当前位置:文档之家› 第五章同步发电机灭磁

第五章同步发电机灭磁

第五章同步发电机灭磁
第五章同步发电机灭磁

第五章同步发电机的灭磁

第一节概述

近年来,随着主机容量的增加,发电机的自动灭磁系统越来越受到重视。

特别是对于采用快速励磁系统的同步发电机而言,当电机内部出现故障时,要求尽快地灭磁以缩短在故障点的燃弧时间。当采用发电机-变压器组接线时,在发电机外部至变压器以及主断路器连接的导线上出现故障时,发电机也需要快速灭磁。

当发电机定子绕组发生接地时,将产生接地故障电流。如果发电机中性点经高电阻接地,一个定子线棒的绝缘被击穿,故障电流较小,铁芯损伤不会太严重。如果故障电流较大,除击穿线棒绝缘外,还将有严重的铜和铁芯的烧坏,这种故障至少需要更换损坏的绝缘,甚至部分地拆修发电机的定子铁芯。从这一观点出发,有的制造厂认为发电机可以不用灭磁开关,对于生产具有无刷励磁系统机组的厂家,更倾向于这一观点。因为在小电流故障时,并不需要快速灭磁,而当大故障电流时,快速灭磁能否限制铜以及铁芯的损坏仍有争议。

如果认为不采用快速灭磁装置,在某些场合本来很小的损坏会导致更大的烧损事故。采用简单而有效的快速灭磁装置还是有必要的。特别是现代大型水轮发电机多采用单元式接线,为降低发电机、变压器及高压电缆(若有的话)故障所造成的损害,希望发电机在此情况下能快速灭磁。由于汽轮发电机转子本身的巨大阻尼作用,使汽轮发电机的快速灭磁变得十分困难。但对水轮发电机,快速灭磁是可以实现的,并且具有十分重要的意义。

如上所述,对发电机灭磁系统的主要要求是可靠而迅速地消耗存储在发电机中的磁场能量。最简单的灭磁方式是切断发电机的励磁绕组与电源的连接。但是这样将使励磁绕组两端产生较高的过电压,危及到主绝缘的安全。为此,灭磁时必须使励磁绕组接至可使磁场能量耗损的闭合回路中。

目前灭磁系统就其原理而言,主要有以下几种方式:

(1)具有短弧栅片的灭磁系统;

(2)利用非线性电阻的灭磁系统;

(3)利用恒值电阻的灭磁系统。

如按磁场能量的消耗方式而言,在灭弧栅片式灭磁系统中,磁场能量主要消耗在开关中,可称为耗能型。在线性恒值和非线性电阻灭磁系统中,灭磁开关不全部承受耗能任务,磁场能量主要消耗在线性和非线性电阻端,故此类系统可称为非耗能型或转移型灭磁系统。

就近年来的发展趋势而言,非耗能型的线性和非线性电阻灭磁系统获得了广泛的运用。

第二节线性电阻灭磁过程中的一对矛盾

——灭磁速度及转子过电压

现代大型水轮发电机多采用单元式接线,为降低发电机、变压器及高压电缆(若有的话)故障所造成的损害,希望发电机在此情况下能快速灭磁。由于汽轮发电机转子本身的巨大阻尼作用,使汽轮发电机的快速灭磁变得十分困难。但对水轮发电机,快速灭磁是可以实现的,并且具有十分重要的意义。从国外某大型水电站,曾因主变压器至升压站的500KV电缆故障,致使整个电缆廊道烧毁,造成巨大的经济损失。国内的大型水轮发电机也有因不能快速灭磁而造成主变压器或发电机大规模烧损的情况发生。

早期采用的灭磁电路如图5-1所示,若灭磁开始,发电机定子开关已跳,并且不考虑阻尼的作用,则灭磁过程中发电机励磁电流:

图5-1 早期线性电阻灭磁电路

i I e L L

t T M

=-(5-1) 式中:

i L——灭磁过程中发电机的励磁电流;

I L——灭磁开始瞬间发电机的励磁电流;

T M——灭磁时间常数。

T

L

R

R

M

L

M

=+(5-2)

式中:

L——发电机励磁绕组的电感;

R L——发电机励磁绕组的电阻值;

R M——灭磁电阻值。

在灭磁开始瞬间励磁绕组两端的过电压为:

U I R

LM L M

=(5-3)在电力系统故障时,励磁系统要进行强励,设灭磁开始时励磁已上升顶值,则有

I K I

L Le

=?(5-4)式中:

I L——灭磁开始时的励磁电流;

K——励磁倍数,通常K=1.8~2;

I Le——发电机的额定励磁电流。

将式(5-4)代入式(5-3)可得:

U K I R K R

R

U KK U

LM Le M

M

L Le M Le

=?==(5-5)

式中:

U Le——发电机额定励磁电压;

K M——灭磁电阻和励磁绕组电阻之比。

K

R

R

M

M

L

=(5-6)

由上可见,若要加快灭磁速度,则要加大R M,以减少灭磁时间常数T M,然而,R M加大,会使灭磁开始时的转子过电压升高,通常选K M=5,K=2,则灭磁过程中转子过电压可能达额定励磁电压的100倍,这样就形成了加快灭磁速度和减小灭磁时发电机转子过电压的矛盾。怎样解决这一矛盾呢?仔细分析一下灭磁过程曲线(图5-2)即可发现在灭磁过程中只是开始时励磁绕组两端的电压很高,随着励磁电流的衰

减,励磁绕组两端的电压在不断降低,这意味着励磁绕组中电流的衰减速度在不断变慢(U L di dt

L

L =),

从而使整个灭磁过程变得很长。我们若能使灭磁过程中励磁绕组两端的电压基本不变,则励磁电流将一直以较高的速度衰减,从而使整个灭磁过程大为缩短,这样就较好地解决了灭磁速度和转子过电压的矛盾。即所谓理想灭磁。利用燃弧栅灭磁,压敏电阻灭磁及它励系统中用逆变灭磁的特性均接近理想灭磁。

