当前位置:文档之家› 金属热处理知识汇总

金属热处理知识汇总

金属热处理知识汇总
金属热处理知识汇总

热处理就是将固态金属或合金采用适当的方式进行加热、保温和冷却以获得所需组织结构的工艺。所以热处理的过程就是按加热→保温→冷却这三阶段进行,这三个阶段可用冷却曲线来表示(如图所示)。不管是那种热处理,都是分这三个阶段,不同的是加热温度、保温时间和冷却速度不同。

热处理工艺的特点是不改变金属零件的外形尺寸,只改变材料内部的组织与零件的性能。所以钢的热处理目的是消除材料的组织结构上的某些缺陷,更重要的是改善和提高钢的性能,充分发挥钢的性能潜力,这对提高产品质量和延长使用寿命有重要的意义。

钢的热处理种类分为整体热处理和表面热处理两大类。

常用的整体热处理有退火,正火、淬火和回火;

1.退火

把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温.

退火有完全退火、球化退火、去应力退火等几种。

a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力.

b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢.

c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力.

2.正火

将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。

正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。

正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。

3.淬火

将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。

淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

4.回火

钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。

淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。

A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性.

B 中温回火350~500;提高弹性,强度.

C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。

淬火+高温回火称为调质处理。

有谁知道45号钢淬火后的硬度一般为多大?一般45的含炭量的高低不同,硬度也有不同也和零件的尺寸有一定关系。就淬硬性说能够达到HR58,,,60

这个根据有效厚度来定,假如在淬透(指水淬)的情况下,普通的电炉淬火能达到55HRC左右(本人自己做过试验±1HRC),而假如感应淬火的话能达到58HRC,油淬的情况就不一样了。

一般为HRC53--55

本人做过试验,约直径20MM、厚度25的小试样,在各种温度,冷却方法下得到的硬度如下:

760℃水冷,51~52HRC,

840℃水冷,59HRC,

840℃油冷,52~53HRC,

960℃水冷,49~50HRC,(过热)

840℃空冷,10~12HRC。

一般达到50HRC就很好了。

看工件大小,20mm以下HRC%26gt;45,30mm以上HRC%26lt;42,再大的能淬到HRC32就很好

了。

不管零件大小,水淬一般都能淬到HRC50以上

哈哈高手一般不管什么样的能淬HRC52左右就可以了 ``如何能够防止45钢淬火裂纹?

一般在52-58

45#直径20MM、厚度25的小试样840℃空l冷不应该在这么窄的范围(10~12HRC),应该为HB160-196.相当于4-12HC),再者,HRC测量范围高于HRC17以上,低于此范围就不准了.

45号钢淬火后的硬度一般为52~55HRC.

一般小的产品,淬油后的硬度在58HRC以上,而大型号产品淬水硬度也不过在45HRC左右.

我们是油淬,淬火后的硬度可以达到52~64HRC

45号钢热处理后的硬度是多少 请高手帮忙

什么高手啊。38~45度

最高可以達到54HRC

我是学机械的 但是对金属不是很通 现在工作了麻烦来了

昨天我上司问我这个问题 我蒙了个38-45HRC 现在确认下

我查我学过的金属工艺学也查不到 崩溃!

比我懂的就高手!!顶下

只淬火HRC28-32

调质40-45

淬火到35也可以

此材料一般调质HRC40-45后使用,淬火很少,因为没有什么意义.45#钢一般用于制造普通轴,要加调质处理,使其综合性质提高如弯曲,拉伸强度等,不然用A3钢了.但一般对其硬度没有过高的要求. [s:15]

以前做垫板的时候调质到43~45

45#钢热处理后的硬度是多少

45#钢只好调质,一般不超过HRC40,最佳是35~38.如轴,齿轮,都是45#钢

调质HRC35~36.

45号钢热处理后最高可达到HRC60以上硬度,不过也无意义,特脆,也失去

使用价值,

那要根据你的需要,一般不会太高30-35度左右对于一般小型的洗衣机的输入轴类零件的话 45一般要多少硬度啊我这45#钢基本都是调到HRC28~32,这是比较好的

根据需要而定,一般40~~50

45号钢淬火后仅进行低温(150*--250*)回火,硬度是可达到HRC50*以上,但韧性很差,生产中很少运用。

45号钢较为广泛运用热处理工艺是淬火后进行高温(500*--650*)回火,即所谓调质。硬度在HRC28*--30*为宜。如端子,马达定转子,高寿命模具的模座用板则通常选用45号钢或s50c调质

HRC45左右

若只淬火可达HRC50以上,但太脆,所以还需回火,将硬度降下来,一般

HRC35-45没有问题.

请问一下:HRC220~270一般是什么材料?

