大小,选择不同的放大倍数。例如要观察真菌(如酵母菌等)10×10就可以看的很清楚;如果要观察细菌的话至少要用到10×40;想要看的更为清楚就要用100倍的油镜来看,使用油镜时需要滴加香柏油。一般的镜检用400倍(10×40)基本上就足够了。 光学显微镜的组成结构 光学显微镜主要包括:物镜、目镜、反光镜、粗/细准焦螺旋、遮光器、盖玻片和载玻片等部件。如图:

1、物镜: 显微镜的放大作用主要取决于物镜,是显微镜最重要的光学部件,利用光线使被检物体第一次成像。物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件。所以对物镜的质量和校正很重要,它是衡量一台显微镜质量的首要标准。 物镜刻有“10×”符号的为低倍镜,刻有“40×”符号的为高倍镜,刻有“100×”符号的为油镜。 以40×物镜为例,物镜上的数字分别为:40/0.65和160(∞)/0.17 (1)40表示物镜的放大倍数:放大倍数是指眼睛看到的像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后,像的长度是100μm。要是以面积计算,则放大了10,000倍。显微镜的总放大倍数等于物镜和目镜放大倍数的乘积; (2)0.65为数值孔径(mm),数值孔径越大,样本观察的分辨率和放大率越大,视场宽度与工作距离越小。 数值孔径的定义是:物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。 (3)160为镜筒长度(mm),∞指无穷大。机械镜筒长(镜筒长度)是指从物镜的安装定位处到显微镜镜筒上端面的距离,标准定为160mm; (4)0.17为所需盖玻片的标准厚度单位(mm); 工作距离(物距): 样本调准焦点时,物镜前端与试样或盖玻片顶面的距离。 10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm。

光学显微镜操作规程

光学显微镜操作规程标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

光学显微镜操作规程使用说明: 1. 将标本切片放在载物台上,用切片压片压紧。 2. 将各倍率的物镜顺序装入物镜转换器,将所选用的目镜插入目镜 筒中。使用双目时,应使双目间距调至适合瞳距。 3. 转动反光镜,使照明光线射入镜筒(或接通电照明光源),然后 调节聚光镜下光栏的孔径大小,使视场明暗适度。 4. 观察时,先用低倍物镜寻找观察物,然后将被观察物移至视场中 心,再换高倍物镜观察。当使用 100X (油弹)物镜时,应先用干 净的细木棒蘸少许香柏油滴于物镜端部,再转入视场。必须使物镜 端部和盖玻片之间充满香油柏油液体,方可观察操作。 5. 调焦时,一般先用粗调焦旋钮调节物镜至能看到标本轮廓,然后 再用微调旋钮进行调节,直至物像最清晰为止。使用高倍物镜时最 好由下到上进行调节,以避免镜头因碰到切片而损坏。 6. 调节聚光镜的高低和孔径光栏口径大小,至标本像对比度适宜, 像质清晰。 7. 观察时,可拉动目镜滑板至瞳距位置,调节目镜调节圈,使目镜 筒升降位置与目镜滑板在标尺上所处的位置相一致,直至调节像质 清晰为止。 注意事项:

1. 仪器使用完毕后,用吹风球吹去镜头上的灰尘,用细软布蘸二甲苯擦试镜头上的油污。用清洁的细软布擦试整机上的灰尘和污迹。运动部分应随即涂上薄薄一层无腐蚀性的润滑剂,然后放入泡沫包装,装回木箱,并放在干燥、清洁、通风良好和无酸碱蒸汽的地方。 2. 显微镜出厂前已经通过仔细的检验和调整,物镜和目镜不要自行拆卸。 3. 物镜使用后必须装入物镜盒中,以防碰损和沾污。

光学显微镜的使用

显微镜的使用 口诀:一取二放三安装,四转低倍五对光,六上玻片七下降,八升镜筒找物象(找到调清移中央),九换高倍控好光(再调细准边观赏),十步整理和归箱。 使用方法和步骤: 一、取镜和安放 1.右手握住镜臂,左手托住镜座。 2.把显微镜放在实验台上,略偏左(显微镜放在距实验台边缘7厘米左右处)。安装好目镜和物镜。 二、对光 3.转动转换器,使低倍物镜对准通光孔(物镜的前端与载物台要保持2厘米的距离)。 4.把一个较大的光圈对准通光孔。左眼注视目镜内(右眼睁开,便于以后同时画图)。转动反光镜,使光线通过通光孔反射到镜筒内。通过目镜,可以看到白亮的视野。 三、观察 5.把所要观察的玻片标本(也可以用印有“6”字的薄纸片制成)放上载物台,用压片夹压住,标本要正对通光孔的中心。 6.转动粗准焦螺旋,使镜筒缓缓下降,直到物镜接近玻片标本为止(眼睛看着物镜,以免物镜碰到玻片标本)。 7.左眼向目镜内看,同时反方向转动粗准焦螺旋,使镜筒缓缓上升,直到看清物像为止。再略微调节细准焦螺旋,使看到的物像更加清晰。 8.高倍物镜的使用:使用高倍物镜之前,必须先用低倍物镜找到观察的物象,并移到视野的正中央,然后转动转换器再换高倍镜。换用高倍镜后,视野内亮度变暗,因此一般选用较大的光圈并使用反光镜的凹面增加进光量,然后调节细准焦螺旋使物像清晰。观看的物体数目变少,但是体积变大。 四、整理 9.实验完毕,把显微镜的外表擦拭干净。转动转换器,把两个物镜偏到两旁,并将镜筒缓缓下降到最低处,反光镜竖直放置。最后把显微镜归箱,送回原处。 《注意事项》: 1、严忌单手提取显微镜。 2、若须移动显微镜,务必将显微镜提起再放至适当位置,严忌推动显微镜(推动时造成的震动可能会导致显微镜内部零件的松动,切记!!),使用显微镜请务必小心轻放。 3、使用显微镜时坐椅的高度应适当,观察时更应习惯两眼同时观察,且光圈及光源亮度皆应适当,否则长时间观察时极易感觉疲劳。 4、转动旋转盘时务必将载物台降至最低点,以免因操作不当而刮伤接目镜之镜头。 载物台上操作,以免染剂或其它液体流入显微镜内部或伤及镜头。 6、观察完一种材料,欲更换另一种材料时,务必将载物台下降至最低点,换好玻片后再依标准程序重新对焦,切勿直接抽换标本,以免刮伤镜头或玻片标本。 7、用毕显微镜应将载物台下降至最低点,并将低倍镜对准载物台中央圆孔处,将电源线卷好,盖上防尘罩,并收入存放柜中。