图5-2 线性电阻灭磁过程

第三节利用燃弧栅灭磁的自动灭磁开关

如图5-3所示,这种开关(国产型号DM2)是利用燃弧栅中的电弧作为灭弧过程中的耗能元件,燃弧栅将整个电弧分隔成一段段的短弧,据短弧极效应原理,短弧的压降基本恒定,这使灭磁过程中励磁绕组两端的电压基本不变,整个灭磁过程接近理想灭磁过程(图5-4)。

图5-3 采用燃弧栅灭磁开关灭磁的电路原理图

图5-4 燃弧栅灭磁过程

当发电机采用静止晶闸管励磁系统时,若采用燃弧栅灭磁开关灭磁,由于晶闸管整流桥和灭磁开关

是串联的,晶闸管整流桥的工作状态将对灭磁过程和发电机转子过电压产生重大影响(图5-5)。

图5-5 静止可控硅励磁系统采用燃弧栅灭磁电路图

在灭磁过程中,若整流桥处于逆变状态,即整流桥的输出电压为负值,则励磁绕组两端的电压U L等

于灭磁开关灭磁电压U M和整流桥的输出电压U Z之和。即:

=+(5-7)

U U U

L M Z

由于整流桥的输出电压会随着发电机电压及励磁电流的减小而降低,故整个灭磁过程中励磁绕组两端的电压有较大的变化,使转子过电压增加,整个过程离理想灭磁较远,而且整流桥的阳极电压越高,这种差别越大,如图5-6所示。

图5-6 整流桥逆变时的灭磁过程

图5-7 整流桥强励时的灭磁过程

在灭磁过程中,若整流桥处于强励状态,则励磁绕组两端的电压U L等于灭磁开关灭磁电压U M和整流桥的输出电压U Z之差。即:

=-(5-8)

U U U

L M Z

这样的结果是使灭磁开始一段过程中,励磁绕组两端的电压U L较小从而使励磁电流的衰减变慢,灭磁过程延长(如图5-7)。

比较图5-6和图5-7不难看出,整流桥的工作状态对灭磁过程有很大的影响,并使灭磁过程偏离理想灭磁,晶闸管整流桥的阳极电压越高,这种差别也就越大。这种情况在发电机发生空载误强励(发电机的端电压即整流桥的阳极电压可能升到额定值的1.5倍)时,显得尤为突出。

这时,励磁绕组两端的电压很低,灭磁过程会变得很长。同时,灭磁过程中耗能元件(燃弧栅)吸收能量的很大一部分是由励磁电源提供的,这加大了耗能元件的负担。

产生这种结果的原因是由于励磁绕组,耗能元件灭磁开关和励磁电源(整流桥)三者是串联的,称串联灭磁,若将三者改为并联(图5-8)称并联灭磁。当采用并联灭磁时,则上述问题可得到解决,用此方案灭磁时,励磁绕组中的能量消耗在DM的燃栅上。这样使灭磁过程中转子绕组两端了电压基本不变,接近理想灭磁的要求。这个方案中要求D和DM之间有较好的配合,目前正在研究之中。

图5-8 并联灭磁接线原理图

第四节利用压敏电阻灭磁

一、压敏电阻

目前用于灭磁的压敏电阻有碳化硅压敏电阻,和氧化锌压敏电阻,由于后者有压敏特性好,泄漏电流小,能容大等许多优点,在我国用得较多。

图5-9 压敏电阻灭磁接线图

图5-10 压敏电阻的伏安特性

所谓压敏电阻是指它的电阻值会随它两端的电压变化的电阻,即当它两端电压限低时,它呈高阻态,只有很小的电流(微安级)从中流过,但当它两端的电压高于某一数值时,它的电阻急剧降低,允许有很大的电流从中流过,图5-9、5-10表示了压敏电阻灭磁的接线图和它的伏安特性,在使用中,我们常用非线性系数β来表示压敏电阻压敏特性的好坏,定义:

β=R R e c

(5-9)

其中: R U I c =

为工作点的静态电阻; R dU dI

c =为工作点的动态电阻。 显然,β越小,压敏电阻的压敏特性越好。不难看出,压敏电阻的伏安特性类似于稳压二极管,但压敏电阻有双向稳压特性。

当大电流流过压敏电阻,由于它两端的电压也很高,故压敏电阻上要消耗大量的能量,使压敏电阻发热。若流过压敏电阻的电流过大,或电流持续的时间过长,使压敏电阻上消耗的能量超过其极限允许值时,压敏电阻会击穿损坏,损坏后的压敏电阻呈短路状态。通常把一次通流过程中压敏电阻上允许消耗的最大能量称为压敏电阻的能容量。它是压敏电阻的主要性能指标之一。

二、能量问题

压敏电阻在灭磁过程中,要吸收转子的磁场能量,而压敏电阻所能吸收的最大能量是有限制的。若其吸收的能量超过它的容量,压敏电阻便会因过热而烧毁。因此,准确计算发电机在各种可能运行方式下转子绕组储存的磁场能量,便成为适当地选取压敏电阻能容量的基础,在计算机上进行的大量计算表明,在发电机各种运行方式中,发生空载误强励时,压敏电阻上消耗的能量往往最大,我们可对此过程进行近似分析。

在发电机空载并忽略阻尼绕组作用的情况下,励磁绕组中储藏的磁场能量为:

W L I L L =?12

2 (5-10)

式中:

I L ——励磁绕组中的励磁电流;

L ——励磁绕组的电感;

W L ——励磁绕组储藏的总能量。

当发电机工作在空载误强励时,这时还认为L 为常数,但当发电机发生空载误强励时,这时还认为L 为常数,会带来很大的误差,我们可以用下述方法来近似计算励磁绕组的磁场能量。

忽略励磁绕组的电阻,假定在灭磁过程中励磁绕组两端的电压恒定为U LM ,则有:

U W d dt cont LM

L ==Φ (5-11)

式中:

U LM ——灭磁过程中励磁绕组两端的电压;

ΦL ——励磁绕组的总磁通;

W ——励磁绕组的匝数。 此式说明在灭磁过程中,励磁绕组中的磁通(即铁芯中的磁密)随时间作线性变化。见图5-11(a )。这样励磁电流I L 随时间的变化将和发电机的空载特性曲线有相似的形状,相当于将发电机的空载特性曲线逆时针旋转90°,如图5-11(b )、(c )所示。