根据情况定

最高可以達到54HRC

处理后的硬度太高了也就没有实际应用价值了

不是调质HB240-280吗?怎么出现HRC220~270,

“HRC220~270一般是什么材料”

对于洛氏硬度怎么会有这么高呢

怎么可能有这么硬的材料呢

是不是HB(布氏硬度)呢

一般是退火或正火件

16楼

HRC42-48

HRC35-42 左右吧

热处理有很多种的啊!你可以淬火、调质甚至是渗碳、渗氮等。结果的

硬度、强度都不一样的啊!

淬火后我们这里可以达到50~55左右吧

回火后可以到220-280HB

当然回火的硬度随着回火温度的变化也会变化。

45#钢只好调质,一般不超过HRC40

请问,为什么#45号钢的硬度达到50HRC时,为什么反而会变脆呢??

在深圳的一些热处理厂,45#钢的硬度回答都有是不超过HRC30,真不知他们是如何热处理?我有一个45#材料零件,要求热处理硬度在HRC30以上,

只好渗氮淬火了.好可笑?

这个问题问得很外行:

同是45#钢,直径为10mm的试棒和直径为500mm的柱体,热处理后其心部

硬度能差多少?

大家自己想一想

热处理是一个系统工程,如果淬火介质不同,硬度也不同,而且回火温度

不同硬度也同样不同

28楼同志,如果你要求45钢硬度在HRC30以上,通过调质也可以达到,但是其他的机械性能就会下降,如果其他要求比如心部要求是软的,就只有渗

碳了,你说对吗?

如果是中频淬火的话,其表面硬度在55以上的,

表面淬火处理可以达到HRC55以上

整体淬火处理根据零件的大小而定。

如果是调质处理,硬度在HRC24-28或HRC28-32

氮化处理的硬度在H400左右。

我认为13楼的答案还是比较正确的。

楼主的问题问的有点儿模糊,到底是问什么状态下的硬度啊

45号钢的淬火硬度能达到HRC50以上,具体要多少硬度应根据实际需要调整回火温度,一般进行调质处理,硬度可在HRC24~32之间。当然回火温度较低的话就可达到较高的硬度,但其脆性会增加。

也要看45钢的实际成分

你们都忽视了最根本的问题。

45#的淬火硬度取决于此零件截面尺寸的大小。当界面尺寸小于淬透的临界尺寸时,淬火硬度可以达到50几HRc。当尺寸比较大时,也就只能淬到30HRc左右了。一般做传动件时调质到217-255HB,少数也用240-

280HB。

此种材料调质加感应淬火也较常用。

37楼说的全面,同意。

淬火以后的硬度大概有40-45HRC,回火后可以达到你想要的硬度。例

如,紧固件 25-34HRC

16楼的兄弟:

你应该是搞错了吧,HRC的范围一般是HRC20~HRC70。看你的的200多,应该是布氏硬度HB,即HB220~HB270。

硬度和热处理的温度有关的,一般可以到HRC55

它的硬度取决于高温回火温度并与钢的回火稳定性和

工件截面尺寸有关,一般在HB200—350之间

哪种热处理啊??不同的热处理方法,不一样啊?!!

Q235的啊

这材料不行啊

比小日本的SS400差远了

同意36 楼samaimin 所说!

应该考虑淬透的临界尺寸的问题,我在实验室用直径30,高20的45#钢

小圆柱可以调质到HRC69。

硬度和热处理的温度有关的,一般可以到HRC55

45钢对尺寸反映很敏感的,小件硬度范围较广,但很容易变形、开裂。大件一般进行调质处理,硬度在HRC28--35之间,对于齿轮一般先进行调质处理,再进行高频淬火,高频淬火硬度可达HRC55--58,对于大件就零件表面想通过普通淬火提高到HRC40以上是做不到的。

不经过处理的45#钢,用一般的铣刀可以对其加工吗?会不会伤到铣刀?请

高手帮忙!

金属热处理知识点

1 热处理的目的、分类、条件; 定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。 目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。 分类: 特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。 热处理条件: (1)有固态相变发生的金属或合金 (2)加热时溶解度有显著变化的合金 热处理过程中四个重要因素: (1)加热速度V;(2)最高加热温度T; (3)保温时间h; (4)冷却速度Vt. 2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素; 铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒 性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(ζb=180~280MPa、ζs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。 奥氏体γ-Fe中的间隙固溶体;用A或γ表示 结构:面心立方晶格 性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(ζb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。 组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C →3Fe+C(石墨) 。 结构:复杂斜方 性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。 由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。

金属材料与热处理含答案

金属材料与热处理含答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气 态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。

1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的() A.屈服点 B.抗拉强度 C.弹性极限 D.以上答案都对 7.做疲劳试验时,试样承受的载荷为()。

金属材料与热处理(含答案)

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的()

