当前位置:文档之家› 高数课件第一章

高数课件第一章

第一节预备知识

一、实数及其几何表示

1、实数

2、数轴

规定原点、正方向和长度单位的直线叫做数轴。

3、实数与数轴

数轴上的点与全体实数是一一对应的。

二、实数的绝对值

1、实数的绝对值实数的绝对值,用表示,即实数的绝对值是一个非负值,几何上,表示数轴上点与原点之间的距离.

a a ,0,0a a a a a >?=?-

a

2、实数绝对值的性质

(1)

,仅当时,有(2)(3)

(4)

绝对值的运算性质

(1)(2)(3)(4)0a ≥0a =0a =2a a

=a a -=a a a -≤≤a b a b

+≤+a b a b -≥-a b a b ?=?(0)

a

a b b b =≠

3、绝对值不等式

当时,

例2 解下列不等式

(1)(2)解:由原不等式可知

(1)或,整理得(2)得0k >a k k a k ≤?-≤≤a k a k a k

>?<->或2+5>7x 324

x ->2+5>7x 2+5<-7x 16

x x ><-或324324324

x x x ->?-<-->或223

x x <>或

1、区间

设a 和b 都是实数,且a

类似地,称[ a, b ]={ x| a }为闭区间;[ a,b ]={ x | }以及( a ,b ) ={x |a

以上这些区间都称为有限区间,a 和b 称为区间的端点,数b-a 称为这些区间的长度。

引进记号+ (读作正无穷大)及-(读作负无穷大),则可类似地表示下面的无限区间

[ a ,+ )={ x | a x}(-,b )={ x | x

∞∞∞

a x

b ≤≤≤∞∞∞

大一经典高数复习资料经典最新经典全面复习

高等数学(本科少学时类型) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论(★★) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 【题型示例】求值2 3 3 lim 9 x x x →--

高数第八章

高数第八章

第八章 第一节 向量及其线性运算 重点:1.方向角与方向余弦 2.向量在轴上的投影 典型题目: 例7.已知两点M 1(2,2,2)和M 2(1.,3,0),计算向量21M M 的模、方向余弦和方向角。 解:21M M =(1-2,3-2,0-2)=(-1,1,-2), |21M M |= 2 222)(-(1)(-1)++= 2 211=++; COS α=-21,COS β=21 ,COS γ=-2 2 ; α=π32,β=3π,γ=4 3π. 例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|=a ,求. P OM OA OA rj 方向上的投影在 解:记∠MOA=θ,有COS θ=3 1| || |=OM OA , θθ 于是OA rj P =|3 a θ||= COS .

θ 马云赵振 第二节数量积向量积混合积 1.两向量的数量积 a·b=│a││b│cos θ θ为两向量间的角度 (1)a·a=│a│2 (2)如果两个向量垂直,那么数量积为0,反之亦然(3)数量积满足交换律,分配率 结合律如下时才成立 (Λa)·b=Λ(a·b) 2.向量积 a·b=│a││b│sin θ (1)b×a=-a×b a×b=0的充分必要条件是a平行于b

(2)满足分配率 结合律如下时才成立 (3)(Λa)×b=a×(Λb )=Λ(a×b ) 用三阶行列式表示 i j k a×b= │ a x a y a z │ b x b y b z 例题 1.已知三角形ABC 的顶点分别是A (1,2,3),B (3,4,5),C (2,4,7),求三角形的面积 解:S ABC =1∕2│c ││b │sinA =1∕2│c ×b │ i j k c ×b= │ 2 2 2 │ =4i-6j+2k 1 2 4 S ABC =1∕2│4i-6j+2k │= 2222)6(4+-+=14 2.a=3i-j-2k ,b=i+2j-k ,求

高等数学第一章1

高数第一周测试题 出题人:洪义伟姜继伟贾西南马刚 一、选择题 1. 数列有界是函数收敛的() A 充要条件 B 必要条件 C 充分条件D即非充分条件又非必要条件 2.根据limXn=a的定义,对任给ε>0,存在正整数N,使得对于n>N的一切Xn,不等式|Xn—a|<ε都成立,这里的N() A 是ε的函数N(ε),且当ε减小时N(ε)增大 B 与ε有关,但ε给定时N并不唯一确定 C 是由ε所唯一确定的 D 是一个很大的常数,与ε无关 3. f(x)=在其定义域(—∞,+∞)上是() A 最小正周期为3π的周期函数 B 最小正周期为的周期函数 C 最小正周期为的周期函数D非周期函数 5.函数f(x)=(x∈R)的值域是() A (0,1) B (0,1] C [0,1) D [ 0 , 1 ]

