当前位置:文档之家› 煤气化废水溶解性有机物水质特征研究

煤气化废水溶解性有机物水质特征研究

煤气化废水溶解性有机物水质特征研究
煤气化废水溶解性有机物水质特征研究

一第23卷第1期洁净煤技术Vol.23一No.1一一2017年1月Clean Coal Technology Jan.一2017一

煤气化废水溶解性有机物水质特征研究

赵淑霞1,马一晖2,翟琦航2,章丽萍2,崔毓莹2

(1.北京市环境保护科学研究院,北京一100037;2.中国矿业大学(北京)化学与环境工程学院,北京一100083)

摘一要:煤气化废水中的溶解性有机物(DOM)决定着处理药剂和微生物生长等,直接影响废水处理工程效果,DOM的光谱表征可反映各组分在氧化二降解或吸附等方面的特性三在分析某煤气化生产尿素企业的废水产生节点基础上,采集脱酚氨后废水,采用树脂分离方法对气化废水中的DOM进行

6组分(HoA二HoB二HoN二HiA二HiB二HiN)分离,通过紫外-可见光谱二三维荧光光谱等分析方法对其水质特征进行分析三结果表明:废水DOM中HoA二HoN组分占比高达43.21%和33.65%,废水中含有较多非饱和结构的芳香族化合物;脱酚后废水各组分的E300/E400数值都较低,为2.88~5.00,说明废水的腐植化程度很高,主要为难生化降解的苯环结构物质;三维荧光光谱分析表明煤气化废水DOM 各组分的最强荧光响应区域对应的有机物质主要包括类腐植酸二类富里酸二类酪氨酸以及类色氨酸这四大类有机物,为控制和处理煤气化废水中有机污染物提供理论依据三

关键词:煤气化废水;DOM;组分分离;紫外-可见光谱;三维荧光;有机污染物

中图分类号:X703一一一文献标志码:A一一一文章编号:1006-6772(2017)01-0086-05

Dissovled organic matters characteristics in coal gasification waste water

ZHAO Shuxia1,MA Hui2,ZHAI Qihang2,ZHANG Liping2,CUI Yuying2

(1.Beijing Municipal Research Institute of Environmental Protection,Beijing一100037,China;

2.School of Chemical and Environmental Engineering,China University of Mining&Technology(Beijing),Beijing一100083,China) Abstract:The dissolved organic matters(DOM)in coal gasification waste water determined the treatment agent and microbial growth, meanwhile,the effects of waste water treatment project were directly influenced by them.The spectral characterization of DOM reflected the oxidation,degradation and absorption characteristics of all kinds of the components.Some waste water after removing phenol ammonia from one urea production enterprise which adopted coal gasification technology was analyzed.The HoA,HoB,HoN,HiA,HiB,HiN in the waste water were separated with resin separation method.The waste water characteristics were tested by ultraviolet-visible spectrum and three di-mensional fluorescence spectrum.The experimental results showed that the proportion of HoA and HoN components in DOM were up to 43.21%and33.65%respectively which meant there were many aromatic compounds with unsaturated structure in the waste water.The E300/E400of6components in dephenolized waste water ranged from2.88to5.00,the low value of E300/E400showed the high humification degree of waste water and the main refractory organics with benzene ring structure.According to three dimensional fluorescence spectrum, the strongest fluorescence response region of6components in DOM mainly included4kinds of organics such as humic-like acid,fulvic-like acid,tyrosine-like acid and tryptophan-like acid.All these analysis provided theoretical basis for controlling and treating the organic pollutants of the coal gasification waste water.

Key words:coal gasification waste water;DOM;component separation;ultraviolet-visible spectrum;three dimensional fluorescence;organic pollutants

收稿日期:2016-07-06;责任编辑:孙淑君一一DOI:10.13226/j.issn.1006-6772.2017.01.016

基金项目:国家高技术研究发展计划(863计划)资助项目(2015AA050501);国家环保部标准项目(2015-5)

作者简介:赵淑霞(1968 ),女,黑龙江哈尔滨人,高级工程师,硕士,研究方向为水处理技术和典型行业污染防控等三E-mail:shuxiazhao@126.

com三通讯作者:章丽萍,副教授,博士,从事矿区环境保护研究三E-mail:haozimei77@https://www.doczj.com/doc/a52455031.html,

引用格式:赵淑霞,马一晖,翟琦航,等.煤气化废水溶解性有机物水质特征研究[J].洁净煤技术,2017,23(1):86-90.

ZHAO Shuxia,MA Hui,ZHAI Qihang,et al.Dissovled organic matters characteristics in coal gasification waste water[J].Clean Coal Technology, 2017,23(1):86-90.

68

赵淑霞等:煤气化废水溶解性有机物水质特征研究2017年第1期

0一引一一言

煤气化被誉为新型煤化工产业的龙头技术,大力发展煤气化产业以弥补我国能源和化工原料产品的不足已成为必然选择三21世纪以来,煤气化产业在我国得到了长足的发展,正在成为我国重要的基础能源产业之一三然而在煤气化产业发展的同时,也伴随着大量废水的产生,且废水组成成分复杂三我国是一个缺水国家,将煤气化废水高效处理和资源化利用,不仅可以缓解水资源的紧缺和减少对环境的污染,也有利于煤气化产业的长远发展三煤气化所产生的高浓度含酚有机废水,其水质成分复杂二污染物浓度高,采用常规技术手段导致预处理阶段脱酚不彻底二进入生化处理阶段的废水可生化性差三

DOM的光谱分析能够在不明确有机物组成二种类二含量等具体信息的情况下,通过有机物分子或基团所显示出的光谱特性,认识有机组分的特征性质三目前,煤气化废水中DOM的光谱学表征研究甚少,废水深度处理工艺的选择缺乏理论依据三因此,本文选取了国内某煤气化生产尿素企业的废水为研究对象,采用大孔树脂分离技术,结合紫外-可见光谱二三维荧光光谱等分析方法对该厂脱酚前后废水DOM的水质特征进行了分析,为煤气化废水深度处理工艺的选择提供理论依据三

1一煤气化废水的来源及特点

煤气化废水主要来源于洗涤二冷凝和分馏工段三在不同的煤气化工艺废水中,鲁奇炉废水最难处理,反应生成的粗煤气在洗涤冷却过程中会产生大量废水,污染物的组成复杂且酚(1500~ 5500mg/L)二氨(3500~9000mg/L)浓度高,还有大量的其他有害有毒物质,如氰化物(1~ 40mg/L)二焦油(0.8~1.0mg/L)二轻油(0.12~ 0.50mg/L)以及多环芳烃三

2一材料与方法

2.1一水样的采集与废水中DOM组分分离

水样取自某煤气化年产30万t合成氨和52万t尿素企业脱酚氨后的废水,取样后立即经中速定性滤纸过滤,水样pH值调至2左右储存于4?冰箱中,并于24h内测定各水质指标三