金属热处理原理知识点总结

第一章金属的晶体结构 1、除化学成分外,金属的内部结构和组织状态也是决定金属材料性能的重要因素。 2、将阵点用直线连接起来形成空间格子,称之为晶格。 3、晶胞中原子排列的紧密程度通常用两个参数来表征:配位数、致密度。 4、原子所占体积与晶胞体积之比称为致密度。 5、体心立方结构有两种间隙:一种是八面体间隙,另一种是四面体间隙。 6、在晶体中,由一系列原子所组成的平面称为晶面,任意两个原子之间连线所指的方向称为晶向。 7、晶体的点缺陷有三种:空位、间隙原子和置换原子。 8、塑性变形时,由于局部区域的晶体发生滑移即可形成位错。 9、刃型位错的柏氏矢量与其位错线相垂直,螺型位错的柏氏矢量与其位错线相平行。 10、把单位体积中所包含的位错线的总长度称为位错密度。 11、晶体的面缺陷包括晶体的外表面和内界面两类。 12、晶体的内界面缺陷有:晶界、亚晶界、孪晶界、堆垛层错和相界等。 13、金属:是具有正的电阻温度系数的物质,其电阻随温度的升高而增加。 14、晶体:原子在三维空间作有规则的周期性排列的物质称为晶体。 15、晶体结构:是指晶体中原子在三维空间有规律的周期性的具体排列方式。 16、点阵:能清楚地表明原子在空间排列规律性的原子的几何点,称之为点阵。 17、晶胞:晶格中能够完全反映晶格特征的最小的几何单元,称为晶胞。用来分析晶体中原子排列的规律性。 18、配位数:是指晶体结构中与任一个原子最邻近、等距离的原子数目。 19、螺型位错:设想在立方晶体右端施加一切应力,使右端上下两部分沿滑移面发生了一个原子间距的相对切边,这种晶体缺陷就是螺型位错。 20、表面能:由于在表面层产生了晶格畸变,其能量就要升高,这种单位面积上升高的能量称为比表面能,简称表面能。 21、什么是晶体?晶体有何特性? 答:晶体:原子在三维空间作有规则的周期性排列的物质称为晶体。 1)晶体具有一定的熔点。在熔点以上,晶体变为液体,处于非晶体状;在熔点以下,液体又变为晶体。 2)晶体的另一个特点是在不同的方向上测量其性能,表现出或大或小的差异,称为各向异性或异向性。 22、确定晶向指数的步骤有哪些? 答:①以晶胞的三个棱边为坐标轴,以棱边长度作为作为坐标轴的长度单位;②从坐标轴原点引一有向直线平行于待定晶向;③在所引有向直线上任取一点,求出改点在X、Y、Z轴上的坐标轴;④将三个坐标轴按比例化为最小简单整数,依次写入方括号中,即得所求的晶向指数。 23、如何确定晶面指数?简要写出步骤。 答:①以晶胞的三条相互垂直的棱边为参考坐标轴X、Y、Z,坐标原点O应位于待定晶面之外,以免出现零截距;②以棱边长度为度量单位,求出待定晶面在各轴上的截距;③取各截距的倒数,并化为最小简单整数,放在圆括号内,即为所求的晶面指数。 24、根据几何形态特征不同,晶体缺陷可分成哪几类?各有何特征? 答:①点缺陷。特征是三个方向上的尺寸都很小,相当于原子的尺寸,例如空位、间隙原子等; ②线缺陷。特征是在两个方向上的尺寸很小,另一个方向上的尺寸相对很大。属于这一类的

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac 3或Ac 1 以上,保温一段时间,使之奥氏体化后,以 大于临界冷速的速度冷却的一种热处理工艺。 淬火目的:提高强度、硬度和耐磨性。结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。 表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。 单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。淬火介质可以是水、油、空气(静止空气或风)或喷雾等。 双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近M S 点,然后立即转移至油中较慢冷却(图9-1b线)。 分级淬火——将奥氏体化后的钢件先投入温度约为M S 点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。 等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。。。根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。 (二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理 工艺。回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。 第一类回火脆性:①淬火钢在250~400℃回火后出现韧性降低的现象称为第一类回火脆性,又称为低温回火脆性。几乎所有工业用钢都在一定程度上具有这类回火脆件,而且脆性的出现与回火时冷却速度的快慢无关。 第二类回火脆性:①指合金钢(含有Cr、Ni、Mn、Si等元素的合金钢)淬火并在450~650℃回火后产生低韧性的现象,也称为高温回火脆性。。。。。回火后缓冷促进回火脆性,而快冷抑制回火脆性。 (三)正火--是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 目的:——如果终锻温度比较高和锻造后冷却速度比较慢,会出现网状碳化物的缺陷。这种网状碳化物在球化退火时不易被消除,需要在球化退火前用正火工艺进行消除。 (四)退火——将钢加热到临界温度Ac1以上或以下温度,保温一定时间,然后缓慢冷却(如 炉冷、坑冷、灰冷等)获得接近平衡组织的热处理工艺称为退火 退火作用——退火过程使组织由非平衡向平衡过度,它可以均匀钢的化学成分及组织,消除铸造偏析,细化晶粒;消除内应力,稳定工件尺寸,减小变形,防止开裂;降低硬度,提高切削加工性能,一般硬度的最佳切削范围为170~230HB;提高塑性,便于冷变形加工;消除淬火后的过热组织以便再进行重新淬火;脱氢,防止白点等。6.5.3 退火工艺的分类