7.函数f(x)=x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是增函数,则f(1)等于( ) A -7 B 1 C 17 D 25 8.下列函数是无穷小量的是() ( ) A g(2)>g(-1)>g(-3) B g(2)>g(-3)>g(-1) C g(-1)>g(-3)>g(2) D g(-3)>g(-1)>g(2)

A 1 B ∞ C 2 D 0 二、填空题 13.求 的定义域____________。 14. 已知求f (5)____________。 15.数列 的极限______。 16.求函数 的极限______。 三、 解答题 17.求函数 在指定定义域下的单调性。 18.求 的极限。 19.用数列极限的定义证明 。 20.用函数极限的定义证明 。 21.根据定义证明 22.求 的极限。 ???<+≥-=8,)]5([8 ,3)(x x f f x x x f

大一高数第一章 函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高数第八章

第八章 第一节 向量及其线性运算 重点:1.方向角与方向余弦 2.向量在轴上的投影 典型题目: 例7.已知两点M 1(2,2,2)和M 2(1.,3,0),计算向量21M M 的模、方向余弦和方向角。 解:21M M =(1-2,3-2,0-2)=(-1,1,-2), |21M M |= 2 222)(-(1)(-1)++=2211=++; COS α=- 21,COS β=2 1 ,COS γ=-22; α=π32 ,β=3π,γ=4 3π. 例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|=a ,求 .P rj 方向上的投影在 解:记∠MOA=θ,有COS θ= 3 1 ||||=OM OA , θθ于是OA rj P =|3 a θ||= COS . θ

马云赵振 第二节数量积向量积混合积 1.两向量的数量积 a·b=│a││b│cos θ θ为两向量间的角度 (1)a·a=│a│2 (2)如果两个向量垂直,那么数量积为0,反之亦然(3)数量积满足交换律,分配率 结合律如下时才成立 (Λa)·b=Λ(a·b) 2.向量积 a·b=│a││b│sin θ (1)b×a=-a×b a×b=0的充分必要条件是a平行于b (2)满足分配率 结合律如下时才成立 (3)(Λa)×b=a×(Λb)=Λ(a×b) 用三阶行列式表示 i j k

a×b= │ a x a y a z │ b x b y b z 例题 1.已知三角形ABC 的顶点分别是A (1,2,3),B (3,4,5),C (2,4,7),求三角形的面积 解:S ABC =1∕2│c ││b │sinA =1∕2│c ×b │ i j k c ×b= │ 2 2 2 │ =4i-6j+2k 1 2 4 S ABC =1∕2│4i-6j+2k │= 2222)6(4+-+=14 2.a=3i-j-2k ,b=i+2j-k ,求 3.(-2a )·(3b ) 4.a 、b 夹角的余弦 解:(1)(-2a )·(3b )=-6(a·b )=18 二、cos=a·b/│a │·│b │=3/221 张浩康 赵奇

(完整版)大一高数复习资料(免费)

高等数学 第一章 函数与极限 第一节 函数 ●函数基础(高中函数部分相关知识)(▲▲▲) ●邻域(去心邻域)(▲) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ●0x x →时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x x =→0 lim 〖证明 〗δε-语言 1.由()f x A ε-<化簡得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ●∞→x 时函数极限的证明(▲) 〖題型 〗已知函数()x f ,证明()A x f x =∞ →lim 〖证明 〗X -ε语言 1.由()f x A ε-<化簡得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ●无穷小与无穷大的本质(▲) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ●无穷小与无穷大的相关定理与推论(▲▲) (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1 -为无穷大 〖題型 〗計算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;) 3.由定理可知()()0 lim 0x x f x g x →?=???? (()()lim 0x f x g x →∞ ?=????) 第五节 极限运算法则 ●极限的四则运算法则(▲▲) (定理一)加减法则 (定理二)乘除法则 关于多项式()p x 、()x q 商式的极限运算 设:()()?????+?++=+?++=--n n n m m m b x b x b x q a x a x a x p 1 101 10 则有()()???????∞=∞→0 lim 0 b a x q x p x m n m n m n >=< ()()() ()000lim 0 0x x f x g x f x g x →?? ??=∞????? ()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00 lim 0 x x f x g x →=(不定型)时,通常分 子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解) 〖題型 〗求值2 3 3 lim 9 x x x →--

高数第七章无穷级数知识点

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数∑∞ =1 n n U ,满足 条件 l U U n n n =+∞→1 lim : ?当1l 时,级数发散(或+∞=l ); ?当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ?当1<λ时,级数收敛; ?当1>λ时,级数发散(或+∞=λ); ?当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1 n n U 与 ∑∞ =1 n n V 均为正项级数,且 l V U n n n =∞→lim (n V 是已知敛散 性的级数) ?若+∞<

