当前位置:文档之家› 电动势的测定

电动势的测定

电动势的测定
电动势的测定

实验八电池电动势的测定及其应用

一、实验目的与要求

1、通过实验加深对可逆电池、可逆电极概念的理解。

2、掌握对消法测定电池电动势的原理及电位差计的使用方法。

3、学会一些电极和盐桥的制备。

4、通过测量电池Ag-AgCl│KCl(m1)║AgNO3(m2)|Ag的电动势求AgCl的溶度积K sp。

5、测量电池Zn│ZnSO4(m1)║Cl-(m2)│AgCl-Ag的电动势随温度的变化,并计算有关的热力学函数。

二、预习要求:

1、明确可逆电池、可逆电极的概念。

2、了解电位差计、标准电池和检流计的使用及注意事项。

3、掌握对消法原理和测定电池电动势的线路和操作步骤。

4、掌握用电池电动势法测定化学反应热力学函数的原理和方法。

5、了解不同盐桥的使用条件。

三、实验原理

化学电池是由两个“半电池”即正负电极放在相应的电解质溶液中组成的。由不同的这样的电极可以组成若干个原电池。在电池反应过程中正极上起还原反应,负极上起氧化反应,而电池反应是这两个电极反应的总和。其电动势为组成该电池的两个半电池的电极电位的代数和。若知道了一个半电池的电极电位,通过测量这个电池电动势就可算出另外一个半电池的电极电位。所谓电极电位,它的真实含义是金属电极与接触溶液之间的电位差。它的绝对值至今也无法从实验上进行测定。在电化学中,电极电位是以一电极为标准而求出其他电极的相对值。现在国际上采用的标准电极是标准氢电极,即在时,=1atm时被氢气所饱和的铂电极,它的电极电位规定为0,然后将其他待测的电极与其组成电池,这样测得电池的电动势即为被测电极的电极电位。由于氢电极使用起来比较麻烦,人们常把具有稳定电位的电极,如甘汞电极,银—氯化银电极作为第二级参比电极。

通过对电池电动势的测量可求算某些反应的D H,D S,D G等热力学函数,电解质的平均活度系数,难溶盐的活度积和溶液的pH等物理化学参数。但用电动势的方法求如上数据时,必须是能够设计成一个可逆电池,该电池所构成的反应应该是所求的化学反应。

例如用电动势法求AgCl的K sp需设计成如下的电池:

Ag-AgCl?KCl(m1)║AgNO3(m2)│Ag

该电池的电极反应为:

负极反应:Ag(s)+Cl-(m1) ? AgCl(s)+e-

正极反应:Ag+(m2)+e- ? Ag(s)

电池总反应:Ag+(m2)+Cl-(m1) ? AgCl(s)

电池电动势:E=j右-j左

=

= (7-1)

又因为D G°=-nFE°= (该反应n=1),E°= (7-2)

整理后得(将(2)式代入(1)式):

= (7-3)

所以只要测得该电池的电动势就可根据上式求得AgCl的K sp。 其中为AgNO3溶液的

平均活度系数,为KCl溶液的平均活度系数。当=0.1000m时,=0.734,=1.000m时,=0.606。

化学反应的热效应可以用量热计直接度量,也可以用电化学方法来测量。由于电池的电动势可以准确测量,所得的数据常常较热化学方法所得的可靠。

在恒温恒压条件下,可逆电池所做的电功是最大非体积功W′,而W′等于体系自由能的降低即为-D r G m,而根据热力学与电化学的关系,我们可得

D r G m =-nFE(7-4)

由此可见利用对消法测定电池的电动势即可获得相应的电池反应的自由能的改变。式中的n是电池反应中得失电子的数目,F为法拉第常数。

根据吉布斯——亥姆霍茨公式

D r G m=D r H m-TD r S m(7-5)

(7-6)

将(4)和(6)式代入(5)式即得:

(7-7)

由实验可测得不同温度时的E值,以E对T作图,从曲线的斜率可求出任一温度下的值,根据(4)(6)(7)式可求出该反应的势力学函数D r G m、D r S m、D r H m。

本实验测定下列电池的电动势,并由不同温度下电动势的测量求算该电池反应的热力学函数。

电池为:Zn│ZnSO4(0.1000m)║Cl-(1.000mKCl)│AgCl-Ag

(饱和KCl盐桥)

该电池的正极反应为:2AgCl(s)+2e=2Ag(s)+2Cl-

负极反应为:Zn (s)══Zn2++2e

总电池反应为:2AgCl(s)+Zn(s) ══ 2Ag(s)+Zn2++2Cl-

各电极电位为:

(7-8)

(7-9)

实验中可以准确测量不同温度的E值,便可计算不同温度下该电池反应的D r G m。以E 对T作图求出某任一温度的便可计算该温度下的D r S m,由D r G m和D r S m可求出该反应的

D r H m。

四、仪器与药品:

UJ24型电位差计1台,银—氯化银参比电极1支

铂电极2支铜电极2支

恒温槽1套标准电池1只

半电池管2支毫安表、电阻箱各1只

U型管2支直流稳压电源1台

检流计1只琼脂、KCl、KNO3(分析纯)

0.1mol·dm-3 AgNO3溶液0.1000mAgNO3+0.1 m HNO3溶液

0.1 mol·dm-3 ZnSO4溶液0.1000mZnSO4溶液

饱和Hg2(NO3)2溶液

导线若干滤纸若干

五、实验步骤:

1、银电极的制备:将铂丝电极放在浓HNO3中浸泡15分钟,取出用蒸馏水冲洗,如表面仍不干净,用细晶相砂纸打磨光亮,再用蒸馏水冲洗干净插入盛0.1 mol·dm-3AgNO3溶液的小烧杯中,按图7-(1)接好线路,调节可变电阻,使电流在3mA、直流稳压源电压控制在