在整个灭磁过程中压敏电阻上消耗的总能量也就是灭磁前励磁绕组的总磁能。即:

W U I dt U I dt L M L t M L t ==??0101

(5-12)

式中:

U M ——励磁绕组两端的电压;

I c ——励磁电流;

W L ——励磁绕组的总磁能。

图5-11 灭磁过程曲线 (a )磁通(b )空载特性(c )励磁电流

显然,是图5-11(c )中阴影线所示面积,即此面积正比于励磁绕组总磁能的大小,由于灭磁过程中I L 的变化和发电机所示的面积是相同的,所以,我们可采用发电机的空载特性曲线来估算励磁绕组在所研究状态下的总磁能。

应该指出,在灭磁过程中,励磁绕组的总磁能不会全部消耗在压敏电阻上,因为阻尼绕组,励磁绕组本身的电阻及开关断开口在灭磁过程中都会消耗一部分能量。计算表明,压敏电阻在灭磁过程中所消耗的能量,约占励磁绕组总能量的60%~70%。

三、均能问题

由于压敏电阻在灭磁过程中要吸收的能量很大,对大,中型水轮发电机约为几十万到几百万焦耳,但一个压敏电阻元件所能吸收的能量(即其能容)是有限的,一个国产高能氧化锌压敏电阻元件的能容大都在二万焦耳左右,这样,一套灭磁装置常常要用几十甚至一,二百个压敏电阻元件。串,并联而成。由于压敏电阻流通时的电压较高,(五百到六百伏左右),元件的串联数不能太多(常为3~5个元件串联构成一个支路),否则,灭磁时励磁绕组两端的电压会过高。因此,一套灭磁装置的压敏电阻通常有几十个并联支路。由于压敏电阻具有良好的压敏特性,微小的电压特性差别会造成很大的电流差,因此,保证这些并联支路在灭磁过程中的能耗一致(即电流分布均匀),就成为装置可靠工作的基础。

为保证各并联支路在通流时电流分布均匀,要求各支路有一致的伏安特性,采用微机控制和检测的

专用测试设备可以做到这一点。另外,还可在每个支路中串联一个阻值不大的线性电阻,此电阻不但有均流作用,还能防止当压敏电阻在正常运行中击穿损坏时,该支路的电流不致过大。

四、对磁场断路器的要求

在图所示的电路中,灭磁时,首先磁场断路器D分断,强迫励磁绕组中的电流从压敏电阻中流过(即完成一次换流),设断路器断口上的电压为U D,这时有:

=+(5-13)

U U U

D Y Z

式中:

U D——断路器分断时断口两端的电压;

U Y——压敏电阻通流时的电压;

U Z——整流桥输出电压。

显然,要使此次换流能够成功,断路器分断时的建压能力必须大于U D。这时,需考虑的严重情况依然是空载误强励时,这时整流桥的输出电压可达其强励顶值电压的1.5倍以上。图给出了换流成功及不成功的示波图。由此可见,造成换流不成功的主要原因是开关的建压能力不够。开关跳开后,电流继续在开关中(而不是在压敏电阻中)流过,而使开关发生烧毁。