金属热处理基础知识大全

金属热处理基础知识大全 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。

人教版化学金属和金属材料知识点总结

人教版化学九年级第九单元金属和金属材料知识点归纳总结 课题1:金属材料 一、金属材料的发展与利用 1、从化学成分上划分,材料可以分为金属材料、非金属材料、有机材料及复合材料等四大类。 2、金属材料包括纯金属和合金。 (1)金属材料的发展 石器时代→青铜器时代→铁器时代→铝的应用→高分子时代 (2)金属材料的应用 ①最早应用的金属是铜,应用最广泛的金属是铁,公元一世纪最主要的金属是铁 ②现在世界上产量最大的金属依次为铁、铝和铜 ③钛被称为21世纪重要的金属 二、金属的物理性质 1、金属共同的物理性质:常温下金属都是固体(汞除外),有金属光泽,大多数金属是电和热的良导体,有延展性,密度较大,熔沸点较高等。 2、金属的特性: ①纯铁、铝等大多数金属都呈银白色,而铜呈紫红色,金呈黄色; ②常温下,大多数金属都是固体,汞却是液体; ③各种金属的导电性、导热性、密度、熔点、硬度等差异较大。 3、金属之最 地壳中含量最多的金属元素—铝(Al) 人体中含量最多的金属元素—钙(Ca) 导电、导热性最好的金属——银(Ag) 目前世界年产量最高的金属—铁(Fe) 延展性最好的金属———金(Au) 熔点最高的金属————钨(W) 熔点最低的金属————汞(Hg) 硬度最大的金属————铬(Cr) 密度最小的金属————锂(Li) 密度最大的金属————锇(Os) 最贵的金属————锎kāi(Cf) 4、金属的用途:金属在生活、生产中有着非常广泛的应用,不同的用途需要选择不同的金属。【练习】 (1)为什么菜刀、镰刀、锤子等用铁制而不用铅制?答:因为铁的硬度比铅大,且铅有毒。 (2)银的导电性比铜好,为什么电线一般用铜制而不用银制?答:银和铜的导电性相近,但银比铜贵得多,且电线用量大,经济上不划算。 (3)为什么灯泡里的灯丝用钨制而不用锡制?如果用锡制的话,可能会出现什么情况?答:因为钨的熔点(3410℃)高,而锡的熔点(232℃)太低。如果用锡制的话,通电时锡易熔断,减少灯泡的使用寿命,还会造成极大浪费。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶格类型晶胞中的原子 数原子半 径 配位 数 致密度 体心立方 2 a 4 38 68% 面心立方 4 a 4 212 74% 密排六方 6 a 2 112 74% 晶格类型fcc(A1) bcc(A2) hcp(A3) 间隙类型正四面 体 正八面 体 四面体扁八面体四面体 正八面 体 间隙个数8 4 12 6 12 6 原子半径 r A a 4 2a 4 3 2 a 间隙半径 r B () 4 2 3a -()42 2 a -()43 5a -()43 2a -()42 6a -()21 2a - 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶

热处理复习要点

第一章金属的加热 本章重点: 1 传热方式及其特点 2 对热处理加热时间的理解 3 影响热处理工件加热的因素 4 钢加热时的氧化反应 5 钢加热时的脱碳反应 6 炉气碳势的测定方法 5 加热介质的选择 习题:1、3 1 传热方式及其特点 ●对流传热:靠气体或液体的流动来传热的方式。特点:通过发热体和工件之间流体的流 动进行 ●辐射传热:高温物体直接向外发射热的现象。特点:以电磁波的形式传递能量;波长 范围:0.4~40μm ●传导传热:热从物体温度较高的一部分沿着物体传到温度较低的部分的方式。特点: 传热物质质点间的相互碰撞;固体中热传递的主要方式; ●综合传热 3 影响热处理工件加热的因素 1)加热方式的影响 ?随炉加热:工件装入炉中,随着炉子升温而加热,直至所需加热温度 ?预热加热:工件先在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件达到所要求的温度。 ?到温入炉加热又称热炉装料加热:先把炉子升到工件要求的加热温度,然后再把工件装入炉内进行加热 ?高温入炉加热:工件装入较工件要求加热温度高的炉内进行加热,直至工件达到要求温度 关键不同之处:加热速度不同,随炉加热→预热加热→到温入炉加热→高温入炉加热2)加热介质及工件放置方式的影响 (1)加热介质的影响 ①流态化炉中加热的特点工作时,一定压力和流量的气流通入炉内,石墨粒子翻滚,接触或分离,产生电阻,发热,加热工件。 ○2在液态介质(熔盐或金属)中加热的特点加热均匀,不易脱碳,加热速度快。以热传导为主,兼有辐射传热及对流传热---综合传热 ○3在气态介质中加热的特点属于综合传热:高温区:辐射为主;高温区:辐射为主;低于600oC的循环气体炉:对流为主 - 1 -