6V镀20分钟。取出后用0.1 mol·dm-3的HNO3溶液冲洗,用滤纸吸干,并迅速放入盛有

0.1000mAgNO3+0.1 mHNO3溶液的半电池管中(如图7-2)

图7-1 电极制备装置图图7-2 半电池管

1—电池2—辅助电极1—电极2—盐桥插孔

3—被镀电极4—镀银溶液3—电解质溶液4—玻璃管

2、制备盐桥:

为了消除液接电位,必须使用盐桥。参见附录的方法,制备KNO3盐桥和KCl盐桥。分别放入饱和的KNO3溶液和KCl溶液中待用。

3、测量电池的电动势:

测量可逆电池的电动势不能直接用伏特计来测量。因为电池与伏特计相接后,整个线路便有电流通过,此时电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数据不稳定。所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。

图7-3为对消法测量电池电动势的原理图。acba回路是由稳压电源、可变电阻和电位差

图7-3 对消法原理线路图

过回路的电流为某一定值。在电位差计的滑线电阻上产生确定的电位降,其数值由己知电动计组成。稳压电源为工作电源,其输出电压必须大于待测电池的电动势。调节可变电阻使流势的标准电池e s校准。另一回路abGea由待测电池e x(或e s)检流计G和电位差计组成,移动b点,当回路中无电流时,电池的电势等于a、b二点的电位降。

(1) 组装电池:将上述制备的银电极与实验室提供的Ag-AgCl|Cl-(1.000mKCl)参比电极组成电池,Ag-AgCl|Cl-(0.1000m)║AgNO3(0.1000m)|Ag。根据理论计算确定电极电位的高低与电极的正负,将其置于恒温槽中,将自制的KNO3盐桥横插在两半电池管的小口上,注意两半电池管中溶液一定要与盐桥底端相接,将恒温槽置于25℃,恒温10-15分钟后测量。

(2) 电池电动势测量:用UJ-24型电位差计测量电池的电动势,该仪器最大测量范围为

1.91110V。

a、将标准电池,工作电源,待测电池以及检流计分别与UJ-24型电位差计的各指示部位相接,请老师检查同意后,可进行标准化过程,先读室温,将标准电池在室温时的电动势计算出来,将算出的值在E N旋钮处标出,将换档旋钮打在标准上,先调“粗”键,并调节电位差计面板在上面的“粗”“中”“细”三个电阻旋钮,使检流计上的指针(或光点)指示为零,即完成标准化过程,在以后测量过程中经常进行标准化。

b、测量待测电池的电动势:

将换档旋钮打在未知1或未知2处,重复标准化过程相同的操作。调节中间5个读数旋钮,使检流计指示为0,此时的旋钮读数就是所测电池的电动势。注意为防止电极极化,尽快达到对消,可在测量前粗略估计一下所测电池的电动势的数值,将5个大旋钮的读数放到粗估的数字上,然后用仔细调节旋钮,调节时不可将检流计上的“电极”键栓死,为什么?

4、制备锌电极:

按步骤1的方法处理铂电极,将电极浸泡于0.1 mol·dm-3的ZnSO4溶液中电镀,电压为6V,电流为3mA镀20分钟。由于制备的Zn电极稳定性较差,所以必须进行汞齐化。汞齐化的目的是为了消除金属表面机械应力不同的影响,使它获得重复性较好的电极电位。汞齐化的时间不易太长,只要将镀好的锌电极插入饱和的Hg2(NO3)2溶液中2-3秒即可拿出。否则电极表面的大部分的锌将与Hg2(NO3)2发生反应,取出电极立即用滤纸轻轻吸取电极表面上的

Hg2(NO)3溶液,把滤纸放入广口瓶中。(因为汞蒸汽剧毒,请不要随意将滤纸丢失在地上。)把电极迅速插入装有0.1000mZnSO4溶液的半电池管里。

5、测量电池的电动势:

(1) 将制备好的锌电极,参比电极及盐桥组成电池,置于恒温槽中,恒温10-15分钟,接好电位差计与测量线路,按步骤3的操作步骤测量25℃时该电池的电动势。

(2) 改变恒温槽温度,分别在30℃、35℃、40℃稳定温度下测量该电池的电动势。(注意温度要持续恒温10分钟后再测量。)

六、实验注意事项:

1、连接线路时,切勿将标准电池、工作电源、待测电池的正负极接错。

2、实验前,应先根据附录中的公式计算出实验温度下标准电池的电动势。

3、应先将半电池管中的溶液先恒温后,再测定电动势。

4、使用检流计时,按按钮的时间要短,以防止过多的电量通过标准电池或被测电池,造成严重的极化现象,破坏被测电池的可逆状态。

七、数据记录及处理:

室温:

标准电池电动势恒温槽温度

1、测量电池1的电动势:

2、测量电池2的电动势

(1) 根据不同温度下测得的E在坐标纸上对T作图,求出斜率的值。

(2) 根据7-16式求出该电池反应的D r S m,并根据公式7-5与7-7求该反应的D r G m与

D r H m。

(3) 将实验测得的298K下的D r S m、D r G m和 D r H m与手册上查到的D r S m、D r G m、D r H m 值相比较,求相对误差。

八、思考题:

1. 为什么在测量原电池电动势时,要用对消法进行测量?而不能使用伏特计来测量?

答:要准确测量电池电动势只有在电流无限小的可逆情况下进行,对消法可达到此目的。伏特计与待测电池接通后,要使指针偏转,线路上必须有电流通过,这样一来变化方式不可逆,所测量结果为有“极化”现象发生时的外电压。

2. 在原电池电动势测量过程中,需要使用标准电池,标准电池的一个重要特点是什么?