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三普通光学显微镜的使用及细菌的简单染色、革兰氏染色法 生科15.2 周罡201500181104 【实验目的】 1.复习光学显微镜的结构、各部分的功能和使用方法。 2.学习并掌握油镜的原理和使用方法。 3.掌握利用显微镜观察不同微生物的基本技能,了解球菌、杆菌、放线菌、酵母、真菌在光学显微镜下的基本形态特征。 4.学习并掌握微生物的制片及简单染色的基本要求。 5.学习并掌握革兰氏染色法。 6.了解革兰氏染色原理。 7.巩固显微镜操作技术及无菌操作技术。【实验原理】 (一)普通显微镜的基本原理 1.基本原理 现代普通光学显 微镜利用目镜和物镜 两组透镜系统来昂达 成像,故又称为复式显 微镜。它们包括机械部

分和光学部分两部分。机械部分包括镜座、镜臂、镜筒、载物台、物镜转换器、粗调节螺旋、细调节螺旋、标本夹等。光学部分包括接目镜、接物镜、反光镜、光圈(虹采)、聚光镜(集光器)等。 显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的 乘积,而物镜的放大倍数越高,分辨率越高。 2.油镜微生物学使用的显微镜的物镜通 常有低倍镜(10×)、高倍镜(40×)和油镜(100×),油镜是三者中放大倍数最大的,油镜的焦距和工作距离最短,油镜与其他物镜不同的是载玻片与

显微镜使用的基本常识

显微镜使用的基本常 显微镜的使用专题 (一)显微镜结构图: 1.镜座:稳定镜身。 2.镜柱:支持镜柱以上的部分。 3.镜臂:握镜的部位。 4.载物台:放玻片标本的地方。中央有通光孔,两旁各有一个压片夹,用于固定所观察的物体。 5.遮光器:上面有大小不等的圆孔,叫光圈。每个光圈都可以对准通光孔。光圈用来调节光线的强弱: 6.大光圈:光线强,视野亮,当光线过弱需要强光时使用。 7.小光圈:光线弱,视野暗,当光线过强需要弱光时使用。 8.反光镜:可以转动,使光线通过通光孔反射上来。其两面是不同的,包括平面镜和凹面镜。平面镜:反射的光线较弱,当光线过强需要弱光时使用;凹面镜:反射的光线较强,当光线过弱需要强光时使用;一般情况下,光圈和反光镜配合使用,以确保所需要的最佳光线。光线强用小光圈和平面镜;光线弱用大光圈和凹面镜。

9.镜筒:上端装目镜,下端有转换器,在转换器上装有物镜,后方有准焦螺旋。 10.目镜:直插式,长度和放大倍数成反比。 11.物镜:螺旋式,长度和放大倍数成正比。 (二)显微镜使用步骤: 1.取镜和安放:右手握住镜臂,左手托住镜座,置于胸前,镜筒朝前,镜臂朝后,把显微镜放在自己左肩前方的实验台上,镜座后端距桌边五厘米左右。 2.对光:转动粗准焦螺旋,使镜筒缓缓上升,然后用拇指和中指转动转换器(切忌手持物镜移动),使低倍物镜对准通光孔(当转动听到碰叩声时,说明物镜光轴已对准镜筒中心)。转动遮光器,使最大光圈对准通光孔,左眼向目镜注视(右眼睁开),同时转动反光镜,将反光镜转向光源,使视野亮度均匀合适(看到一个明亮的视野)。 3.放置玻片标本:把所要观察的玻片标本放在载物台上,一定使有盖玻片的一面朝上(切不可放反),将所要观察的部位置于正对通光孔的中心,用压片夹压住。 4.使用低倍物镜观察:双手顺时针转动粗准焦螺旋,使镜筒缓缓下降,同时两眼从侧面注视物镜镜头,直到物镜接近玻片标本约2~3mm为止(注意不要让镜头与盖玻片接触,以免损坏镜头或标本片),然后左眼注视目镜,同时反方向转动粗准焦螺旋,使镜筒缓缓上升,直到看清物象为止。如果一直看不到物象,说明观察目标没有正对通光孔中心或者镜筒上升过快超出观察围,则应根据具体

相关主题
文本预览
相关文档 最新文档