金属材料及热处理知识(整理版)

硬度 金属抵抗更硬物体压入表面的能力,称为硬度。硬度是反映金属材料局部塑性变形的抵抗能力。根据试验方法和测量围的不同,硬度可分为布氏、洛氏、维氏等几种。 1、布氏硬度(HB)布氏硬度是用淬火硬化后的钢球(直径有:2.5、5、10毫米三种)作为压印器,以一定的压力P压入被测金属材料表面,这时在被测金属材料表面留下压坑。 根据压坑面积的大小,可用下式计算出布氏硬度值,用符号HB表示为 HB=P/F(公斤/毫米2) 式中P——钢球所加的负荷(公斤); F——压坑面积(毫米2)。 布氏硬度是用单位压坑面积所受负荷的大小来表示的。一般硬度值都不需要经过计算,在生产中用放大镜测出压坑直径,再根据压印器钢球直径D和压力负荷P直接查表,便可得出HB的值。布氏硬度在标注时不写单位,如HB=212。 测量不同金属材料时所用的压印器和负荷等标准,也可以查表。用布氏硬度法测得的硬度值准确,因为压坑大,不会由于表面不平或组织不均匀而引起误差。但压坑太大有损表面,所以布氏硬度一般不宜作成品检验,只适合测量硬度不高的原材料,如毛坯、铸件、锻件、有色金属及合金等。 2、洛氏硬度(HR)洛氏硬度法是用金刚石做的呈120°的圆锥体,或直径为1.58毫米的淬火钢球,作为压印器,在一定的负荷下压入金属表面,根据压坑的深浅来测量金属材料的硬度,(根据压坑深度)可把硬度数值从表盘上直接读出来。 根据测量硬度围不同,洛氏硬度可分为HRA、HRB、HRC三种。它们的适用围与压印器、负荷的选定可根据下表查出, 洛氏硬度的选用标准 洛氏硬度没有单位,测量方法简单,压坑小,不影响零件表面质量,测量硬度围广,但不如布氏硬度精确度高。HRA适宜测量高硬度材料;HRB适宜测量有色金属及硬度低的材料;HRC适宜测量淬火、回火后的金属材料。 3、维氏硬度(HV)维氏硬度试验的原理与布氏硬度法相似,只不过它的压印器是136°的四棱锥金刚石,以一定的负荷压入平整的试样表面,然后测出四棱锥压坑的对角线长度d,算出压坑面积F,用单位面积所受负荷的大小来表示维氏硬度值,即 HV= P/F(公斤/厘米2) 维氏硬度测量精确、硬度测量围大,尤其能很好地测量薄试样的硬度。维氏硬度所加载荷较小时,又称为显微硬度(用HM表示),可测量试样表面各种组成相的硬度。 各种硬度值相互对照。它们是通过不同硬度测量法,测同一硬度金属材料时得到的不同硬度指标值。如HB=351,相当于HRC=38,HV=361。硬度是检验毛坯、成品等性能的重要指标。一般刃具的硬度要求HRC=60~63,结构零件的硬度要求HRC=25~40,弹簧或弹性零件的硬度要求HRC=40~48,切削加工零件的硬度要求HRC=20~36。 钢的硬度与其含碳量有关,随着钢中的含碳量的不断增加,硬度也不断增高。

金属材料与热处理 考试复习笔记

热处理复习重点 第一章金属材料基础知识 1. 材料力学性能 (1)材料在外力作用下抵抗变形和破坏的能力称为强度。强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。 (2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。 (3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。 (4)硬度(材料表面局部区域抵抗更硬物体压入的能力) a. 布氏硬度(测较低硬度材料) 用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。HBS(钢球,<450)、HBW(硬质合金球,>650)。 b. 洛氏硬度(测较高硬度材料) 利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。HRA(金刚石圆锥,20~80)、HRB (1.588mm钢球,20~100)、HRC(金刚石圆锥,20~70) c. 维氏硬度(适用范围较广) 维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。 (5)冲击韧性 材料抵抗冲击载荷作用而不被破坏的能力。通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。 (6)疲劳强度 材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。 2. 铁碳相图