答:

3. 锌电极为何要汞齐化?汞齐化时间的过长对锌电极有何影响?

答:

(这是现在实验中用铜电极来代替锌电极的原因)

4. 测量双液电池的电动势时为什么要使用盐桥?

答:

5. 作为盐桥使用的电解质有什么要求?

答:(1)盐桥电解质不能与两端电极溶液发生化学反应;

(2)盐桥电解质溶液中的正、负离子的迁移速率应该极其接近;

(3)盐桥电解质溶液的浓度通常很高,甚至达到饱和状态。

6. 在电池电动势测量应用中,进行什么控制条件的变化、用什么方法可以计算三个重要热力学函数的变化量DrSm、DrHm、DrGm?

答:

7. 在电池电动势测量应用中,进行什么控制条件的变化、用什么方法可以计算标准电池电动势E O(或标准电极电位φO)和离子的平均活度系数g±?

答:可以从大到小地改变电解质物质的浓度,作E~ln(mi)变化曲线,然后外推到浓度趋于零,在与纵坐标的交点处的数据来或得标准电池电动势E O(或标准电极电位φO),再将得到的标准电池电动势E O(或标准电极电位φO)代回到电池的Nernst方程中,计算得到离子的平均活度系数g±。

1、对消法测定电池电动势的装置中,电位差计,工作电池,标准电池及检流计各起什么作用?为什么要用对消法进行测量?

2、在测量电池电动势的过程中,若检流计指针或光点总向一个方向偏转,可能是什么原因?

3、测电动势为什么要用盐桥?如何选用盐桥以适合不同的体系?

4、Zn电极为何要汞齐化?汞齐化时间的长短对锌电极有何影响?

5、怎样计算标准的电极电位?“标准”是指什么条件?

6、实际测量的D r S m、D r G m、D r H m为何会有偏差?

以玻璃电极作指示电极,饱和甘汞电极作参比电极,用电位法测量溶液的pH值,组成测量电池的图解表示式为:电池的电动势等于各相界电位的代数和。即,其中为试液与饱和氯化钾溶液之间的液接电位Ej,于是当测量体系确定后,式中E(电池)、E(Ag,AgCl)及Ej均为常数,而合并常数项,电动势可表示为:其中0.059为玻璃电极在25℃的理论响应斜率。由于玻璃电极常数项,或说电池的“常数”电位值无法准确确定,故实际中测量pH值的方法是采用相对方法。即选用pH值已经确定的标准缓冲溶液进行比较而得到欲测溶液的pH值。为此,pH值通常被定义为其溶液所测电动势与标准溶液的电动势差有关的函数,其关系式是:………………(1)式中pHx和pHs分别为欲测溶液和标准溶液的pH值,Ex和Es分别为其相应电动势。该式常称为pH值的实用定义。测定pH用的仪器—pH电位计是按上述原理设计制成的。例如在25℃时,pH计设计为单位pH变化58mV。若玻璃电极在实际测量中响应斜率不符合58mV的理论值,这时仍用一个标准pH缓冲溶液校准pH计,就会因电极响应斜率与仪器不一致引入测量误差。为了提高测量的准确度,需用双标准pH缓冲溶液法将pH计的单位pH的电位变化与电极的电位变化校为一致。当用双标准pH缓冲溶液法时,电位计的单位pH变化率S可校定为:………………(2)式中pH(s,1)和pH(s,2)分别为标准pH缓冲溶液1和2的pH值,E(s,1)和E(s,2)分别为其电动势。代入(1)式,得:从而消除了电极响应斜率与仪器原设计值不一致引入的误差。显然,标准缓冲溶液的pH值是否准确可靠,是准确测量pH值的关键。目前,我国所建立的pH标准溶液体系有7个缓冲溶液,它们在0~95℃的标准pH值可查阅相关文献。

该实验涉及无

到的

主要仪器设

电动势的测定及其应用实验报告思考题1、电位差计、标准电池、检流计及工作电池各有什么作用?如何保护及正确使用?答:电位差计:对消法(补偿法)测定电池电动势;标准电池:标定工作电池的工作电流;检流计:检测线路中电流的大小和方向;工作电池:提供工作电流。保护:(1)电位差计:旋动调节按钮时应避免过快或过于用力而损坏仪器;不用时将(N、X1、X2)转换开关放在“断”的位置上。(2)标准电池:使用温度4-40℃;不要振荡、倒置,携取要平稳;不可用万用电表直接测量;不可暴露于日光下;不可做电池用;按规定时间对其进行校正。(3)检流计:不用时置于“调零”档。2、参比电极应具备什么条件?它有什么功用?答:具备条件:高稳定性、可逆性、重现性。功用:用作标准电极与待测电极构成电池。3、盐桥有什么作用?选用作盐桥的物质应有什么原则?答:作用:减小液接电位(盐桥、单液电池)。原则:(1)盐桥溶液应不与电池溶液发生化学反应;(2)盐桥溶液中阴阳离子应尽量是迁移速率都接近0.5的饱和盐溶液。4、UJ-25 型电位差计测定电动势过程中,有时检流计向一个方向偏转,分析原因。答:可能原因有电池正负极接反、线路接触不良、导线有短路、工作电源电压不足等。

电池电动势的测定及其应用

电池电动势的测定及其应用 摘要:本实验中我们通过对消法测量原电池Cu│CuCl2(m1)║AgNO3(m2)│Ag 和不同温度下原电池Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag 的电动势。通过能斯特方程以及吉布斯-亥姆霍兹方程,我们计算了不同温度下氯化银的溶度积和电池反应的热力学常数。 关键词:电池电动势; 对消法; 热力学函数 Measurement and Application of the Potential of Reversible Batter Abstract:In this experiment, we measure the electromotive force of two primary cells, Cu│CuCl2(m1)║AgNO3(m2)│Ag and Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag by using compensation method. At the same time, the electromotive force of the latter one is measured under different temperatures. By means of Nernst equation and Gibbs-Helmholtz equation, we calculate the solubility product of AgCl and thermodynamic functions of the cell reaction under different temperatures. Keywords:Reversible Battery,Electrode Potential,Thermodynamic Functions the

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定压

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

原电池电动势的测定实验报告

原电池电动势的测定实验报告范本(完整版) After Completing The Task According To The Original Plan, A Report Will Be Formed To Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas?