采用大孔树脂XAD-8?阳离子交换树脂?阴离子交换树脂[1-3]吸附分离,将水样中的DOM分为6类:疏水性酸(HoA)二疏水性碱(HoB)二疏水性中性(HoN)二亲水性酸(HiA)二亲水性碱(HiB)二亲水性中性(HiN)三其分离流程为:未酸化的水样经XAD-8吸附后,用0.1mol/L HCl反洗得HoA;流出液酸化至pH=2经XAD-8吸附,用0.1mol/L的NaOH反洗得HoB;XAD-8树脂在空气中干燥后用甲醇浸取得HoN三XAD-8的流出液经氢型阳离子交换树脂吸附,用0.1mol/L的氨水洗脱得HiB;流出液再经阴离子交换树脂用3mol/L的氨水洗脱得HiA;最后流出液为HiN三其中HoN组分分析前先利用旋转蒸发仪去除甲醇三

2.2一分析方法

1)UV-Vis光谱的测定:使用UV-2800紫外可见分光光度计进行全波段扫描,波长为200~600 nm,扫描间隔为0.5nm三

2)三维荧光光谱(3D EEMs):将废水调节pH 值为7.0?0.2后,采用日立F-7000荧光分光光度计进3DEEMs扫描,EEM参数设置为激发波长E x 为200~450nm,发射波长E m为250~550nm,扫描步长分别为5nm和2nm,激发和发射狭缝宽度为5 nm,光电信增管(PMT)电压设为400V,响应时间为自动方式,扫描光谱自动校正,扫描速度1200 nm/min,扫描间隔5nm[4]三

3一结果与讨论

3.1一紫外-可见光谱分析

UV254能够反映包括芳香族化合物在内的具有不饱和C C结构的一类物质,其值的大小与水体的色度二化学需氧量(COD)二总有机碳(TOC)等基本水质指标相关,是间接反映水体污染状况的一个重要参数三煤气化脱酚氨后废水分离后6组分UV254值占废水总DOM的UV254值的比例分布如图1所示三

由图1可知,煤气化脱酚后废水中的HoA和HoN两个组分的UV254占比最多,其占比分别为43.21%和33.65%,HiN次之,占比为14.74%,说明这3个组分是煤气化脱酚后废水中芳香性物质的主要贡献者三

紫外-可见光谱能够表征物质的芳香性等特性,光谱波长分布由产生谱带的跃迁能级间的能量差决定,反映分子内部能级分布状况和分子结构中发色团和助色团的特征三吸光系数比值E254/E365可反映废水中DOM分子大小的比例,E254/E365的值

78

2017年第1期

洁净煤技术

第23

图1一脱酚后废水6组分UV 254占比

Fig.1一UV 254proportion of 6components in dephenolized

waste water

越大则水样中小分子有机物的比例越高[5-6]三吸光系数比值E 300/E 400能表征组分的腐植化程度,比值越小说明腐植化程度越高,而有机质腐植化程度越高,组分中苯环结构含量就越多[7-8]三煤气化废水脱酚前后6组分紫外-可见吸收光谱见表1和图2三

表1一脱酚后废水6组分紫外-可见光谱参数Table 1一Ultraviolet -visible spectral parameters of 6

components in dephenolized waste water

项目HiB HiA HiN HoB HoA HoN 脱酚后UV 254/nm 0.040.020.070.010.510.69

脱酚后E 254/E 3655.205.009.364.948.2210.74脱酚后E 300/E 400

4.10

2.88

4.47

3.90

5.23

4.

00图2一脱酚后废水6组分紫外-可见吸收光谱

Fig.2一Ultraviolet -visible absorption spectroscopy of 6

components in dephenolized waste water

一一由表1可知,脱酚后HoN 和HoA 组分的UV 254数值最大,分别为0.69和0.51nm,说明这2个组分中含芳香族化合物在内的具有不饱和C

C 结构

的物质较多;脱酚后废水HoN 的E 254/E 365数值最大,为10.74,后面依次是HiN 和HoA,其数值分别为9.36和8.22,说明小分子有机物主要存在于这3种组分中;脱酚后废水HiA E 300/E 400的数值最小,仅

为2.88,说明废水的HiA 组分的腐植化程度最高,其他组分的E 300/E 400数值都较低,为3~5,说明煤气化脱酚氨废水中的污染物主要为难生化降解的苯环结构物质三

由图2可知,水样的6组分在波长λ>350nm 时光密度趋近于0,而在225nm 左右HoA 和HoN 组分在出现了较强的吸收峰,说明废水的这2组分中含有大量单环芳香族化合物三HiA 和HiB 组分在210nm 左右出现了较明显的吸收峰,说明含有大量

的共轭双键类化合物,而HoB 和HiN 两个组分在200nm 左右出现了较明显的吸收峰三由于在紫外

光区具有环状共轭体系的有机物存在E 吸收带及B 吸收带,E 吸收带为芳香族化合物的特征吸收带,B

吸收带为精细结构吸收带三煤气化脱酚后废水在

200~250nm 区间有强烈吸收峰,表明废水中含有单环芳香族化合物或共轭双键类化合物三这与其他学者检测的实际煤气化废水主要污染物为苯酚类二含氮及杂环类二吡啶二多环芳烃二有机酸类等物质具有一致性[9-11]三

3.2一三维荧光光谱分析

根据Lin 等[12]提出的荧光区域积分法将图谱划分为5个区域[13],可以实现荧光光谱的定量分析,如图3所示

图3一荧光区域积分面积分布

Fig.3一Fluorescence regional integration area distribution

根据Coble [14]提出的 寻峰法 来识别煤气化脱

酚后废水的荧光光谱如图4所示三

一一由图4a)可知,废水HoA 组分的最强的荧光中心位于激光光谱/发射光谱(E x /E m )=(280~330)nm /(300~430)nm,是类腐植酸物质的荧光响应区域,另一个较强的荧光中心位于E x /E m =(240~

250)nm /(400~450)nm,是类富里酸类物质的荧光响应区域,类腐植酸物质和类富里酸物质是煤气化废水中难生化降解的组分,这主要是褐煤本身含有一定的类腐植酸物质和类富里酸物质以及煤气化过8

8

赵淑霞等:煤气化废水溶解性有机物水质特征研究2017年第1

图4一脱酚后废水6组分三维荧光光谱

Fig.4一Three dimensional fluorescence spectrum of 6components in dephenolized waste water

程产生一部分该类物质;图4b)表明废水HoB 组分的2个较强的荧光中心分别位于E x /E m =(260~

280)nm /(280~310)nm 和E x /E m =(200~230)nm /(280~310)nm,是类酪氨酸物质的荧光响应区域;图4c)表明废水HoN 组分的较强的荧光中心分别位于E x /E m =(280~300)nm /(300~330)nm,是类酪氨酸物质的荧光响应区域;图4d)表明废水HiA 组分的2个较强的荧光中心分别位于E x /E m =(220~