第二章钢的热处理原理 1. 钢的临界温度 A c1——加热时珠光体向奥氏体转变的开始温度 A c3——加热时先共析铁素体全部溶入奥氏体的终了温度 A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度 A r1——冷却时奥氏体向珠光体转变的开始温度 A r3——冷却时奥氏体开始析出先共析铁素体的温度 A rcm——冷却时奥氏体开始析出二次渗碳体的温度 2. 钢在加热时的转变 (1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。 (2)铁素体向奥氏体的转变的速度远比渗碳体溶解速度快的多。所以转变过程中珠光体中总是铁素体首先消失,铁素体全部转化为奥氏体时,可以认为奥氏体长大完成。 (3)影响奥氏体形成速度的因素:加热温度、加热速度、化学成分、原始组织。 (4)加热速度越快,奥氏体形成的开始温度和终了温度越高,而孕育期和转变时间越短,奥氏体形成速度越快。 (5)钢中含碳量越高,奥氏体形成速度越快;碳化物形成元素减小碳在奥氏体中的扩散速度,故减慢奥氏体的形成速度;费碳化物形成元素增大碳在奥氏体中的扩散速度,因而加快了奥氏体中的形成速度。 (6)当钢的化学成分相同时,原始组织越细,相界面面积越大,形核率越高,奥氏体形成速度越快。 (7)奥氏体的晶粒度可以用起始晶粒度、实际晶粒度和本质晶粒度等描述。 (8)起始晶粒度是指把钢加热到临界温度以上,奥氏体转变刚刚完成,其晶粒边界刚刚接触时的奥氏体晶粒大小;实际晶粒度是指钢在某一具体的热处理或热加工条件下实际获得的奥氏体晶粒大小;本质晶粒度表示在规定的加热条件下奥氏体晶粒长大的倾向。1~4级为本质粗晶粒度,5~8级为本质细晶粒度。 (9)影响奥氏体晶粒长大的因素:加热温度和保温时间、加热速度、钢的化学成分、原始组织。 (10)实际生产中采取快速加热和短时保温的方法获得细小晶粒。 (11)当成分一定时,原始组织越细,碳化物弥散度越大,则奥氏体晶粒越细。与粗珠光体相比,细珠光体总是易于获得细小而均匀的奥氏体晶粒。片状珠光体比球状珠光体在加热时奥氏体晶粒易于粗化。 (12)时效强化:合金元素经固溶处理后,获得过饱和固溶体。在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化。 3. 钢在冷却时的转变 (1)常用的冷却方式有两种: 等温冷却——将奥氏体状态的钢迅速由高温冷却到临界点以下某一温度等温停留一段时间,使奥氏体在该温度下发生组织转变,然后再冷到室温。过冷奥氏体等温转变曲线(TTT曲线或C曲线) 连续冷却——将奥氏体状态的钢以一定的速度连续从高温冷到室温,使奥氏体在一个温度范围内发生连续转变。过冷奥氏体连续转变曲线(CCT曲线) (2)TTT曲线反映转变开始和转变终了时间,转变产物的类型以及转变量与时间、温度之间的关系。 (3)在A1温度以下某一确定温度,过冷奥氏体转变开始线与纵坐标之间的水平距离为过冷

金属材料知识点总结

钢的合金化概论 1、钢中常存的杂质有哪些?硫、磷对钢的性能有哪些影响? 钢中常存的杂质有:Mn、Si、S、P、N、H、O等。 S易产生热脆;P易产生冷脆。 2、合金元素对纯铁γ相区的影响可分为几种,请举例说明。 合金元素对纯铁γ相区的影响可分为四种: (1)开启γ相区(无限扩大γ相区),如Mn、Ni、Co (2)扩展γ相区(有限扩大γ相区),如C、N、Cu、Zn、Au (3)封闭γ相区(无限扩大α相区),如Cr、V,W、Mo、Ti、Si、Al、P、Be (4)缩小γ相区(但不能使γ相区封闭),如B、Nb、Zr 3、在铁碳相图中,含有0.77%C的钢称为共析钢,如果在此钢中添加Mn或Cr元素,含碳量不变,那么这种Fe-C-Mn或Fe-C-Cr钢分别是亚共析钢还是过共析钢?为什么?含有0.77%C的Fe-C-Mn或Fe-C-Cr钢为过共析钢。因为几乎所有合金元素都使Fe-C 相图中S点左移,S点左移意味着共析碳含量降低。 4、合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe中形成无限固溶体? 铁素体形成元素: V、Cr、W、Mo、Ti; 奥氏体形成元素:Mn、Co、Ni、Cu; 能在α-Fe中形成无限固溶体的元素:Cr、V; 能在γ-Fe中形成无限固溶体的元素:Mn、Co、Ni。 5、合金元素对钢的共析温度有哪些影响?合金元素对钢的共析体含碳量有何影响? 扩大γ相区的元素使铁碳合金相图的共析转变温度下降;缩小γ相区的元素使铁碳合金相图的共析转变温度上升。 几乎所有合金元素都使S点碳含量降低;尤其以强碳化物形成元素的作用最为强烈。6、常见的碳化物形成元素有哪些?哪些是强碳化物形成元素、中强碳化物形成元素、弱碳化物形成元素? 常见的碳化物形成元素有:Ti、Zr、V、Nb、Cr、W、Mo、Mn、Fe; 强碳化物形成元素:Ti、Zr、Nb、V;