图5-12 开关跳闸后的换流过程示意图

(a)换流成功(b)换流不成功

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

同步发电机失磁异步运行分析与处理

159 FORTUNE WORLD 2009.3 同步发电机失磁异步运行分析与处理 任纯榕 宁波镇海热电厂有限公司 1 引言 发电机在运行过程中,由于某种原因失去励磁电流,使转子的励磁磁场消失,被称作为发电机失磁。若失磁后的发电机不从电网上解列,仍带有一定的有功功率,以某一滑差率与电网保持联系,这种特殊的运行方式,称之为发电机异步运行。从提高供电电网的可靠性和不使故障扩大到整个系统的观点看,整体式转子的汽轮发电机在失去励磁后,最好不立即从系统中断开,维持在电网上运行一段时间,使我们有可能查出去励磁的原因并及时恢复励磁,即将主励磁机切换为备用励磁机供励,或将发电机的负荷转移到其它发电机上去。因此,在处理励磁系统故障时,需要将发电机作短时的失磁异步运行。 发电机失去励磁的原因很多,往往是由于励磁系统发生某些故障引起的。一般在同轴励磁系统中,常由于励磁回路断线,如转子回路断线、励磁机电枢回路断线、励磁机励磁绕组断线、自动灭磁开关受振动或误碰掉闸、磁场变阻器接头接触不良等造成励磁回路开路,以及转子回路短路和励磁机与原动机在联接对轮处的机械脱开等原因造成开路。 2 失磁异步运行的工作原理 发电机失去励磁后,由于励磁绕组电感较大,励磁电流If及其产生的磁通φf,将按指数规律衰减到零,如图1所示,在励磁电流If减少时,电势Ef也随着减少,功率极限也随之下降,如图2所示。功角θ将增大,定子合成磁场与转子磁场间的吸引减少。发电机的转子力矩平衡关系将随着电磁力矩的下降而打破。由于原动机主力矩未变,所以转子将获得使其加速的过剩转矩。当励磁电流If减少时到θ角大于90㎜时,转子就可能超出同步点而失步,进入异步运行状态。 图1 励磁电流衰减曲线 图2 转矩、电势与功角θ的关系 发电机失磁进入异步运行状态,由电网向发电机定子送入励磁电流,此电流在定子内感应出电势E,同时在气隙内产生旋转磁场。由于转子转速超过同步转速,转子与旋转磁场间发生相对运动,其转差n1-n=Sn1(n1为定子磁场的同步转速,n为转子失磁后的转速),转子以转差Sn1的速度切割定子旋转磁场。于是在转子绕组(若闭合时)、励磁绕组和阻尼绕组中感应出周波为fw-ff(fw为电网周波,ff为发电机频率)的交变电流。这个电流与定子旋转磁场相互作用,便在定子绕组中感应出电流,向系统送出有功,此功率即为异步功率。此异步功率的大小取决于异步运行的转差率,发电机的转速不会无限制地升高,因为转速超高,异步功率产生的阻力矩越大。当这台发电机的异步转矩在一定的转差下与原动机的拖动转矩相等,发电机便稳定地运行在异步状态,此时,发电机输出的异步功率保持不变。试验得知,大多数汽轮发电机可带额定出力,其转差不超过0.5%;带60%额定出力运行30min是没有问题的。 3 失磁异步运行的负荷及其决定因素在异步运行状态下,发电机从系统吸收无功,供定子和转子产生磁场,以维持它的异步运行,且向系统送出有功。发电机失磁异步运行后,在新的平衡状态时所带的有功负荷的大小,与发电机的异步转矩特性(即转矩与转差率的关系)及汽轮机的调速器特性有关。如果这台发电机在很小的转差下就能产生很大的异步转矩,那么,在失磁状态下还能带较大的负荷,甚至保持满负荷运行;反之,若需在很大的转差下才能产生较大的异步转矩,则在转子转速升高到超过同步转速时,使汽轮机调整器动作,关小或全关进汽门,减少进汽量或停止供汽,这样,失磁发电机只能保持较小的有功负荷运行,甚至完全不能输出有功负荷。 发电机的异步转矩随发电机结构的不同而有所不同。对于汽轮发电机,由于转子是整块的钢体,其平均异步转矩差不多可达到额定转矩,并且在异步状态下运行时转差率很小,小到以百分之零点几计算,所以它几乎可以完全保持自己的负荷,异步状态运行在这样的转差率下,对发电机并没有危险,故可以长期运 行。由于发电机异步运行时,异步转矩对转子起制动作用,企图将失步的发电机拖入同步,故当发电机的励磁恢复后,发电机会平稳地被拉入同步运行。 对于凸极式发电机,特别是无阻尼绕组的水轮发电机,由于产生的异步转矩不大,最大转矩为额定转矩的0.5∽0.6倍,故失磁后,其转速增加很大,而有功负荷几乎减少到零,因此,这种发电机在失磁时,必须迅速从电网中断开。 有阻尼绕组的水轮发电机比无阻尼绕组的水轮发电机能产生较大的异步转矩,但由于阻尼绕组的容量很小,而且在转差率为3∽5%时,才会出现转矩的平衡,所以为了防止阻尼绕组过热,在这样的转差率下不允许长期运行。同时,由于水轮发电机异步运行时,同步电抗很小,即使不带有功负荷,也要从电网吸收很大的无功电流,其值等于或大于额定电流,因此,允许异步运行的时间只有几秒钟,所以在很短的时间内(自动灭磁开关合闸时间),若不能立即恢复励磁,则必须将它从电网中断开。 4 失磁异步运行对发电机本身及电网的影响 发电机失步,将在转子的阻尼绕组(若有时)、转子体表面、转子绕组(经灭磁电阻或励磁机电枢绕组闭合)中产生差频电流,引起附加温升。此电流在槽楔与齿壁之间、槽楔与套箍之间、以及齿与套箍的接触面上,都可能引起局部高温,产生严重的过热现象,危及转子的安全。 同步发电机异步运行,在定子绕组中将出现脉动电流,它将产生交变的机械力矩,使机组产生振动,影响发电机的安全。定子电流增大,可能使定子绕组温度升高。 发电机失磁前向系统送出了无功功率,失磁后从系统吸收无功功率,这样将造成系统较大的无功功率差额,使系统电压水平下降,特别是失磁发电机附近的系统电压将严重下降,威胁安全生产。上述无功功率差额的存在,将造成其它发电机组的过电流,失磁发电机与系统相比,容量越大,这种过电流越严重。由于过流,就有可能引起系统中其它发电机或元件故障发生,以至进一步导致系统电压水平下 降,甚至使系统电压崩溃瓦解。

发电机失磁危害及处理方法

发电机失磁危害及处理方法 [摘要]分析了发电机失磁的原因及对电力系统和发电机本身的危害,提出了切实可行的处理方法及预防措施。 【关键词】发电机;失磁保护;判据 1、发电机失磁的原因 引起发电机失去励磁的原因很多,一般在同轴励磁系统中,常由于励磁回路断线(转子回路断线、励线机电枢回路断线励磁机励磁绕组断线等)、自动灭磁开关误碰或误掉闸、磁场变阻器接头接触不良等而使励磁回路开路,以及转子回路短路和励磁机与原动机在连接对轮处的机械脱开等原因造成失磁。大容量发电机半导体静止励磁系统中,常由于晶闸管整流元件损坏、晶体管励磁调节器故障等原因引起发电机失磁。 2、发电机失磁对发电机本身影响 (1)发电机失去励磁后,由送出无功功率变为吸收无功功率,且滑差越大,发电机的等效电抗越小,吸收的无功功率越大,致使失磁发电机的定子绕组过电流。(2)转子的转速和定子绕组合成的旋转磁场的转速出现转差后,转子表面(包括本体、槽楔、护环等)将感应出滑差频率电流,造成转子局部过热,这对发电机的危害最大。(3)异步运行时,其转矩发生周期性变化,使定、转子及其基础不断受到异常的机械力矩的冲击,机组振动加剧,威胁发电机的安全运行。(4)当失磁适度严重时,如果有关保护不及时动作,发电机及汽轮机转子将马上超速,后果不堪设想。 3、发电机失磁对电力系统影响 (1)当一台发电机发生失磁后,由于电压下降,电力系统中的其它发电机,在自动调整励磁装置的作用下,将增加其无功输出,从而使某些发电机、变压器或线路过电流,其后备保护可能因过流而误动,使事故波及范围扩大。 (2)低励和失磁的发电机,从系统中吸收无功功率,引起电力系统的电压降低,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点的电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至使电力系统电压崩溃而瓦解。 (3)一台发电机失磁后,由于该发电机有功功率的摇摆,以及系统电压的下降,将可能导致相邻的正常运行发电机与系统之间,或电力系统各部分之间失步,使系统发生振荡。 (4)发电机的额定容量越大,在低励磁和失磁时,引起无功功率缺额越大,电力系统的容量越小,则补偿这一无功功率缺额的能力越小。因此,发电机的单机容量与电力系统总容量之比越大时,对电力系统的不利影响就越严重。 4、发电机失磁保护原理 (1)低电压判据 为了避免发电机失磁导致系统电压崩溃同时对厂用电的安全构成了威胁,因此设置了低电压判据。 一般电压取自主变高压母线三相电压,也可选择发电机机端三相电压。三相同时低电压判据:UppPzd 失磁导致发电机失步后,发电机输出功率在一定范围内波动,P取一个振荡周期内的平均值。