230)nm /(325~350)nm,是类色氨酸物质的荧光响应区域;图4e)有3个较强的荧光中心分别位于E x /E m =(220~230)nm /(280~310)nm二E x /E m =(220~230)nm /(350~375)nm 和E x /E m =(250~280)nm /(350~375)nm,对应的分别是类酪氨酸物质二类色氨酸的荧光响应区域;图4f)表明废水HoB 组分的2个较强的荧光中心分别位于E x /E m =(200~230)nm /(280~320)nm 和E x /E m =(260~

9

8

2017年第1期

洁净煤技术

第23卷

290)nm /(280~320)nm,是类酪氨酸物质的荧光响应区域三

4一结一一论

1)煤气化脱酚后废水中的HoA 和HoN 两个组

分的UV 254占比最多,其占比分别为43.21%和33.65%,HiN 次之,占比为14.74%,废水中含有较多非饱和结构的芳香族化合物三

2)脱酚后废水HoN 的E 254/E 365数值最大,为10.74,主要由小分子有机物组成,脱酚后废水HiA E 300/E 400的数值最小,仅为2.88,说明废水的HiA

组分的腐植化程度最高,其他组分的E 300/E 400数值都较低,为3~5,说明煤气化脱酚氨废水中的污染物主要为难生化降解的苯环结构物质三

3)三维荧光光谱分析表明煤气化废水DOM 各

组分的最强荧光响应区域对应的有机物质主要包括类腐植酸二类富里酸二类酪氨酸以及类色氨酸这四大类有机物,表明了煤气化脱酚氨废水难生物降解的内在原因三

参考文献(References ):

[1]一王立英,吴丰昌,张润宇.应用XAD 系列树脂分离和富集天然

水体中溶解有机质的研究进展[J].地球与环境,2006,34(1):90-96.

Wang Liying,Wu Fengchang,Zhang Runyu.A method of separate and concentrate dissolved organic matter by XAD resin in natural aquatic system[J].Earth and Environment,2006,34(1):90-96.[2]一贺润升,徐荣华,韦朝海.焦化废水生物出水溶解性有机物特

性光谱表征[J].环境化学,2015,34(1):129-136.

He Runsheng,Xu Ronghua,Wei Chaohai.Spectral characterization of dissolved organic matter in bio -treated effluent of coking waste water[J].Environmental Chemistry,2015,34(1):129-136.

[3]一Yang Wenlan,Li Xuchun,Pan Bingcai,et al.Effective removal of

effluent organic matter (EfOM)from bio -treated coking waste wa-ter by a recyclableaminated hyper -cross -linked polymer[J].Wa-ter Research,2013,47(13):4730-4738.

[4]一何一伟,白泽琳,李一龙,等.溶解性有机质特性分析与来源解

析的研究进展[J].环境科学学报,2016,36(2):359-372.He Wei,Bai Zelin,Li Yilong,et al.Advances in the characteristics analysis and source identification of the dissolved organic matter [J].Acta Scientiae Circumstantiae,2016,36(2):359-372.[5]一Helms J R,Stubbins A,Ritchie J D,et al.Absorption spectral

slopes and slope ratios as indicators of molecular weight,source,and photo bleaching of chromophoric dissolved organic matter [J].Limnology and Oceanography,2008,53(3):955-969.

[6]一Wen Chen,Paul Westerhoff.Fluorescence excitation -emission ma-trix regional integrationto quantify spectrafor dissolved organic mat-ter [J].Environmental Science &Technology,2003,37(24):

5701-5710.

[7]一张万辉,韦朝海,晏一波,等.焦化废水中溶解性有机物组分的

特征分析[J].环境化学,2012,31(5):702-707.

Zhang Wanhui,Wei Chaohai,Yan Bo,et https://www.doczj.com/doc/a52455031.html,position character-ization of dissolved organic matters in coking waste water[J].Envi-ronmental Chemistry,2012,31(5):702-707.

[8]一贾陈忠,王焰新,张彩香,等.垃圾渗滤液中溶解性有机物组分

的三维荧光特性[J].光谱学与光谱分析,2012,32(6):1575-1579.

Jia Chenzhong,Wang Yanxin,Zhang Caixiang,et al.3D -EEM flu-orescence characteristics of different fraction of dissolved organ-ic matter in landfill leachate[J].Spectroscopy and Spectral Analy-sis,2012,32(6):1575-1579.

[9]一赵一嫱,孙体昌,李雪梅,等.煤气化废水处理工艺的现状及发

展方向[J].工业用水与废水,2012,43(4):1-6.

Zhao Qiang,Sun Tichang,Li Xuemei,et al.Current situation and development direction of coal gasification waste water treatment processes[J].Industrial Water &waste water,2012,43(4):1-6.[10]一王一兰,乔瑞平,俞一彬,等.O 3/H 2O 2深度处理煤气化废水

的实验研究[J].工业水处理,2015,35(8):26-30.Wang Lan,Qiao Ruiping,Yu Bin,et al.Experimental research on the advanced treatment of coal gasification waste water by O 3/H 2O 2Process[J].Industrial Water Treatment,2015,35(8):26-30.

[11]一李若征,杨一宏,靳一昕,等.活性焦对典型煤气化废水的吸

附及其影响因素[J].环境污染与防治,2016,38(1):19-22.Li Ruozheng,Yang Hong,Jin Xin,et al.Adsorption and effective factors of activated coke in treating coal gasification waste water

[J].Environmental Pollution &Control,2016,38(1):19-22.

[12]一Bu Lin,Wang Kun,Zhao Qingliang,et al.Characterization of dis-solved organic matter during landfill leachate treatment by se-quencing batch reactor,aeration corrosive cell -fenton,and granu-lar activated carbon in series[J].Journal of Hazardous Materials,

2010,179(1/2/3):1096-1105.

[13]一姚璐璐,涂一响,于会彬,等.三维荧光区域积分评估城市污

水中溶解性有机物去除[J].环境工程学报,2013,7(2):411-415.

Yao Lulu,Tu Xiang,Yu Huibin,et al.Evaluation of dissolved or-ganic matter removal in municipal waste water based on fluores-cence regional integration[J].Chinese Journal of Environmental

Engineering,2013,7(2):411-415.

[14]一Coble P G.Characterization of marine and terrestrial DOM in

seawater using excitation -emission matrix spectroscopy[J].Ma-

rine Chemistry,1996,51(4):325-346.