(完整版)金属材料与热处理试题精编版

填空题 1.金属材料与热处理是一门研究金属材料的(成分)、(组织)、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的(基本知识)、金属的(性能)、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的()及()的相关知识。 晶体结构、变形 4.金属的性能主要介绍金属的()和()。 力学性能、工艺性能 5.金属学基础知识讲述了铁碳合金的()和()。 组织、铁碳合金相图 6.热处理的基本知识包括热处理的()和()。 原理、工艺 7.物质是由原子和分子构成的,其存在状态可分为气态、()、()。 液态、固态 8.固态物质根据其结构特点不同可分为()和()。 晶体、非晶体 10.常见的晶体缺陷有点缺陷、(线缺陷)、(面缺陷)。 11.常见的点缺陷有间隙原子、(空位原子)、(置代原子)。 12.常见的面缺陷有金属晶体中的(晶界)、(亚晶界)。 13.晶粒的大小与()和()有关。 晶核数目、长大速度 14.机械零件在使用中常见的损坏形式有变形、()及()。 断裂、磨损 15.因摩擦而使零件尺寸、(表面形状)和(表面质量)发生变化的现象称为磨损。 16.根据载荷作用性质的不同,载荷可分为静载荷、(冲击载荷)和()三种。

、交变载荷 17.金属在外力作用下的变形可分为弹性变形、()和()三个连续的阶段。 弹-塑性变形、断裂 18.金属材料在外力作用下表现出的力学性能指标有强度、()、()、冲击韧性、疲劳强度。 塑性、硬度 19.金属在静载荷作用下抵抗()或()的能力称为强度。 塑性变形、断裂 20.机械零件中的大部分金属都应具备足够的硬度,以保证()和()。 使用性能、寿命 21.许多机械零件在工作中往往要受到冲击载荷的作用,如()、()。 活塞销、冲模 22.机械零件之所以产生疲劳破坏主要是由于制造这些机械零件的材料表面或内部有缺陷,如 ()、()。 夹杂、划痕 23.常用的力学性能指标有()、()、硬度、冲击韧性、疲劳强度。 强度、塑性 24.金属材料的工艺性能包括铸造性能、锻压性能、()、()和热处理性能等。 焊接性能、切削加工性能 25.工艺性能直接影响零件制造的()、()及成本。 工艺、质量 26.铸造性能主要取决于金属的()、()和偏析倾向。 流动性、收缩性 27.一般用工件切削时的(切削速度)、(切削抗力的大小)、断屑能力、刀具的耐用度以及加工后的表面粗糙度来衡量金属的切削加工性能。 28.一般认为材料具有适当(硬度)和一定(脆性)时其切削加工性能较好。

锻造技术-知识点(金属热处理)

锻 压 金属塑性成形(压力加工):金属材料在外力作用下产生塑性变形,获得具有一定形状、尺 寸和力学性能的毛坯或零件的生产方法。 塑性成形基本生产方式:轧制,挤压,拉拔,锻压(锻造(自由锻造,模型锻造),冲压) 一.塑性变形的力学基础: 1.塑性变形的本质:位错滑移 2.塑性变形屈服准则 (1)屈雷斯加(Tresca )屈服准则 假设σ1>σ2>σ3>时,则外加最大切应力 τmax=(σ1-σ3)/2 达到推动位错运动所需要的 最小应力时材料则发生屈服 (2)密西斯(Mises )屈服准则 当等效应力达到某定值时,材料即会屈服,即: ()()()C =-+-+-=][213232221σσσσσσσ21 *二.金属锻造性能 1.可锻性: 金属的可锻性是衡量材料在经受压力加工时获得优质零件难易程度的一个工艺性能。 2..衡量标准: 常用金属的塑性和变形抗力来综合衡量。塑性越大,变形抗力越小,则可认为金属的可锻 性好;反之则差。 3.影响可锻性的因素 (1) 内在因素 (a)化学成分: 不同化学成分的金属其可锻性不同 (b)合金组织: 金属内部组织结构不同,其可锻性差别很大 (2) 外在因素 (a)变形温度: 系指金属从开始锻造到锻造终止的温度范围。 温度过高: 过热、过烧、脱碳和严重氧化等缺陷。温度过低:变形抗力↑-难锻,开裂