互惠互利共同繁荣

原电池电动势的测定实验报告范本 (完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提岀今后设想。文档可根据实际情况进行修改和使用。 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的 操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池 (或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;⑵电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时 通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法, 可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为e+,负极电势为e-,则电池电动势 E = e+ - e-。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测岀,具体的电极电位可参考相关文献资料。

电动势的测定与应用

姓名: 肖池池序号: 31 周次: 第三周指导老师: 张老师 电动势的测定与应用 一、实验目的 (1)掌握补偿法测定电池电动势。 (2)了解实验室常用电极使用和处理方法以及盐桥制备方法。 二、实验原理 本实验采用补偿法(又称对消法) 测定池电动势。如图所示,AB为均 匀电阻,Ew为工作电源,它在AB 上产生均匀点位降,用来对消电池 电动势。Ex为待测电池电动势,En 为标准电池电动势(校准用)。测定 时把开关K拨向En档,调节滑线 电阻AC’使检流计中无电流通过, 得 (1) 然后把K拨向Ex档,调节AC’,使检流计中无电流通过,有 (2) 将两式相除得 (3) 本实验采用标准的Westen电池标准电池,因为其电动势稳定且随温度变化小。在20℃时En=1.0183V,其他温度时En=1.0183-0.0000406(t-20)V。t为摄氏温度。 三、仪器与试剂 UJ-25型点位计(包括检流计)SDC-Ⅱ数字点位差综合 测定仪,甘汞电极,锌电极,铜电极,电极管,烧杯。 0.1MZnS04溶液;0.1M CuSO4溶液;0.01M CuSO4溶液; 饱和KCl溶液。

四、实验步骤 1.制作电极 用砂子打磨打磨铜锌电极,去掉其表面的氧化膜,用水冲洗,然后用蒸馏水冲洗。按如图所示,将下列四个电池制成原电池。 (1)电池(A):(-)Zn| ZnS04(0.1molL-1)|| CuSO4(0.1molL-1)| Cu(+) (2)电池(B):(-)HgCl2|Hg| KCl(饱和)|| CuSO4(0.1molL-1)| Cu(+) (3)电池(C):(-)Zn| ZnS04(0.1molL-1)|| KCl(饱和)| HgCl2| Hg(+) (4)电池(D):(-)CuSO4(0.01molL-1)| Cu || CuSO4(0.1mol-1)| Cu(+) 2.电动势的测定 a.使用UJ-25型电位差计 (1)将检流计电流零点调节在量程的一半。 (2)按下式计算室温下标准(Westen)电池的电动势: En=1.0183-0.0000406(t-20)V。t为摄氏温度。 连接电路图,将D1和D2调节到标准电池电动势计算值。再将换向开关拨到N档,按下左边的粗键,依次调节旋流粗调、中调、细调和微调,使检流计读数为零。 (3)将待测的上述电池按“+”和“-”与电位差计“待测一”的“+”和“-”相连,将换向开关打到×1的位置,将电位差计中伏特读数旋钮[A1~A6]读数调到理论计算值附近,从A1到A6依次调节,直到电流为零,重复测量三次。 b.SDC型数字电位差综合测定仪 (1)将被测电动势按正负极性与测量端子连接好,不接标准电池,将测量置“内标”位置,调节100~10-5六个旋钮。使×100旋钮为1,其余旋到底,电位指示显示“1.00000”V,按下“采零”键。 (2)将标准电池与“外标”端子接好,调节旋钮使电位器指示数与标准电池值相同,按下“采零”键。 (3)将待测电池按正负与测量端子连接好,将测量旋钮置于“测量”,补偿旋钮逆时针旋到底。调节旋钮使“检零指示”数值为负,且绝对值最小。在调节补偿电位器使“检零指示”数值为零。记录电位值。 bb五、数据处理 (1)电池(A):(-)Zn| ZnS04(0.1molL-1)|| CuSO4(0.1molL-1)| Cu(+) 理论计算电动势得: E理论= EΘ- = EΘ(Cu2+|Cu) - EΘ(Zn2+|Zn) - =1.1037+1.0015×10-3 = 1.1047V 实际测量电动势为:E实际=1.0885V 相对误差E R=|×100﹪=1.47﹪ 2)电池(B):(-)HgCl2|Hg| KCl(饱和)|| CuSO4(0.1molL-1)| Cu(+) 理论计算电动势得:

实验一原电池电动势测定

实验一 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”