9

【精品】有机物的溶解性规律

有机物的溶解性规律 一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强 酸等); 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数 有机物、Br2、I2等); 3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。 二、有机物的溶解性与官能团的溶解性 1.官能团的溶解性: (1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。 2.分子中亲水基团与憎水基团的比例影响物质的溶解性: (1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解 性逐渐降低; ……,一般地,碳原子个数大于 例如,溶解性:CH3OH>C2H5OH>C3H7OH> 5的醇难溶于水。 (2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大; 例如,溶解性: CH3CH2CH2OH

CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。 (4)由两种憎水基团组成的物质,一定难溶于水。 例如,卤代烃R-X、硝基化合物R-NO2 ,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。 三、液态有机物的密度 1.难溶于水,且密度小于水的有机物 例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(乙酸乙酯、硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……) 注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。 2.难溶于水,且密度大于水的有机物 例如:四氯化碳、氯仿、溴苯、二硫化碳

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表

高聚物与有机溶剂溶度参数及有机溶剂溶解性对照表 溶剂δ/103(J/m3)1/2 聚合物δ/103(J/m3)1/2 溶剂δ/103(J/m3)1/2戊烷14.4(13.8) 聚乙烯15.8~17.0 水47.9 正已烷14.9 聚丙烯16.6~16.8 氨水25 环已烷16.8 聚氧化丙烯15.3~20.3 乙二醇32.1(29.0)正庚烷15.2 聚苯乙烯17.4~19.0 丙三醇33.8 正辛烷15.4 聚甲基丙烯酸甲酯18.6(26.2) 环已醇23.3 异辛烷14 聚氯乙烯19.2~19.8 甲醇29.7 正壬烷15.7 聚丙烯酸甲酯19.8~21.3 乙醇26 正癸烷15.9 聚偏二氯乙烯20.3~25.0 正丁醇23.3 正十四烷16.3 氯磺化聚乙烯16.4~20.5 正戊醇 22.3~21.6 丁二烯13.9 环氧树脂19.8~22.5 异戊醇19.6异戊二烯14.8 聚甲醛20.3~22.5 环已酮19 苯18.7 尼龙-66 27.8 四氢呋喃19 甲苯18.2 聚丙烯腈25.6~31.5 醋酸25.6(18.9)二甲苯17.9~18.4 酚醛树脂23.5 甲酸27.6 乙苯18 聚三氟氯乙烯14.7~16.2 甲酸甲酯21.9氯苯19.4(19.8) 聚四氟乙烯12.7 乙酸乙酯18.6 硝基苯20.5(19.6) 聚丁二烯16.6~17.6 甲基丙烯17.8乙醚15.7 天然橡胶16.2(16.7) 三乙胺14.9 正已醇21.9 氯丁橡胶16.8~18.8 苯甲醛22.1正辛醇21.1 丁苯橡胶16.6~17.6 乙醛20.1 正庚醇20.5 聚硫橡胶18.4~19.2 甲酰胺36.4苯胺16.1(24.3) 聚碳酸酯19.4~20.1 乙酰胺34.2丙烯腈21.4 丁基橡胶15.8 二乙酮18 DMF 24.8 聚醋酸乙酯19.2(22.5) 氰乙烯17.8 DMAC 22.7 丁腈橡胶19.4(18.9) 偏二氯乙烯17.6丙酮20.1(20.5) 聚硅氧烷19.2 氯丁二烯19 丁酮19 二硝基纤维素21.5(23.5) 二硫化碳20.5苯乙烯17.7(18.8) 醋酸纤维素22.3~23.3 二甲砜29.9二氯甲烷19.8(20.5) 聚氨基甲酸酯20.5 二甲亚砜27.4氯仿19 聚乙烯醇47.9(25.8) 萘20.3 四氯化碳17.6 乙丙橡胶16.2 溶纤剂19 三氯乙烯18.8 聚二甲基硅氧烷14.9~15.5 四氯乙烯19.1 聚对苯二甲酸乙二醇酯21.9(19.8) 四氯乙烷21.3(19.4) 聚二甲基硅氧烷14.9~15.5

有机溶剂极性表

有机溶剂极性表

下图是混合有机溶剂极性顺序(由小到大,括号内表示的是混合比例) 强极性溶剂:甲醇〉乙醇〉异丙醇 中等极性溶剂:乙氰〉乙酸乙酯〉氯仿〉二氯甲烷〉乙醚〉甲苯 非极性溶剂:环己烷,石油醚,己烷,戊烷 常用混合溶剂: 乙酸乙酯/己烷:常用浓度0~30%。但有时较难在旋转蒸发仪上完全除去溶剂。 乙醚/戊烷体系:浓度为0~40%的比较常用。在旋转蒸发器上非常容易除去。乙醇/己烷或戊烷:对强极性化合物5~30%比较合适。 二氯甲烷/己烷或戊烷:5~30%,当其他混合溶剂失败时可以考虑使用。 3)将1~2mL选定的溶剂体系倒入展开池中,在展开池中放置一大块滤纸。 4)将化合物在标记过的基线处进行点样。我们用的点样器是买来的,此外,点样器也可从加热过的Pasteur吸管上拔下(你可以参照UROP)。在跟踪反应进行时,一定要点上起始反应物、反应混合物以及两者的混合物。 5)展开:让溶剂向上展开约90%的薄板长度。 6)从展开池中取出薄板并且马上用铅笔标注出溶剂到达的前沿位置。根据这个算Rf的数值。 7)让薄板上的溶剂挥发掉。 8)用非破坏性技术观察薄板。最好的非破坏性方法就是用紫外灯进行观察。将薄板放在紫外灯下,用铅笔标出所有有紫外活性的点。尽管在 5.301中不用这种方法,但我们将采用另一常用的无损方法--用碘染色法。(你可以参看UROP)。

9)用破坏性方式观测薄板。当化合物没有紫外活性的时候,只能采用这种方法。在 5.301中,提供了很多非常有用的染色剂。使用染色剂时,将干燥的薄板用镊子夹起并放入染色剂中,确保从基线到溶剂前沿都被浸没。用纸巾擦干薄板的背面。将薄板放在加热板上观察斑点的变化。在斑点变得可见而且背景颜色未能遮盖住斑点之前,将薄板从加热板上取下。 10)根据初始薄层色谱结果修改溶剂体系的选择。如果想让Rf变得更大一些,可使溶剂体系极性更强些;如果想让Rf变小,就应该使溶剂体系的极性减小些。如果在薄板上点样变成了条纹状而不是一个圆圈状,那么你的样品浓度可能太高了。稀释样品后再进行一次薄板层析,如果还是不能奏效,就应该考虑换一种溶剂体系。