(b)变形速度:变形速度即单位时间内的变形程度 (c)应力状态:金属在经受不同方法进行变形时,所产生的应力大小和性质(压应力或拉应 力)是不同 4.锻造流线与锻造比 (1)锻造比:表示金属变形程度大小 - 拔长工序的锻造比为:Y 拔长=A0/A=I/I0 式中:A0、A--坯料拔长前后的横截面积 I0、I--坯料拔长前后的长度 - 镦粗工序的锻造比为:Y 墩粗=H0/H 式中:H0,H--坯料拔长前后的高度。 (2) 锻造流线(纤维组织): 金属压力加工最原始的坯料是铸锭,铸锭大多具有粗大的结晶组织以及气孔、缩松、不溶 于基体金属的非金属夹杂等,在压力加工过程中,基体金属的晶粒形状和沿晶界分布的 杂质形状都将沿着变形方向被拉长,呈纤维状分布,这种具有方向性的组织称为锻造流线 三.坯料的加热及锻件的冷却 1.加热目的:提高坯料的塑性,降低变形抗力,改善锻压性能。 2.加热原则:在保证坯料均匀热透的条件下,应尽量缩短加热时间,以减少金属氧化等缺 陷,降低燃料消耗。 3.加热缺陷及防止措施 (1) 脱 碳: 钢中表层碳在高温下与炉气中的氧或氢发生化学反应,生成一氧化碳或甲烷而被烧损掉, 使表层含碳量降低的现象。 (2) 氧 化: 钢中表层金属极易与炉气中的氧化性气体发生化学反应形成氧化皮(成分为FeO 、Fe3O4、 Fe2O3等)的现象称为氧化。 - 防止措施:保证热透前提下,快速加热并减少高温停留时间。 (3) 过 热: 坯料的加热温度过高或在高温下长久停留,引起晶粒粗化的现象。 - 防止措施:重新加热后反复锻造或锻后热处理使晶粒细化。 (4) 过 烧: 加热温度如果超过始锻温度过多并接近熔点温度,晶界处会因炉气中的氧气或其他氧化性 气体的渗入而被氧化,晶粒与晶粒之间结合力降低,一经锻打便会碎裂,这种现象称为过烧。 - 防止措施:无 (过烧一旦产生,将是无法挽救的)。 4.加热设备 电阻加热 感应加热 接触加热 5.锻造温度范围 (1) 始锻温度:开始锻造的温度 在不出现过热的前提下,应尽量提高始锻温度,以使坯料具有最佳的锻造性能。 碳钢的始锻温度:Ts-200℃左右 铸造组织 压力加工后的组织 (镦粗)

金属热处理基础知识

金属热处理基本知识 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 ●金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而 减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 ●合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 ●相:合金中成份、结构、性能相同的组成部分。 ●固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍 保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两 种。 ●固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体 硬度和强度升高,这种现象叫固溶强化现象。 ●化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 ●机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种 组成成分,具有独立的机械性能。 ●铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 ●奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 ●渗碳体:碳和铁形成的稳定化合物(Fe3c)。 ●珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) ●莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了

热处理基本知识

第二节钢在热处理加热和冷却时的组织转变 在热处理过程中,由于加热、保温和冷却方式的不同,可以使钢发生不同的组织转变,从而可根据实际需要获得不同的性能。 一、钢在热处理加热与保温时的组织转变 ——钢热处理加热的目的是获得部分或全部奥氏体,组织向奥氏体转变的过程称奥氏体化。 加热至Ac1以上时:首先由珠光体转变成奥氏体(P→A); 加热至Ac3以上时:亚共析钢中的铁素体将转变为奥体(F→A); 加热至Ac cm以上时:过共析钢中的二次渗碳体将转变成奥氏体(Fe3C I→A) 1、奥氏体的形成过程 共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化,过程如下图。 亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化 过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac m以上时,Fe3C奥氏体化,组织全部奥氏体化 2、奥氏体的晶粒大小

奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密,其强度、塑性和韧性比较高。 [奥氏体的晶粒度]:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均直径、单位面积或单位体积内晶粒的数目来表示。GB/T8493-1987将奥氏体晶粒分为8个等级,其中1~4级为粗晶粒;5~8级为细晶粒。 4级5级6级7级 [本质粗晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。 [本质细晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。一般完全脱氧的镇静钢、含碳化物元素和氮化物元素的合金钢为本质细晶粒钢。 3、影响奥氏体晶粒大小的主要因素 热处理工艺参数:加热速度、加热温度越、保温时间,其中加热温度对奥氏体晶粒大小的影响最为显著。 钢的化学成分:大多数合金元素(锰和磷除外)均能不同程度地阻止奥氏体晶粒的长大,特别是与碳结合能力较强的碳化物形成元素(如铬、钼、钨、钒等)及氮化物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。 原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。

相关主题
文本预览
相关文档 最新文档