发电机失磁跳闸原因分析及防止对策(2021年)

发电机失磁跳闸原因分析及防止对策(2021年) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0220

发电机失磁跳闸原因分析及防止对策 (2021年) 〔摘要〕叙述了大武口发电厂相继投入运行的JLQ-500-3000型交流励磁机(主励磁机)、YJL-100-3000交流永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间,其发电机低励磁失磁保护先后动作跳闸了11次,严重危及西北电网及宁夏电网的稳定运行的情况,分析了失磁保护动作的原因,制定了相应的防止对策。 1发电机失磁跳闸的典型事例 (1)1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。 (2)1987年11月28日,全厂2,3,4号机组运行,1号机组停

运,总负荷280MW,4号机组带80MW负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4号机210开关跳闸,励磁调节B柜DZB开关联动,经查低励失步保护动作,励磁回路未发现异常情况。8:21,将4号机并入系统,当负荷加至80MW时,4号机再次出现上述现象,210开关跳闸。经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。4号机励磁调节柜停运后,经检查发现A柜综合放大器和电压反馈的R15电阻、C3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。 (3)1989年6月29日,1,2,3,4号发电机运行,全厂总出力395MW。9:20,1号机无功负荷由65Mvar降至0,并出现“强励动作”、“强励限制”、“过负荷”光字,2号机出现“强励动作”、“强励限制”、“过负荷”、“失磁应减载”光字,调整1号机无功负荷把手加不上,急将调节器由“自动”倒为“手动”方式,将无功负荷增加到40Mvar,同时调整2号机无功负荷,使两台机组各参数趋于稳定。经查1号机有“低励失磁”动作信号,由于值班人员精心监盘,反应敏捷,

发电机失磁保护介绍(材料详实)

发电机失磁保护介绍 1 概述 同步发电机是根据电磁感应的原理工作的,发电机的转子电流(励磁电流)用于产生电磁场。正常运行工况下,转子电流必须维持在一定的水平上。发电机失磁故障是指励磁系统提供的励磁电流突然全部消失或部分消失。同步发电机失磁后将转入异步运行状态,从原来的发出无功功率转变为吸收无功功率。 对于无功功率容量小的电力系统,大型机组失磁故障首先反映为系统无功功率不足、电压下降,严重时将造成系统的电压崩溃,使一台发电机的失磁故障扩大为系统性事故。在这种情况下,失磁保护必须快速可靠动作,将失磁机组从系统中断开,保证系统的正常运行。 引起发电机失磁的原因大致有:发电机转子绕组故障、励磁系统故障、自动灭磁开关无跳闸及回路发生故障等。 2 发电机失磁过程中机端测量阻抗分析 发电机从失磁开始进入稳态异步运行,一般分为三个阶段: (1)失磁后到失步前 (2)临界失步点 (3)异步运行阶段 2.1隐极式发电机 以汽轮发电机经联络线与无穷大系统并列运行为例,其等值电路与正常运行时的向量图如图1所示。

图1 发电机与无限大系统并列运行 图中,d E 为发电机的同步电势,f U 为发电机机端相电压,s U 为无穷大系统相电压,I 为发电机定子电流,d X 为发电机同步电抗,s X 为发电机与系统之间的等值电抗,且有s d X X X +=∑ ,?为受端的功率因数角,δ为d E 与s U 之间的夹角(即功角)。 若规定发电机发出有功功率、无功功率时,表示为jQ P W -=,则 δsin ∑ =X U E P s d (1) ∑∑-=X U X U E Q s s d 2cos δ (2) 功率因数角为 P Q 1tan -=? (3) 在正常运行时,090<δ。090=δ为稳定运行极限,090>δ后发电机失步。 1. 失磁后到失步前 在失磁后到失步前的阶段中,转子电流逐渐减小,Ed 随之减小,随之增大,两者共同的结果维持发电机有功功率P 不变。与此同时,无功功率Q 随着Ed 的减小与的增大迅速减小,按(2)式计算的Q 值由正变负,发电机由发出感性无功转变为吸收感性无功。 此阶段中,发电机机端测量阻抗为 s s s s f f jX I U I jX I U I U Z +=+==& &&&&&& 带入公式jQ P U I s -=??&&,则

发电机事故处理(正式版)

文件编号:TP-AR-L7686 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 发电机事故处理(正式版)

发电机事故处理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、事故处理的宗旨: 头脑冷静,判断准确,处理及时果断。 二、事故处理的主要任务: 限制事故发展,解除对人身设备安全的威胁,及 时地判断处理, 确保机组、高炉系统安全。 三、事故处理: 1、系统失电 由于种种原因引起联络柜跳闸引起系统失电。 处理:应立即检查机组是否联跳,否则应立即紧 急停车。同时通知高炉,再看旁通阀是否打开、高炉

阀组是否打开。 2、低压失电 由于低压失电,引起发电机紧急停机,自动化由UPS电源供电。 直流屏供给操作电源。事故照明灯自动供给照明。 处理:迅速通知高炉,同时注意高炉顶压变化及旁通是否打开,检查所有设备是否正常。检查机组是否联跳,否则应立即紧急停车。 3、发电机进相运行 原因:①系统电压因故突然升高或有功负荷增加,而使励磁电流自动降低。 ②自动励磁调节器失灵或误动。 ③励磁系统的其它设备故障。 处理:①由于设备原因而造成的进相时,只要发