常见有机溶剂的溶解性汇总

常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、*****、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似 ***** 34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶*****性 戊烷36.1 与乙醇、*****等多数有机溶剂混溶低毒性员?婷疋0? 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,*****性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶*****性,强刺激性 溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、*****、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强*****性甲醇64.5 与水、*****、醇、酯、卤代烃、苯、酮混溶中等毒性,*****性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、*****、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。*****性,刺激性 三氟代乙酸71.78 与水,乙醇,*****,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物 1,1,1-三氯乙烷74.0 与丙酮、、甲醇、*****、苯、四氯化碳等有机溶剂混溶低毒类溶剂 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,*****性 乙醇78.3 与水、*****、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,*****性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、*****、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、*****、氯仿、水混溶微毒,类似乙醇 1,2-二氯乙烷83.48 与乙醇、*****、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌 乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒 三氯乙烯87.19 不溶于水,与乙醇.*****、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品_ 三乙胺89.6 水:18.7以下混溶,以上微溶。易溶于氯仿、丙酮,溶于乙醇、***** 易爆,皮肤黏膜刺激性强 丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高度性,与氢氰酸相似 庚烷98.4 与己烷类似低毒,刺激性、*****性

有机溶剂极性顺序

一:溶剂极性参数表,方便以下比较展开剂。 环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、 二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、 乙酸:6.0、水:10.2 数值越大,极性越大 二:常用溶剂的沸点、溶解性和毒性 溶剂名称沸点℃(101.3kPa) 溶解性毒性 液氨-33.35 能溶解碱金属和碱土金属剧毒性、腐蚀性 液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒 甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于、醚、酮、氯仿、乙酸乙酯中等毒性,易燃 二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性 石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性 戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性 二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强 二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉,强刺激性 丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大 1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性 氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性 四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒 己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒,麻醉性,刺激性 三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物1,1,1-三氯乙烷74.0 与丙酮、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒 四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强 乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性 乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性 丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮 苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性 环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用 乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒 异丙醇82.40 与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇

物质溶解性大小的比较方法和规律

物质溶解性大小的比较方法和规律 陕西吴亚南主编 物质的溶解性大小到底和什么有关,存在什么样的规律可循,有什么好的方法来区分和记忆,作为一个中学生是迫切想知道的,现就此问题总结如下。 一、常见酸碱盐在水溶液中的溶解性(口歌) 钾,钠,铵,硝酸,醋酸,碳酸氢盐都是可熔盐, 硫酸盐里除去Ba,Ag,Ca和Pb 碳酸盐里除去钾钠铵其它都是不熔盐 氯化物中只有银沉淀 可溶碱有4种钾,钠,钡和铵 二、相似相溶原理:溶质与溶剂在结构上相似。可理解为极 性相同的物质间一般易于相溶。有机物质易溶于有机溶 剂,通常难溶于水。无机物在有机溶剂中一般难溶。如:氯化钠在水中易溶,但在酒精中却能形成胶体 三、物质的分子可与水分子间形成氢键时加大其溶解性。 如:NH3,C2H5OH,CH3OH 四、常温常压下在1体积水中氨气可溶700体积;氯化氢气 体可溶500体积;硫化氢气体可溶40体积;氯气可溶2 体积;二氧化碳可溶1体积 五、有机化合物中低级醇,多羟基物质可溶于水,有机酸多

溶于水但也不绝对。(个别例外) 六、无机酸中只有原硅酸,硅酸不溶于水。一般碳酸盐的溶解度小于碳酸氢盐。如:碳酸钙的小于碳酸氢钙的;碳酸镁的小于碳酸氢镁的;碳酸锂的小于碳酸氢锂的;但碳酸钠的却大于碳酸氢钠的(碳酸氢根离子的反极化作用) 七、物质间能发生反应时也可溶。如说铜能溶于硝酸,金可溶于王水 八、溶质和溶剂间能形成配位化合物时也能溶。如:氯化银可溶于氨水,溴化银可溶于浓氨水,而碘化银不溶于氨水,氢氧化铜可溶于氨水。 九、都是难溶物谁的溶解度更小,要在同类型分子的基础上在相同条件下比溶度积常数的大小。如:相同条件时氯化银,硫化铅和碳酸钙谁更难溶。 十、物质若与溶剂反应可增加容量,相对溶解的多些。如:I2在KI溶液中的溶解度大于在纯水中的溶解度。是因为I2和I-反应生成I3-从而溶解度增大。 十一、物质的溶解性与物质和溶剂有关外,还与外界的压强,温度等有关。 通常固体物质的溶解性随着温度的升高而加大,但也有反例如:氢氧化钙;气体的溶解性随温度的升高而减小,随压强的增大而增大。

常见有机溶剂极性表

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等; ②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序: 水(极性最大) > 甲酰胺 > 乙腈 > 甲醇 > 乙醇 > 丙醇 > 丙酮 > 二氧六环 > 四氢呋喃 > 甲乙酮 > 正丁醇 > 醋酸乙酯 > 乙醚 > 异丙醚 > 二氯甲烷 > 氯仿 > 溴乙烷 > 苯 > 氯丙烷 > 甲苯 > 四氯化碳 > 二硫化碳 > 环己烷 > 己烷 > 庚 烷 > 煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

有机物的物理性质规律

有机物物理性质的主要规律 河北省宣化县第一中学栾春武 一、密度 物质的密度是指单位体积里所含物质的质量,它与该物质的相对分子质量、分子半径等因素有关。一般来说,有机物的密度与分子中相对原子质量大的原子所占质量分数成正比。例如,烷、烯、炔及苯的同系物等物质的密度均小于水的密度,并且它们的密度均随分子中碳原子数的增加和碳元素的质量分数的增大而增大;而一卤代烷、饱和一元醇随分子中碳原子数的增加,氯元素、氧元素的质量分数降低,密度逐渐减小。 二、溶解性 有机物一般不易溶于水,而易溶于有机溶剂,这是因为有机物分子大多数是非极性分子或弱极性分子,含有憎水基。根据“相似相溶”原理,水是极性分子,只有当某有机物分子中含有亲水基团时,则该有机物就可能溶于水。 亲水基一般包括:-OH、-CHO、COOH等;憎水基一般包括:-R、-NO2、-X、-COOR等。 1. 能溶于水的有机物: ① 小分子醇:CH3OH、C2H5OH、CH2OHCH2OH、甘油等; ②小分子醛:HCHO、CH3CHO、CH3CH2CHO等; ③小分子羧酸:HCOOH、CH3COOH、CH3CH2COOH等; ④低糖:葡萄糖(C6H12O6)、果糖(C6H12O6)、蔗糖(C12H22O11); ⑤氨基酸:CH3CH(NH2)COOH等。 一般来说,低级醇、低级醛、低级酸,单糖和二糖水溶性好,即亲水基占得比重相对较大,憎水基占得比重相对较小,故能溶于水。