电 动 势 测 定

电动势测定 背景知识 一、关于电池、电极和盐桥 电化学是研究电现象与化学现象之间内在联系的一门学科,其最基本的要素是电极和溶液。电极能传导电子,常为金属,也可以是半导体。电池是原电池和电解池的通称,电池由至少两个电极及相应的电解质组成,它依靠离子导电,通常是水溶液,也可以是非水溶液、熔盐或固体电解质。 1、电极反应:在电极-溶液界面上产生的伴有电子得失的氧化或还原反应。 2、电池反应:电池中各个电极反应、其它界面上的变化以及由离子迁移所引起的变化的总合。其中必进行氧化还原反应。 3、阳极:负离子趋向或正离子离开的电极。在阳极上产生失电子的氧化反应,电流由电极进入溶液。 4、阴极:正离子趋向或负离子离开的电极。在阴极上产生得电子的还原反应,电流由溶液进入电极。 5、正极:电势高的电极。 6、负极:电势低的电极。 7、原电池:将化学能转变为电能的装置,池内发生0的自发反应,运行时两电极间产生的电势差形成了对外做功(输出电能)的本领。又称之为伽伐尼电池。< >8、电解池:将电能转化为化学能的装置,池内发生0的非自发反应,运行时电池消耗从外界输入的电能。当通过电极的电流为零,电池达到电化学平衡时,原电池与电解池也就没有区别。 9、可逆电池:满足热力学可逆条件的电池,其两端的电势差为该可逆电池的电动势。形象地说,电动势是促使电荷流动的势头。可逆电池须满足以下三个条件: (1)电极和电池反应本身须可逆,这样在电池充电时,可使放电反应的物质得到复原。 (2)在充或放电过程中,通过电极的电流须无限小,此时电极反应在接近电化学平衡的状态下进行,电池能作最大的非体积功。这样在电池充电时,可使原放电时的能量得到复原。 (3)电池工作时,无其他不可逆过程(如扩散)存在。 10、可逆电极:可逆电池要求其各个相界面上发生的变化都是可逆的,亦即电极/溶液界面上的电极反应同样须是可逆的,此即可逆电极。 11、标准电池:作为电动势测定时校验之用,它具有稳定的电动势,且其温度系数很小。韦斯顿发明的镉汞电池

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用 、实验目的: 1?了解对消法测定电池电动势的原理; 2 ?掌握电动势测定难溶物溶度积(K sp )的方法; 3 ?掌握常用参比电极银一氯化银电极的制备方法。 实验原理: 电池由两个半电池组成(半电池包括一个电极和相应的电解质溶液),当电池放电时,进行氧化反应的是负极,进行还原反应的是正极<电池的电动势就 是通过电池的电流趋近于零时两极之间的电位差。它可表示成: 式中E、E分别表示正、负电极的电位。当温度、压力恒定时,电池的电动势E (或电极电位E、E )的大小取决于电极的性质和溶液中有关离子的活度。电极电位与有关离子活度之间的关系可以由 Nernst方程表示: RT E E ——ln a B B (16-1) zF B 式中:z为电池反应的转移电子数,B为参加电极反应的物质 B的化学计 量数,产物B为正,反应物B为负。 本实验涉及的两个电池为: (1)(—)Ag(s),AgCI(s) | KCl (0.0200 mol L-1) || AgN0 3(0.0100 molL?-1) I Ag (s) (+) (2) (一) Hg (l),Hg2Cl2 (s)| KCl (饱和)|| AgNO3 (0.0100 mol L-1) I Ag (s) (+) 在上述电池中用到的三个电极是: 2Hg(l) 2Cl (a Cl ) (16-3)

(1) 银电极: 电极反应: Ag (0.01mol L 1) e Ag (16-2) RT E Ag /Ag E Ag /Ag 卩ln a Ag 其中: E Ag /Ag 0.7991 0.00097(t 25) V 式中:t为摄氏温度(下同), (2) 甘汞电极: 电极反应:HgCl2(s) 2e

电动势的测定及应用

宁波工程学院 物理化学实验报告 专业班级化工112 姓名姚志杰序号 11402010235 同组姓名田飞成金鹏指导老师付志强姚利辉 实验日期 2013、5、20 实验名称实验六电动势的测定及其应用 一、实验目的 1.通过实验加深对可逆电池、可逆电极、盐桥等概念的理解; 2.掌握对消法测定电池电动势的原理及电位差计的使用方法; 3.通过电池Ag|AgNO 3(b 1 )‖KCl(b 2 )|Ag-AgCl|Ag的电动势求AgCl的容积 度K sp 。 4.了解标准电池的使用和不同盐桥的使用条件。 二、实验原理 1、可逆电池的电动势:E=φ +-φ - 2、对消法测定原电池电动势原理: 在待测电阻上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。 3、电极: (1)标准氢电极:电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准电极作为标准(标准氢电极是氢气压力为101325Pa,溶液中α(H+)为1,其电极的电极电势规定为零)。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电动势。 (2)参比电极:由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电极电势已精确测出。 E 甘汞 =0.2415-0.00076(t/℃-25) 4、电池:

电池(1):(-)Hg(s)|Hg 2Cl 2 (s)|KCl(饱和)‖AgNO 3 (c)|Ag(s)(+) 电池(2):(-)Hg(s)|Hg 2Cl 2 (s)|KCl(饱和)‖KCl(c)|AgCl(s),Ag(s)(+) 三、实验仪器、试剂 仪器:EM-3C数字式电子电位差计;检流计;标准电池;银电极一支; 银-氯化银电极一支;饱和甘汞电极一支;50mL烧杯若干个;导线、滤纸若干。 试剂:0.01,0.03,0.05,0.07,0.09(mol·dm-3)KCl溶液; 0.01,0.03,0.05,0.07,0.09(mol·dm-3)AgNO 3 溶液;饱和KCl溶液。 四、实验步骤 1、打开EM-3C数字式电子电位差计总电源预热15分钟。 2、读室温,利用韦斯顿标准电池电动势温度校正公式,计算标准电池在室温时的电动势Es。 Es=1.01845-4.05×10-5 (T/K-293.15)9.5×10-7(T/K-293.15)2 3、将电位差计面板右侧的拨位开关拨到“外标”位置,调节左侧拨位开关至标准电池的实际Es值。用导线把标准电极正负极和电位差计面板右侧的“外标”测量孔的正负极相连接。按一下校准按钮,观察右边平衡指示LED显示值是否为零,为零时校准完毕。 4、测量待测电池(1)的电动势: 取1个干燥、洁净的50ml烧杯,倒入约25ml 0.01mol*dm-3AgNO3溶液,将银电极用细砂纸打磨光亮,再用蒸馏水冲洗干净并擦干后插入该AgNO3溶液中;另取饱和甘汞电极1支并将其插入装有饱和KCl溶液的容器内;将KNO3盐桥的两个支脚插入上述两个容器中;如此构成了电池(1)。 将电位差计面板右侧的拨位开关拨到“外标”位置。用导线把待测电池的甘汞电极和电位差计面板右侧的“测量”测量孔的负极相连接;银电极和正极相连接。在测量前粗略估计一下所测电池的电动势的数值,将左侧拨位开关调节至粗估值附近。然后将拨位开关拨到“测量”位置,再仔细调节左侧旋钮,观察右边平衡指示LED显示值,当平衡指示值在正负20以内时,测量完毕,记下测量数据。将拨位开关拨回“外标”位置。 重复前面实验步骤,依次测量0.03,0.05,0.07,0.09(mol*dm-3)AgNO3溶液至全部待测溶液测量完毕。 5、测量待测电池(2)的电动势 取1个干燥、洁净的50ml烧杯,倒入约25ml 0.01mol.dm-3KCl溶液,将银—氯化银电极从避光容器中取出,用蒸馏水淋洗并用滤纸轻轻吸干,插入该KCl

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

电动势的测定

大学化学基础实验II实验报告 课程名称:有机化学实验 实验名称:电动势的测定 姓名:张玉 学号:1108110191 专业:化学工程与工艺 班级:化工113 实验日期:5/16

电动势的测定 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作 2.定下列三个电池的电动势: (1)测 Hg(l),HgCl2(s)|KCl饱和)||AgNo3(0.1mol.l-1)|Ag(s); (2)Hg(l),HgCl2(s)|KCl(饱和)||H+(0.1mol.l-1)HAC- 0.1mol.l-1NaAC),Q.H2Q|Pt; (3)Hg(l),HgCl2(s)|KCl(饱和)||H+(酒石酸-酒石酸钠溶液), Q.H2Q|Pt 3.了解电动势法测定溶液pH值的原理,并计算HAC-NaAC 缓冲溶液的pH值。

实验原理 波根多夫对消法侧电动势的基本原理: 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向的电压。当两者相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计,其 简单原理如图所示: A C A C E E X S 12= 电极电势的测定原理: 原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边) 起还原反应,负极起氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: E=+?—-?=右?—左?

氧化还原αα??θ ln ZF RT - =-+ 氧化 还原αα??θ ln _ZF RT -=- R=8.314J ?11--?K mol F=96500C α为参与电极反应的物质的活度。纯固体物质的活度为1。 ◆ 实验仪器和试剂 EM-3D 型数字式电子电位差计、232型甘汞电极1支、216型银电极1支、100型铂电极1支、50ml 烧杯4个、U 型管1支、电炉1个;饱和氯化钾溶液、0.1mol/L 硝酸银溶液、0.2mol/L 醋酸溶液、0.2mol/L 醋酸钠溶液、0.2mol/L 酒石酸溶液、0.2mol/L 酒石酸钠溶液、醌氢醌(AR )、硝酸钾(AR )、琼脂(AR )、蒸馏水。 ◆ 实验步骤 1、 读取室温并记录。 2、 分别按各物质的摩尔质量及浓度要求配置饱和氯化钠溶液、 0.01mol/L 硝酸银溶液、0.2mol/L 醋酸溶液、0.2mol/L 醋酸钠溶液、0.2mol/L 酒石酸溶液、0.2mol/L 酒石酸钠溶液。 3、 称取琼脂1.5g 、硝酸钾20g 、蒸馏水50g ,隔水加热至样 品熔化,将溶液灌入U 型管中,冷却后即为饱和硝酸钾盐桥。

原电池电动势的测定及应用

原电池电动势的测定及应用 姓名: 学号: 班级:2012级化工班 指导老师: 日期:2014-09-24 成绩: 一、实验目的: 1.掌握对消法测定电池电动势的原理及电位差计的使用。 2.了解可逆电池电动势的应用。 3.学会银电极、银—氯化银电极的制备和盐桥的制备。 二、实验原理: 1.原电池是由正,负两个电极和相应电解质溶液组成,电池反应中正极起还原作用,负极起氧化作用,电池反应是电池中两个电极反应的总和。电池电动势不能直接用伏特计来测量,因为当伏特计与待测电池接通后,整个线路中便有电流通过,电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数值不稳定,所以只有在无电流通过的情况下进行测定,即采用对消法。 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计,其简单原理如图所示: 1 2R R E E S X = 电极电势的测定原理:原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: 氧化还原左 右αα??????θln _ZF RT E -=-=-=+