发电机失磁跳闸原因分析及防止对策参考文本

发电机失磁跳闸原因分析及防止对策参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

发电机失磁跳闸原因分析及防止对策参 考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 〔摘要〕叙述了大武口发电厂相继投入运行的JLQ- 500-3000型交流励磁机(主励磁机)、YJL-100-3000交流 永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间, 其发电机低励磁失磁保护先后动作跳闸了11次,严重危及 西北电网及宁夏电网的稳定运行的情况,分析了失磁保护 动作的原因,制定了相应的防止对策。 1 发电机失磁跳闸的典型事例 (1) 1987年9月14日19:23,发现3号机主励磁机炭 刷冒火,电气运行值班人员在处理过程中,由于维护经验 不足,调整电刷弹簧压力时将正、负极同时提起,使运行 中的发电机励磁电流中断,造成失磁保护动作,3号机出口

208开关跳闸。 (2) 1987年11月28日,全厂2,3,4号机组运行,1号机组停运,总负荷280 MW,4号机组带80 MW 负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4号机210开关跳闸,励磁调节B柜DZB开关联动,经查低励失步保护动作,励磁回路未发现异常情况。8:21,将4号机并入系统,当负荷加至80 MW时,4号机再次出现上述现象,210开关跳闸。经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。4号机励磁调节柜停运后,经检查发现A柜综合放大器和电压反馈的R15电阻、C3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。 (3) 1989年6月29日,1,2,3,4号发电机运行,全厂总出力395 MW。9:20,1号机无功负荷由65 Mvar

发电机失磁后的处理措施

发电机失磁后的处理措施 发电机失磁后的象征:发电机定子电流和有功功率在瞬间下降后又迅速上升,而且比值增大,并开始摆动。 (2)发电机失磁后还能发一定的有功功率,并保持送出的有功功率的方向不变,但功率表的指针周期性摆动。 (3)定子电流增大,其电流表指针也周期性摆动。 (4)从送出的无功功率变为吸收无功功率,其指针也周期性的摆动。吸收的无功功率的数量与失磁前的无功功率的数量大约成正比。 (5)转子回路感应出滑差频率的交变电流和交变磁动势,故转子电压表指针也周期性的摆动。 (6)转子电流表指针也周期性的摆动,电流的数值较失磁前的小。 (7)当转子回路开路时,由转子本体表面感应出一定的涡流而构成旋转磁场,也产生一定的异步功率。 处理: (1)失磁保护动作后经自动切换励磁方式、减有功负荷无效而作用于跳闸时,按事故停机处理; (2)若失磁是由于灭磁开关误跳闸引起,应立即重合灭磁开关,重合不成功则马上将发电机解列停机; (3)若失磁是因为励磁调节器AVR故障,应立即将AVR由工作通道切至备用通道,自动方式故障则切换至手动方式运行; (4)发电机失磁后而发电机未跳闸,应在1.5min内将有功负荷减至120MW,失磁后允许运行时间为15min; (5)若失磁引起发电机振荡,应立即将发电机解列停机,待励磁恢复后重新并网。 发电机失磁异步运行时,一般处理原则如下: (1) 对于不允许无励磁运行的发电机应立即从电网解列,以免损坏设备或造成系统事故. (2) 对于允许无励磁运行的发电机应按无励磁运行规定执行以下操作: 1) 迅速降低有功功率到允许值(本厂失磁规定的功率值与表计摆动的平均值相符合), 此时定子电流将在额定电流左右摆动. 2) 手动断开灭磁开关,退出自动电压调节装置和发电机强行励磁装置. 3) 注意其它正常运行的发电机定子电流和无功功率值是否超出规定,必要时按发电机允许过负荷规定执行. 4) 对励磁系统进行迅速而细致的检查,如属工作励磁机的问题,应迅速启动备用励磁几恢复励磁. 5) 注意厂用分支电压水平,必要时可倒至备用电源接带. 6) 在规定无励磁运行的时间内,仍不能使机组恢复励磁,则应将发电机自系统解列. 大容量发电机的失磁对系统影响很大.所以,一般未经过试验确定以前,发电机不允许无励磁运行. 国产300MW发电机组,装设了欠磁保护和失磁保护装置.为了使保护装置字系统发生振荡时不致误动, 将失磁保护时限整定为1S.发电机失磁时,经过0.5S,欠磁保护动作,发电机由自动励磁切换到手动励磁,备用励磁电源投入运行,如果不是发电机励磁回路故障,发电机仍可拉入同步而恢复正常工作. 如果备用励磁投入运行后,发电机的失磁现象仍未消除,那么经过S,失磁保护动作将发电机自系统解列.

发电机灭磁工作原理

灭磁工作原理 当发电机组的内部或发电机出口端发生故障以及正常停机时都要快速切断励磁电源,由于发电机转子绕组是个储能的大电感,因此励磁电流突变势必在转子绕组两端引起相当大的暂态过电压,造成转子绝缘击穿,所以必须尽快将转子电感中的磁能快速消耗,这就是通常所说的灭磁。 通常使用的灭磁方法有:线性电阻灭磁、灭磁开关灭磁、逆变灭磁和非线性电阻灭磁。本公司采用氧化锌非线性电阻灭磁方式利用其特殊的伏安特性,达到近似恒压灭磁的效果。 灭磁的原理如图1所示,其中i转子中的电流、FR1为氧化锌非线性电阻、FMK为灭磁开关、Uo为励磁电压、LP为整流电源、Uk为灭磁开关弧压、U R为氧化锌非线性电阻残压。若要使转子电流衰减至零,必须在转子两端加一个与其励磁电源电势相反的电势U,灭磁方程式为Ldi/dt+U=O。可见电感中电流衰减率正比于反向电势U,反向电势越大,灭磁时间越短。但反向电势受转子绝缘水平限,限不能超过转子绝缘允许值因此最理想的灭磁方式是灭磁电压保持恒定,电流保持一个固定的变化率(di/dt=-U/L)按直线规律衰减至零。由于氧化锌非线性电阻残压U R变化很小,灭磁时近似于恒压,即U R=U。发电机正常运行时转子电压低,氧化锌非线性电阻呈高阻态,漏电流仅为微安级。灭磁时,灭磁开关FMK跳开,切开励磁电源,在满足Uk≥Uo+U R时,电流被迫入灭磁过电压保护器中,转子绕组中所储能量被氧化锌非线性电阻消耗,且氧化锌良好的伏安特性保证了这部分能量几乎以恒压的形式消耗,确保了发电机组的安全。 图1 发电机转子灭磁及过电压保护装置采用多组氧化锌非线性电阻并联跨接于转子绕组两端,由于氧化锌非线性电阻FR1、线性电阻R1、快速熔断器RD、二极管D1组成(见图2)。其核心部件FR1具有限制反向过电压和吸收磁能的作用;各支路中都有特制熔断器RD,熔断器的熔断时间小于2ms并且熔丝电压足够高,当部分支路必生故障,其相应熔断器快速