2. 不易溶于水的有机物: ① 烷、稀、炔、芳香烃等烃类均不溶于水,因为其分子内不含极性基团; ② 卤代烃:CH3Cl、CHCl3、CCl4、CH3CH2Br、等均不溶于水; ③ 硝基化合物:硝基苯、TNT等; ④ 酯:CH3COOC2H5、油脂等; ⑤ 醚:CH3OCH3、C2H5OC2H5等; ⑥ 大分子化合物或高分子化合物:如高级脂肪酸、塑料、橡胶、纤维等。 一般来说,液态烃、一氯代烃、苯及其同系物、酯类物质不溶于水且密度比水小;硝基苯、溴苯、四氯化碳、氯仿、溴代烃、碘代烃不溶于水且密度比水大。 3. 有机物在汽油、苯、四氯化碳等有机溶剂中的溶解性与在水中的相反: 如乙醇是由较小憎水基团C2H5和亲水基团-OH构成,所以乙醇易溶于水,同时因含有憎水基团,所以必定也溶于四氯化碳等有机溶剂中。其它醇类物质由于都含有亲水基团-OH,小分子都溶于水,但在水中的溶解度随着憎水基团的不断增大而逐渐减小,在四氯化碳等有机溶剂中的溶解度则逐渐增大。 4. 特殊物质(苯酚)在常温时,在水里溶解度不大,当温度高于65℃ 时,能和水以任意比例互溶。 三、熔、沸点 熔、沸点是物质状态变化的标志,有机物熔、沸点的高低与分之间的相互作用、分子的几何形状等因素有关。 1. 结构相似的有机物,相对分子质量越大,分子间作用力越大,其熔、沸点越高。如链烃同系物的沸点,随着相对分子质量的增大而升高,状态由气态(分子中碳原子数小于等于4者及新戊烷通常为气态)到液态,最后变为固态。

有机物极性及溶解性解读

课外毒物https://www.doczj.com/doc/a52455031.html, 有机物极性及溶解性的教学讨论 有机化合物大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。原因何在? 中学课本、大学课本均对此进行了解释。尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其分子的偶极矩为零,它是一非极性分子。烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等。以烷烃为主要成分的汽油也就不具有极性了。确切而言,上述说法是不够严格的。 我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度. 常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D。至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除 CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性。带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性。由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D. 烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。2—丁烷,顺—2—丁烯的μ=0.33D,反—2—丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性。 二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子。炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分 课外毒物https://www.doczj.com/doc/a52455031.html, 别为0.78D和0.80D。

有机溶剂极性表

有机溶剂极性表极性与非极性是针对分子说的。 首先化学共价键分为极性键与非极性键。非极性键就是共用电子对没有偏移,出 现在单质中比如02极性键就是共用电子对有偏移比如HCI。而当偏移的非常厉害之后,看上去一边完全失电子另一边得到了电子,就会变成离子键了,如NaCI 再说极性分子与与非极性分子。由于极性键的出现,所以就使某些分子出现了电极性,但是并不是说所有有极性键的分子都是极性分子。比如CH4虽然含有4 个极性的C-H键,但是因为其空间上成对称的正四面体结构,所以键的极性相消,整个分子没有极性 对与H20虽然与C02有相同类型的分子式,也同样有极性共价键,但二者分子的极性却不同。C02是空间对称的直线型,所以分子是非极性分子,H20是折线型,不对称,所以是极性分子,作为溶剂称为极性溶剂 非极性溶剂由非极性分子组成,是指分子中各原子的化学键的合力为零,如CCI4 分子为正四面体,四个C-CI键的合力为零,CCI4分子无极性,CCI4就是非极性溶剂 非极性溶剂"脂肪油(fattyoils)" 液状石蜡(liquidparaffin)" 醋酸乙酯(ethyloleate)" 肉豆蔻酸异丙酯(isopropylmyristate) 非极性溶剂是由非性分子溶液组成的溶剂,非极性分子多由共价键构成,无或电 子活性很小. 最简单准确的说就是偶极矩为零的溶剂。 知道什么是偶极矩吗? 非极性溶剂是由非性分子溶液组成的溶剂,非极性分子多由共价键构成,无或电子活性很小。 偶极矩小的溶剂 溶剂英文名称solve nt 又称溶媒。能溶解气体、固体、液体而成为均匀混合物的一种液体。 习惯上把气体和固体叫溶质,液体叫溶剂。对于两种液体所组成的溶液,通常把含量较多的组分叫溶剂,少者叫溶质。分为无机溶剂和有机溶剂两大类。水是应用最广泛的无机溶剂,酒精、汽油、氯仿及丙酮等是常用的有机溶剂。 溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液.在日常生活中最普遍的溶剂是水.而所谓有机溶剂即是包含碳原子的有机化合物?溶剂通常拥有比较低的沸点和容易挥发.或是可以由蒸馏来去除,从而留下被溶物? 因此,溶剂不可以对溶质产生化学反应?- 它们必须为惰性?溶剂可从混合物萃取可溶化合物,最普遍的例子是以热水冲泡咖啡或茶溶剂通常是透明,无色的液体, 他们大多都有独特的气味. 溶液的浓度取决于溶解在溶剂内的物质的多少.溶解度则是溶剂在特定温度下,可以溶解最多多少物质.有机溶剂主要用于干洗(例如四氯乙烯), 作涂料稀释剂(例如

常用用有机溶剂的相对极性

常用用有机溶剂的相对极性 常用用有机溶剂的相对极性 solvent polarity Viscosity(cp20℃) Boiling point(℃) UV cutoff(nm) i-pentane戊烷 0.00 -- 30 -- n-pentane 0.00 0.23 36 210 Petroleum ether石油醚0.01 0.30 30-60 210 Hexane己烷0.06 0.33 69 210 Cyclohexane环己烷 0.10 1.00 81 210 Isooctane异辛烷 0.10 0.53 99 210 Trifluoroacetic acid三氟乙酸 0.10 -- 72 -- Trimethylpentane三甲基戊烷0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.00 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane (三氯三氟代乙烷) 1.90 0.71 48 231 i-propyl ether (丙基醚; 丙醚) 2.40 0.37 68 220 T oluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290 Chlorobenzene(氯苯) 2.70 0.80 132 -- o-dichlorobenzene (领二氯苯) 2.70 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.90 0.23 35 220 Benzene(苯) 3.00 0.65 80 280 Isobutyl alcohol(异丁醇) 3.00 4.70 108 220 Methylene chloride(二氯甲烷) 3.40 0.44 40 245 Ethylene dichloride(二氯化乙烯)3.50 0.79 84 228 n-butanol(丁醇) 3.90 2.95 117 210 n-butyl acetate(醋酸丁酯; 乙酸丁酯)4.00 --- 126 254 n-propanol(丙醇) 4.00 2.27 98 210 Methyl isobutyl ketone 4.20 -- 119 330 T etrahydrofuran( 四氢呋喃)4.20 0.55 66 220 ethanol 4.30 1.20 79 210 Ethyl acetate 4.30 0.45 77 260 i-propanol(丙醇) 4.30 2.37 82 210 Chloroform(氯仿) 4.40 0.57 61 245 Methyl ethyl ketone(甲基乙基酮)4.50 0.43 80 330