大一高数复习资料

第一章 函数与极限 第一节 函数 ○邻域(去心邻域) (){} ,|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0x x →时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞ →lim 极限存在准则及两个重要极限 ○夹逼准则 第一个重要极限:1sin lim 0=→x x x ∵?? ? ??∈?2, 0πx ,x x x tan sin <<∴1sin lim 0=→x x x 0 000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===?? ??? (特别地,000 sin() lim 1x x x x x x →-=-) ○单调有界收敛准则 第二个重要极限:e x x x =?? ? ??+∞ →11lim (一般地,()() ()() lim lim lim g x g x f x f x =???????? ,其中 ()0lim >x f ) 【题型示例】求值:1 1232lim +∞→?? ? ??++x x x x 【求解示例】 ()()2111 212 1212 2121 1221 2 2121lim 212 21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞?++++??+++→∞ +→∞++→∞+++????? ?==+ ? ? ?+++?????? ? ???? ???=+=+ ? ???++?? ?? ? ? ? ?? ???=+ ???+???? 解:()()12lim 121 21212 121 22lim 121x x x x x x x x x e e e e +→∞?? ?+?? +??+→∞+→∞???+?? +?? +?? ? +? ? ==== 第四节 无穷小量与无穷大量 ○无穷小与无穷大的本质 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大?()∞=x f lim ○无穷小与无穷大的相关定理与推论 (定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=???? (定理四)在自变量的某个变化过程中,若()x f 为 无穷大,则()1 f x -为无穷小;反之,若()x f 为无 穷小,且()0f x ≠,则()x f 1 -为无穷大 【题型示例】计算:()()0 lim x x f x g x →???? ?(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U 内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0 =→x g x x 即函数()x g 是0x x →时的无穷小;

南华大学高数练习册8第八章_空间解析几何答案

南华大学高数练习册第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21= M M ,方向余弦为2 2cos = α, 2 2cos = β,0cos =γ,方向角为4 πα= ,4 πβ= , 2 πγ= . 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 2 22222) 3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29) 4(32 ||2 22 = -++= a ,所以)432(29 1k j i e a -+± =. 5. 已知点)6,2,1(-B 且向量AB 在x 轴、y 轴和z 轴上的投影分别为1,4,4-, 求点A 的坐标. 解:设点A 的坐标为),,(z y x ,由题意可知)1,4,4()6,2,1(-=----z y x , 则5,6,5=-==z y x ,即点A 的坐标为)5,6,5(-. §8.2 数量积 向量积 1.若3 ),(,4||,3||π= ==Λ b a b a ,求b a c 23-=的模. 解:b b b a a b a a b a b a c 22233233)23()23(||2 ?+?-?-?=-?-=

高等数学(同济大学版)第一章练习(含答案)

第一章 函数与极限 一、要求: 函数定义域,奇偶性判定,反函数,复合函数分解,渐近线,求极限, 间断点类型判定,分段函数分段点连续性判定及求未知参数,零点定理应用. 二、练习: 1.函数 2112 ++-=x x y 的定义域 ;答:2x ≥-且1x ≠±; 2. 函数y = 是由: 复合而成的; 答:2 ln ,,sin y u v v w w x ====; 3. 设 ,112 2 x x x x f +=??? ? ?+ 则()f x = ;答:22x -; 4. 已知)10f x x x ?? =+≠ ??? ,则()f x = ; 答: ( )11f x x x = +=+ ()0x ≠; 5.11lim 1 n x x x →--= ,答:n ; !lim 1 n n n →∞ += ;答: 0; 6. 当a = 时,函数(), 0, x e x f x a x x ?<=? +≥?在(,)-∞+∞上连续;答:1a =; 7.设(3)(3)f x x x +=+,则(3)f x -=( B ); A.(3)x x -, B.()6(3)x x --, C.()6(3)x x +-, D.(3)(3)x x -+; 8. 1lim sin n n n →∞ =( B ); A.0 , B.1, C.+∞, D.-∞; 9.1x =是函数2 2 1 ()32 x f x x x -= -+的(A ); A.可去间断点,B.跳跃间断点, C.第二类间断点, D.连续点; 10. |sin | ()cos x f x x xe -=是( A ); A.奇函数, B.周期函数, C.有界函数, D.单调函数; 11.下列正确的是( A ) A.1lim sin 0x x x →∞ =,B.1lim sin 0x x x →∞ =, C.0 1lim sin 1x x x →=, D.11lim sin 1x x x →∞ =; 12. 1x =是函数)1,13, 1 x x f x x x -≤?=? ->?的( D )

相关主题
文本预览
相关文档 最新文档