对灭磁开关的性能要求(发表)

对发电机灭磁开关的性能要求 李自淳夏维珞彭辉符仲恩 (中国科学院等离子体物理所科聚公司,安徽合肥230031) [摘要]本文通过理论分析,探讨了对发电机灭磁开关的一般通用要求,及对开断性能起关键作用的特殊要求。 [关键词]灭磁开关;通用要求;开断性能;弧压 1前言 作为发电机主保护的灭磁保护,一直是电机界特别是励磁界关注的要点。发电机的灭磁系统有如汽车的制动系统,对主机的安全运行至关重要。灭磁开关是灭磁系统中的主要关键部件之一,它的作用一是迅速切断发电机励磁绕组与励磁电源的通路;二是迅速熄灭发电机内部的磁场。实现这两个功能的关键是迅速消耗发电机磁场的能量(转化成热能)。过去的灭磁开关(如DM2型自动灭磁开关)靠自身的栅片来吸收磁能,故栅片烧损严重,维护工作量大,不能频繁动作,不能满足大、中型发电机灭磁的需要,但老的中小型机组仍有应用。目前国内外广泛采用的是移能型灭磁开关,叫做磁场断路器。它在灭磁时将励磁电流及磁场能量迅速转移到灭磁电阻中衰耗,本身基本不吸收能量。 目前国内外可用的灭磁开关约有几十种,其性能各异;同时有关单位还在研制新型的灭磁开关(特别是大电流、高参数的产品)。在选用和研制灭磁开关时,首先应明确对其性能的要求,现在就此问题作一探讨。 2一般通用要求 灭磁开关作为“开关(或断路器)”的一种,应该满足对开关的一般通用要求,如:1)通流性能好接触电阻小,运行温升低,短时过流量大。 2)绝缘强度高能耐受正常运行中的工作电压及暂态过程中短时过电压的冲击而不损坏。 3)机械动作灵合闸分闸动作灵敏可靠,不能误动和拒动。 4)综合性能优结构牢固稳定,安装维护简便,工艺精良,外形美观,体积小,重 3 对开断性能的要求 开关的重要特性是开断性能,而不同的开关, 其开断机理是不同的。总的可分成三类: 3.1 交流过零开断[1] 1

从保护试验中认识失磁保护

从保护试验中认识失磁保护 失磁保护:发电机失磁保护是发电机继电保护的一种。 定义:是指发电机的励磁突然消失或部分消失,当发电机完全失去励磁时,励磁电流 将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转 矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳 定极限角时,发电机与系统失去同步,此时发电机保护装置动作于发电机出口断路器,是发 电机脱离电网,防止发电机损坏和保护电网稳定运行,这种保护叫失磁保护。 关于失磁保护,大家可以简单理解成发电机没有励磁后,由发电机转变成电动机,发电机 机端测量阻抗,失磁前在阻抗平面R——X坐标第一象限,失磁后测量阻抗的轨迹沿着等有 功阻抗圆进入第四象限。随着失磁的发展,机端测量阻抗的端点落在静稳极限阻抗圆内, 转入异步运行状态。具体失磁过程见附件2. 测试对象:3080(V2.0D)发电机保护装置 测试仪器:昂立测试仪 失磁保护定值定值: Xa 5.77Ω Xb 17.31Ω延时0.4S (1)动作精度 实验方法:测试仪加电压UA 57.74V 0° UB 57.74V 240° UC 57.74V 120°, A:保持IA 90°、IB 310°、IC 210°角度不变,增加电流幅值,步长0.5A,记录动作数 据 (理论值电流从3.33到10为动作区。Imax=57.74/5.77=10 Imin=57.74/17.31=3.33) B:保持IA、IB、IC 幅值5.774A不变,增加电流角度,步长10度,记录动作值,继续增 加角度 直至复归,记录复归值。(理论值IA从60度到120度为动作区)

发电机失磁保护.

发电机失磁微机保护的研究 摘要:介绍了现阶段的发电机失磁保护装置、发电机失磁保护的4种主要判据,并针对阻抗Ⅱ段和低电压判据延时较长的不足,提出利用发电机功率变化量作为失磁保护辅助加速判据。还研究了失磁保护方案存在的问题,针对相应的问题提出微机失磁保护新方案,并对新方案进行了介绍。 关键词:失磁保护;失磁保护判据;功率变化量;辅助加速判据;微机失磁保护新方案。 0 引言 中国历年来的发电机失磁故障率都比较高,因而,发电机失磁保护受到广泛重视。近年来,国内在发电机失励磁分析和试验方面做了很多工作,取得了很大的成绩。在失磁保护装置方面也已经开发出了多种型号的装置,其性能基本满足了电力系统的要求。现阶段新型微机失磁保护判据组合及作用结果包括如下四方面的内容:a.失磁保护Ⅰ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据、功率判据和无功反向判据组合。失磁保护Ⅰ段投入,发电机失磁时,0.5 s降出力; b.失磁保护Ⅱ段:系统低电压判据、定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。失磁保护Ⅱ段投入,发电机失磁时, 系统电压低于整定值,延时0.8 s 动作切发变组主断路器、灭磁断路器、厂用电源断路器及励磁系统各断路器; c.失磁保护Ⅲ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。失磁保护Ⅲ段保护投入,发电机失磁后,延时1.5 s,动作于“报警”,也可动作于“切换备用励磁”,或者动作于“跳闸”,有3种状态供选择; d.失磁保护Ⅳ段:定子阻抗判据和无功反向判据组合。失磁保护Ⅳ段为长延时段,只判断定子阻抗判据,在减出力、切换备用励磁无效的情况下,5 min动作于“跳闸”。 1 发电机失磁后的基本物理过程及产生的影响 发电机失磁故障是指发电机的励磁突然消失或部分消失。对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。 当发电机完全失去励磁时,励磁电流将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳定极限角时,发电机与系统失去同步。发电机失磁后