三、仪器与药品: 1. 仪器:电位差计 直流辐射式检流计 铂电极 银电极 饱和甘汞电极 稳压直流电源 导线 标准电池 盐桥 小烧杯若干 2. 药品:HCl (0.100m ) AgNO3(0.100m )KCl 饱和溶液 醌氢醌 未知PH 溶液 四、实验步骤 : 本实验测定如下两个电池的电动势: 1.①Hg -Hg 2Cl 2|饱和KCl 溶液||AgNO 3(0.100m)|Ag ②Hg -Hg 2Cl 2|饱和KCl 溶液||饱和有醌氢醌的未知PH 溶液|Pt 2.电极的制备 (1)铂电极、银—氯化银参比电极和饱和甘汞电极采用现成的商品,在使用前用蒸馏水洗净。若铂电极有油污,应在丙酮中浸泡,然后用蒸馏水冲洗。 (2)醌氢醌电极:将少量醌氢醌固体加入待测的未知PH 溶液中使成为饱和溶液,然后插入干净的铂电极即可。 3.(1)矫正电位计:先将功能选择开关扳到“外标”档。再将电位计的正负极短接,按“校准”归零。最后将外标正极与基准正极,外标负极与基准负极接,调数字至基准数(每台仪器都不同),按校准键归零。 (2)组成两个电池。 (3)将标准电池和待测电池分别接入电位差计上。在测标准电池是电位差计的正极连接Ag 电极,在测待测电极时电位计的正极连接Pt 电极。 (4)将功能选择开关扳到“测量”档。把标准电池正确接入电位差计上,从大到小从左到右旋转六个电势测量旋钮,直到调至检流计示数为零为止。按同样的方法测定未知电池电动势。 (5)根据Nernst 公式计算实验温度下电池①②的电动势理论值。 五、数据处理 : 室温:21℃ 测量值/V E 测量平均值/V V Ag Ag //+? V Ag Ag //θ?+ 相对 误差 一次 两次 三次 0.495453 0.7393 0.8031 7.944% 0.495880 0.495195 0.495283 0.327874 0.326129 0.324568 0.326190 1、已知饱和甘汞电极和银电极的电极电位与温度的关系如下 当t=21℃ 甘汞?=0.2412-6.61×10-4(t-25℃)-1.75×10-6(t-25℃)2-9.16×10-10(t-25℃)2 =0.2438V =+θ ?Ag Ag /0.7991-9.88×10-4(t-25℃)+7×10-7(t-25℃)2 =0.8031V 由于电池的电动势为甘汞??-=+Ag Ag E /,所以

实验6-电动势的测定及应用

一、实验目的 1、通过实验加深对可逆电池、可逆电极、盐桥等概念的理解。 2、掌握对消法测定电池电动势的原理及电位差计的使用方法。 3、通过电池Ag | AgNO3(b1) || KCl(b2) | Ag-AgCl |Ag的电动势求AgCl的 溶度积Ksp。 4、了解标准电池的使用和不同盐桥的使用条件。 二、实验原理 1、可逆电池的电动势: 电池的书写习惯是左方为负极,右方为正极。负极进行氧化反应,正极进行还原反应。如果电池反应是自发的,则电池电动势为正。符 号“|”表示两相界面,“||”表示盐桥。在电池中,电极都具有一定的电极电势。当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电极电势。规定电池的电动势等于正负电极的电极电势之差,即: E=ψ+-ψ- 可逆电池必须具备的条件为:(1)电极上的化学反应可向正反两个方向进行,即反应可逆。(2)电池在工作(充放电)时,所通过的电流必须无限小,此时电池可在接近平衡状态下工作,即能量可逆。(3)电池中所进行的其它过程可逆。如溶液间无扩散、无液体接界电势。因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量时,常用正负离子迁移数比较接近的盐类构成“盐桥”来减小液体接界电势。要达到工作电流零的条件,必须使电池在接近热力学平衡条件下工作。测量可逆电池的电动势不能直接用伏特计来测量。因为电池与伏特计相接后,整个线路便有电流通过,此时电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数据不稳定。所以要准确测定电池的电动势,只有在电流无限小的情况下进行,所采用的对消法就是根据这个要求设计的。 2、对消法测定原电池电动势原理 在待测电池上并联一个大小相等,方向相反的外加电势差,这样待测电池中没有电流通过,外加电动势的大小即等于待测电池的电动势。

原电池电动势的测定及其应用实验报告

原电池电动势的测定及其应用实验报告 林传信 高分子101 12 一、实验目的 1、理解电极、电极电势、电池电动势、可逆电池电动势的意义 2、掌握用对消法测定电池电动势的基本原理和数字式电子电位差计的使用方法 3、学会几种电极和盐桥的制备方法 二、对消法侧电动势的基本原理: 测量电动势只能在无电流通过电池的情况下进行,因此需要用对消法(补偿法)来测定电 动势。对消法测定电动势就是在所研究的电池的外电路上加一个方向相反的电压。当两者 相等时,电路的电流为零(通过检流计指示)。对消法测电动势常用的仪器为电位差计, 其简单原理如图所示 A C A C E E X S 12= 电极电势的测定原理: 原电池是化学能转变为电能的装置,在电池放电反应中,正极(右边)起还原反应,负极起 氧化反应。电池的电动势等于组成的电池的两个电极电位的差值。即: E= +?—-?=右?—左? 氧化还原αα??θ ln ZF RT -=-+ 氧化 还原αα??θ ln _ZF RT -=- R=?11--?K mol F=96500C α 为参与电极反应的物质的活度。纯固体物质的活度为1。 浓差电池: 一种物质从高浓度(或高压力)状态向低浓度(或低压力)状态转移,从而产生电动势,而 这种电池的标准电动势为零。 三、电池组合: ⑴Hg Cl g KCl L mol ZnSO Zn 224H )()1.0(饱和 ⑵Cu L mol KCl Cl Hg Hg )(饱和0.1CuSO )(422 ⑶Cu L mol SO Cu L mol ZnSO Zn )1.0()1.0(44

⑷Cu L mol CuSO Cu L mol CuSO )1.0()01.0(44 四、数据处理 实验室温度T= 标准电动势Es= 电池电极电动势: 五、误差分析 在较长的电极电势测量过程中,工作回路中电流发生变化,导致测量误差 部分电解质溶液在测量过程中发生电解,浓度变化影响测量的结果