有机溶剂极性大小

首先,在分子结构中原子排列不对称,正负电荷的重心没有重合,这种分子就叫极性分子,由极性分子构成的污染物就叫极性污染物,反之亦然。 常见的极性污染物如:有机酸、无机酸、盐类、碱类、污水、手汗、电镀残液、焊接活化剂等。 常见的非极性污染物如:润滑油、防锈油、机油、淬火油、蜡、脂等。 常见的极性溶剂如:水、甲醇、乙醇、异丙醇、丙酮、环己酮、乙二胺、乙二醇等。 常见的非极性溶剂如:CFC-113、四氯化碳、己烷、庚烷、辛烷、苯、汽油、煤油等。 极性溶剂比较容易溶解极性污染物,反之亦然。 KB值:贝松脂丁醇值,也叫考里丁醇值用来度量有机溶剂溶解非极性污染物的相对能力,值越大,溶解能力越强。 SP值:溶解度参数表示溶剂与溶质(污染物)之间相互作用的一个参数,两者的SP值越接近表示越容易溶解 有机试剂极性大小 下面这份溶剂极性表列出了常用有机溶剂极性顺序,并有常见溶剂的粘度、沸点、吸收波长等物理参数,在进行薄层色谱柱(TLC)洗脱的时候时很有帮助。可能有不准确的,希望在留言处给予更正。 化合物名称极性粘度沸点吸收波长 i-pentane(异戊烷) 0 - 30 - n-pentane(正戊烷) 0 0.23 36 210 Petroleum ether(石油醚) 0.01 0.3 30~60 210 Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.1 1 81 210 Isooctane(异辛烷) 0.1 0.53 99 210 Trifluoroacetic acid(三氟乙酸) 0.1 - 72 - Trimethylpentane(三甲基戊烷) 0.1 0.47 99 215 Cyclopentane(环戊烷) 0.2 0.47 49 210 n-heptane(庚烷) 0.2 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯) 1 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.6 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷) 1.9 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.4 0.37 68 220

有机物溶解度

A物性类: 1、难溶于水且比水轻: 烃、高级脂肪酸、酯(油脂) 难溶于水且比水重: 氯仿、四氯化碳、溴苯、硝基苯、TNT等 2、常温下呈气态:C<4烃、一氯甲烷、甲醛 常温下呈固态:石蜡、冰醋酸、苯酚晶体、硬脂酸、软脂酸、脂肪、TNT等 3、属于混和物: 天然气、焦炉气、汽油、煤油、福尔马林、高分子化合物、裂解气、石油液化气、天然油脂(豆油、脂肪等) 4、属物理变化或化学变化: 石油分馏、煤的干馏、重油裂解、萘的升华、油脂氢化(硬化)等 5、两种有机物不论以何种比例混和,只要总质量一定,当含C%相同时生成CO2量一定;含H%相同时生成H2O量一定。 最简式相同的物质: 烯烃同系物之间、同分异构体之间、苯和乙炔 甲醛、乙酸和甲酸甲酯 乙醛、丁酸、乙酸乙酯、甲酸丙酯、丙酸甲酯 6.不同类有机物之间有分子量相等分子式不同: (1)烷烃与比它少一个C的饱和一元醛: 如乙烷和甲醛、丙烷和乙醛 (2)脂肪烃和芳香烃(氢原子数在于20个以上) 如C9H20和C10H8、C10H22和C11H10(即甲基萘) (3)饱和一元醇与比它少一个C的饱和一元酸: 如乙醇和甲酸、丙醇和乙酸B.化性类: 7.1体积烯烃和饱和一元醇蒸气完全燃烧时需要O2体积为1.5n 8.耗氧量问题:物质的量相等的烃完全燃烧时,耗氧量的多少决定于(X+Y/4)数值 质量相同的烃燃烧时,耗氧量的多少,决定于CHy中的数值,y值越大,耗氧量越多,反之越少 质量相同的烃燃烧时,生成CO2量决定于CxH中的值,x值越大,生 成CO2量越多,反之越少 9.实验问题: (1)需要用到温度计的实验: 苯的硝化、石油分馏、乙醇脱水、乙酸乙酯水解(2)需要用水浴加热的实验: 银镜反应、制硝基苯、制酚醛树脂、乙酸乙酯水解(3)导管起冷凝回流作用的实验: 制溴苯、制硝基苯、制酚醛树脂(4)导管口接近液面但不插入的实验: 制溴苯、制乙酸乙酯10.鉴别有机物时常用试剂: (1)溴水:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、SO2 (2)酸性高锰酸钾溶液:烯炔烃、二烯烃、苯酚、天然橡胶、油酸、油脂、含醛基物质 (3)钠:醇、苯酚、低级羧酸(4)氢氧化钠:苯酚、羧酸、酯 (5)银氨溶液或新制氢氧化铜:含醛基物质、低级羧酸(6)氯化铁溶液:苯酚、KSCN溶液、KI溶液、氢硫酸 11.烃及含氧衍生物完全燃烧产物: VCO2:VH2O == 1:1 烯烃、饱和一元醛、饱和一元酸、饱和一元酯 VCO2:VH2O == 2:1 乙炔、苯、苯酚

有机物的溶解性规律相似相溶原理1

有机物的溶解性规律一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等); 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 3.含有相同官能团的物质互溶,如水中含羟基(OH)能溶解含有羟基的醇、酚、羧酸。 二、有机物的溶解性与官能团的溶解性 1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有OH、CHO、COOH、NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基( 有机物的溶解性规律 一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体强碱(NaOH、KOH、)、活泼金属氧化物(Na2O、MgO、Na2O2)、大多数盐类(BaCl2、Pb(Ac)2等除外)以上仅作了解、。、分子晶体中的极性物质如强酸等); 自己做的分析:(H2O是折线型,不对称,所以是极性分子,作为溶剂称为极性溶剂。)百度上的.可是分子晶体中的极性物质居然有苯。这令我很迷茫。 如果苯属于极性 物质,那么水必然与之互溶.但下面也提到了苯是非极性溶剂 我自己做了简要的分析。——百度 苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H 键长为1.08Α,C-C键长为1.40Α,此数值介于单双键长之间。分子中所有键角均为120°…由上可知,苯中貌似无共用电子对偏移,所以苯是非极性溶剂。 问题1。但是如上所述,苯属于分子晶体中的极性物质。那这又是为什么呢?难道是百度错了? 问题3高中所要了解的极性溶剂都有哪些?水,还有什么。 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 问题4我都是从结构出发:探讨是否有共用电子对是否偏离来确定是否为极性溶剂或者非极性溶剂。这种想法是否正确。 ①苯若是非极性溶剂.如上

2008常见有机溶剂极性表

常见有机溶剂极性表- [科研] 环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷: 3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈: 5.8、乙酸:6.0、水:10.2 水(最大) > 甲酰胺> 乙腈> 甲醇> 乙醇> 丙醇> 丙酮>二氧六环> 四氢呋喃> 甲乙酮> 正丁醇> 乙酸乙酯>乙醚> 异丙醚> 二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环 己烷>己烷>煤油(最小) 用介电常数来表示极性大小,比水极性大的有下列三种: 水80.103(20摄氏度) 乙二醇碳酸酯89.6(40摄氏度) 甲酰胺111.0(20摄氏度) N-甲基甲酰胺182.4(25摄氏度) Hexane(己烷) 0.06 0.33 69 210 Cyclohexane(环己烷) 0.10 1.00 81 210 Isooctane(异辛烷) 0.10 0.53 99 210 Trifluoroacetic acid(三氟乙酸)0.10 -- 72 -- Trimethylpentane(三甲基戊烷)0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride(丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene(三氯乙烯; 乙炔化三氯)1.00 0.57 87 273 Carbon tetrachloride(四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane(三氯三氟代乙烷)1.90 0.71 48 231 i-propyl ether(丙基醚; 丙醚) 2.40 0.37 68 220 Toluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290

知识点高二化学有机物的溶解性和密度

知识点高二化学有机物的溶解性和密度 下面查字典化学网为大家整理了高二化学有机物的溶 解性和密度,希望大家在空余时间进行复习练习和学习,供参考。 1.有机物的溶解性 (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。 (3)具有特殊溶解性的: ① 乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。 ② 苯酚:室温下,在水中的溶解度是9.3g(属可溶),易溶于乙醇等有机溶剂,当温度高于65℃时,能与水混溶,冷却后分层,上层为苯酚的水溶液,下层为水的苯酚溶液,振荡

后形成乳浊液。苯酚易溶于碱溶液和纯碱溶液,这是因为生成了易溶性的钠盐。 ③ 乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸收挥发出的乙酸,溶解吸收挥发出的乙醇,便于闻到乙酸乙酯的香味。 ④ 有的淀粉、蛋白质可溶于水形成胶体。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解度减小,会析出(即盐析,皂化反应中也有此操作)。但在稀轻金属盐(包括铵盐)溶液中,蛋白质的溶解度反而增大。 ⑤ 线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。 ⑥氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色溶液。 2.有机物的密度 (1)小于水的密度,且与水(溶液)分层的有:各类烃、一氯代烃、氟代烃、酯(包括油脂) (2)大于水的密度,且与水(溶液)分层的有:多氯代烃、溴代烃(溴苯等)、碘代烃、硝基苯 以上就是高二化学有机物的溶解性和密度,希望能帮助到大家。

常见有机溶剂极性表

常见有机溶剂极性表 Prepared on 22 November 2020

有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类:①芳香烃类:苯、甲苯、二甲苯等;②脂肪烃类:戊烷、己烷、辛烷等;③脂环烃类:环己烷、环己酮、甲苯环己酮等;④卤化烃类:氯苯、二氯苯、二氯甲烷等;⑤醇类:甲醇、乙醇、异丙醇等;⑥醚类:乙醚、环氧丙烷等;⑦酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;⑧酮类:丙酮、甲基丁酮、甲基异丁酮等;⑨二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;⑩其他:乙腈、吡啶、苯酚等。 有机溶剂具有脂溶性,因此除经呼吸道和消化道进入机体内外,尚可经完整的皮肤迅速吸收,有机溶剂吸收入人体后,将作用于富含脂类物质的神经、血液系统,以及肝肾等实质脏器,同时对皮肤和粘膜也有一定的刺激性。不同有机溶剂其作用的主要靶器官和作用的强弱也不同,这决定于每一种有机溶剂的化学结构、溶解度、接触浓度和时间,以及机体的敏感性。 常用溶剂的极性顺序:水(极性最大)>甲酰胺>乙腈>甲醇>乙醇>丙醇>丙酮>二氧六环>四氢呋喃>甲乙酮>正丁醇>醋酸乙酯>乙醚>异丙醚>二氯甲烷>氯仿>溴乙烷>苯>氯丙烷>甲苯>四氯化碳>二硫化碳>环己烷>己烷>庚烷>煤油(极性最小) 有机溶剂的极性根据官能团和对称性可初步判断,具体的需参照极性参数,如下

表示有机溶剂的极性,关系到其物理化学性质、如介电常数、偶极矩或折射率。这种表示方法把所有的溶剂看作是连续作用的介质,而不是看作由各个分子组成的非连续统一体,并且未考虑到溶剂和溶质之间的特殊的相互作用。

常用有机溶剂的溶解性

引用常用有机溶剂的沸点、溶解性和毒性 2009-12-13 08:07:43| 分类:工作| 标签:|字号大中小订阅 引用 ztx_heart的常用有机溶剂的沸点、溶解性和毒性 第一类溶剂 是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。在可能的情况下,应避免使用这类溶剂。如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的 范围内,如: 苯(2ppm)、四氯化碳(4ppm)、1,2-二氯乙烷(5ppm)、1,1-二氯乙烷(8ppm)、1,1,1- 三氯乙烷(1500ppm)。 第二类溶剂 是指无基因毒性但有动物致癌性的溶剂。按每日用药10克计算的每日允许接触量如下: 2-甲氧基乙醇(50ppm)、氯仿(60ppm)、1,1,2-三氯乙烯(80ppm)、1,2-二甲氧基乙烷(100ppm)、1,2,3,4-四氢化萘(100ppm)、2-乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N,N-二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N-二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1,2-二氯乙烯(1870ppm)、二甲苯(2170ppm)、甲醇(3000ppm)、环己烷(3880ppm)、N-甲基吡咯烷酮(4840ppm)、。 第三类溶剂 是指对人体低毒的溶剂。急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。在无需论证的情况下,残留溶剂的量不高于0.5%是可接受的,但高于 此值则须证明其合理性。这类溶剂包括: 戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1-丙醇、2-丙醇、1-丁醇、2-丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。 除上述这三类溶剂外,在药物、辅料和药品生产过程中还常用其他溶剂,如1,1-二乙氧基丙烷、1,1-二甲氧基甲烷、2,2-二甲氧基丙烷、异辛烷、异丙醚、甲基异丙酮、甲基四氢呋喃、石油醚、三氯乙酸、三氟乙酸。这些溶剂尚无基于每日允许剂量的毒理学资料,如需在生产中使用这些溶剂,必须证明其 合理性。 资料来源https://www.doczj.com/doc/a52455031.html,/data/2006/0831/article_770.htm 常用溶剂的沸点、溶解性和毒性 溶剂名称沸点(101.3kPa)溶解性毒性 液氨-33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性

相关主题
文本预览
相关文档 最新文档