电动势的测定

电动势的测定 1 引言 1.1 实验目的 1、掌握电位差计的测量原理和测定电池电动势的方法。 2、了解可逆电池、可逆电极、盐桥等概念。 3、测定Ag 、Zn 电极电势和Ag 浓差电极电动势。 1.2 实验原理 电动势的测量在物理化学研究中有重要的意义和广泛的应用。在恒温恒压可逆条件下,电池反应的吉布斯自由能的改变值等于对外所作的最大非体积功,如果非体积功只有电功一种,则 ,()r T p G nEF ?=- 式中:n 为电池输出元电荷的物质量,单位为mol ,E 为可逆电池的电动势,单位为V ,F 为法拉第常数。通过电动势的测量可以获得一系列的热力学函数。 1、对消法测电动势的原理 电池电动势不能直接用伏待计来测量,因为电池与伏特计联接后有电流通过,就会在电极上发生电极极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计所量得的仅是不可逆电池的端电压。测量电池电动势只能在无电流通过电池的情况下进行,因此需用对消法(又叫补偿法)来测定电动势。对消法的原理是在待测电池上并联一个大小相等、方向相反的外加电势差,这样待测电池中没有电流通过,外加电势差的大小即等于待测电池的电动势。 对消法测电动势常用的仪器为电位差计,其简单原理如图1所示。电位差计由三个回路组成:工作电流回路、标准回路和测量回路。 (1)工作电流回路 AB 为均匀滑线电阻,通过可变电阻R 与工作电源E 构成回路。其作用是调节可变电阻R ,使流过回路的电流为某一定值。其输出电压必须大于持测电池的电动势。 图1:对消法测定原理图 (2)标准回路 S 为电动势精确已知的标准电池。当K 板向S 一方时,迅速调节C 2与S 标定值相等,

原电池电动势的测定及其应用

原电池电动势的测定及其应用 1. 简述对消法测原电池电动势的测量原理。 答:电位差计是根据补偿法(或称对消法)测量原理设计的一种平衡式电压测量仪器。其工作原理是在待测电池上并联一个大小相等,方向相反的外加电势,这样待测电池中就没有电流通过,外加电势差的大小就等于待测电池的电动势。如图所示,电位差计有工作、标准、测量三条回路。 1)校准工作电流I W 开关K 打向1,预先调好标准回路中的标准电阻Rn ,调节工作回路的电阻r 至检流计无电流通过,工作 电流I W 就已被确定。 2)测量未知电池电动势E W 开关K 打向2,调节测量回路的电阻 R X 至检流计无电流通过,此时I R X 与被测电池电动势对消。 2. 简述铜电极电位测定的基本原理。 答:实验只能测得两个电极构成的电池的电动势E ,而无法测得单个电极的电极电势φ。若选定一个电极作为标准,使其与任意其它电极组成电池,测其电动势,就可得出各电极的相对电极电势φ 。通常将氢电极在氢气压力为100KPa ,溶液中氢离子活度为1时的电极电势规定为零伏,称为标准氢电极,然后与其它被测电极进行比较。以标准氢电极作阳极即负极;而将待测电极作阴极即正极,组成原电池,然后用电位差计测量该电池的电动势,这个数值n n W R E I =X W X R I E =N X N X R R E E =

和符号就是待测电极的氢标还原电极电势的数值和符号。由于使用标准氢电极不方便,在实际测定时往往采用第二级的标准电极,甘汞电极是其中最常用的一种。这些电极与标准氢电极比较而得到的电势已精确测出。 3. 在原电池电动势的测定过程中应尽可能的做到在可逆条件下进行,为此在实验过程中应注意什么? 答:电动势的测量方法属于平衡测量,在测量过程中尽可能地做到在可逆条件下进行。为此应注意以下几点: (1)测量前可根据电化学基本知识,初步估算一下被测电池的电动势大小,以便在测量时能迅速找到平衡点,这样可避免电极极化。 (2)要选择最佳实验条件使电极处于平衡状态。制备锌电极要锌汞齐化,成为Zn(Hg),而不直接用锌棒。因为锌棒中不可避免地会含有其它金属杂质,在溶液中本身会成为微电池,锌电极电势较低(-0.7627V),在溶液中,氢离子会在锌的杂质(金属)上放电,锌是较活泼的金属,易被氧化。如果直接用锌棒做电极,将严重影响测量结果的准确度。锌汞齐化,能使锌溶解于汞中,或者说锌原子扩散在惰性金属汞中,处于饱和的平衡状态,此时锌的活度仍等于1,氢在汞上的超电势较大,在该实验条件下,不会释放出氢气。所以汞齐化后,锌电极易建立平衡。制备铜电极也应注意:电镀前,铜电极基材表面要求平整清洁,电镀时,电流密度不宜过大,一般控制在20mA·cm-2左右,以保证镀层紧密。电镀后,电极不宜在空气中暴露时间过长,否则会使镀层氧化,应尽快洗净,置于电极管中,用溶液浸没,并超出1cm左右,同时应尽快进行测量。 (3)为判断所测量的电动势是否为平衡电势,一般应在15min 左右时间内,等间隔地测量7-8个数据。若这些数据是在平均值附近摆动,偏差小于±0.5mV,则可认为已达平衡,可取其平均值作为该电池的电动势。 (4)前面已讲到必须要求电池反应可逆,而且要求电池在可逆情况下工作。但严格说来,本实验测定的并不是可逆电池。因为当

原电池电动势的测定实验报告

原电池电动势的测定实验报告 原电池电动势的测定实验报告1 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成"盐桥"来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为hi;+,负极电势为hi;-,则电池电动势E = hi;+ - hi;- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电

势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到"内标"档,用1.00000 V电压进行"采零"。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化

相关主题
文本预览
相关文档 最新文档