发电机交直流灭磁的模拟试验

发电机交直流灭磁的模拟试验 曲 国 权 东北电网公司松江电站工程建设局 彭 辉 李 自 淳 中科院等离子体物理研究所科聚公司 摘 要:本文说明了同步发电机交流和直流灭磁多项模拟试验的情况,介绍了试验电路和试验方法,分析了试验录波图反映的试验物理过程,最后总结出试验结论。 关键词:发电机;交流灭磁;直流灭磁;模拟试验 1 前言 随着电力事业的飞速发展,发电机的容量和参数不断提高,传统的以DM2型灭磁开关为代表的“串联型吸能灭磁”已经趋于淘汰,新型的以磁场断路器为中心的“并联型移能灭磁”正在广泛应用。但由于磁场断路器产品的发展跟不上需要,所以在灭磁方式上出现了交流灭磁和直流灭磁等多种方案。 关于同步发电机交流灭磁和直流灭磁的理论分析,经过多年学术会议和专业刊物的组织引导,以及广大业内同行的深入探讨,已经比较成熟。有关这方面的论文和专著也已广泛流传[1],大家观点基本趋于一致。但是由于条件的限制,在实验验证方面还比较欠缺。本着“实践是检验真理的唯一标准”的宗旨,我们利用中国科学院等离子体物理研究所1:1灭磁模拟实验室的有利条件,对交直流灭磁的各种工况做了一系列模拟试验,吸能元件分别用ZnO 、SiC 和线性电阻。经过大量对比试验,得出一番有意义的结论,本文就有关情况作一介绍。 2 试验原理接线图 见图1和图2。本试验的负载受设备条件的限制,采用了空气芯电感L 和线性电阻R 1来模拟发电机的励磁绕组,这样就不能充分模拟发电机的一些特性,如饱和特性、阻尼特性和电枢反应特性,所以本文所述的灭磁时间就相当于纵轴灭磁时间。试验将侧重于对交流侧和直流侧灭磁的原理和特点进行验证。 3 试验参数 励磁电流150L ≤I A ,励磁电压150L ≤U V ,

发电机失磁跳闸原因分析及防止对策

发电机失磁跳闸原因分析及防止对策 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

发电机失磁跳闸原因分析及防止对策〔摘要〕叙述了大武口发电厂相继投入运行的JLQ-500-3000型交流励磁机(主励磁机)、YJL-100-3000交流永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间,其发电机低励磁失磁保护先后动作跳闸了11次,严重危及西北电网及宁夏电网的稳定运行的情况,分析了失磁保护动作的原因,制定了相应的防止对策。 1发电机失磁跳闸的典型事例 (1)1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。 (2)1987年11月28日,全厂2,3,4号机组运行,1号机组停运,总负荷280MW,4号机组带80MW负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4号机210开关跳闸,励磁调节B柜DZB开关联动,经查低励失步保护动作,励磁回路未发现异常情况。8:21,将4号机并入系统,当负荷加至80MW时,4号机再次出现上述现象,210开关跳闸。经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。4号机励磁调节柜停运后,经

检查发现A柜综合放大器和电压反馈的R15电阻、C3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。 (3)1989年6月29日,1,2,3,4号发电机运行,全厂总出力395MW。9:20,1号机无功负荷由65Mvar降至0,并出现“强励动作”、“强励限制”、“过负荷”光字,2号机出现“强励动作”、“强励限制”、“过负荷”、“失磁应减载”光字,调整1号机无功负荷把手加不上,急将调节器由“自动”倒为“手动”方式,将无功负荷增加到40Mvar,同时调整2号机无功负荷,使两台机组各参数趋于稳定。经查1号机有“低励失磁”动作信号,由于值班人员精心监盘,反应敏捷,处理果断,避免了一次1号机失磁跳闸事故(同年6月6日曾发生过上述同样的现象,即造成了跳闸)。事后经分析认为电网无功负荷欠额较大,引起发电机无功负荷超过允许值,各机发生互抢无功现象。 (4)1989年6年30日,1、2、4号发电机运行,总负荷295MW,3号机备用。1号机带有功负荷95MW,无功负荷56Mvar,17:15,1号机无功负荷同时升至80Mvar以上,随之1号机的所有表计指示到零,001MK开关跳闸,出现“保护动作”光字,查系失磁保护动作跳闸。停机后立即检查励磁回路,发现1号机主励磁机失磁开关LMK(系CO2-40/02型直流接触器),原设计容量为40A,实际运行电流达50~60A,一直处于“过载”工况下运行,久而久之过热造成弹簧压力降低,接触不良,加速过热使

一种失磁保护原理

一种失磁保护原理 88 第31卷第22期 2019年11月25日Vol. 31 No. 22 Nov. 25, 2019 同步发电机失磁保护的改进方案 林莉1, 牟道槐1, 孙才新1, 马超2, 成涛3 (1. 重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆市400044) (2. 重庆市电力公司调度通信中心, 重庆市400014; 3. 重庆市电力公司北碚供电局, 重庆市400700) 摘要:在电力系统继电保护中, 同步发电机失磁保护是最为重要的保护之一。励磁故 障涉及发电 机的大干扰稳定性, 也是一个较为复杂并难以解决的问题。目前所用的励磁保护的动作效果并不理想, 尚需进一步改进。分析了目前所用的3种励磁保护判据存在的不足, 指出这些保护判据或基于小干扰稳定性原理而未考虑发电机动态功角特性的严重变形, 或未考虑发电机完全失磁后的测量阻抗与正常励磁下扰动后的测量阻抗具有较大的公共区间, 从而可能使保护误动或拒动。基于对同步发电机失磁后动态行为的仿真分析, 提出了同步发电机失磁保护的改进方案, 通过直接测量功率角判断同步发电机的失磁故障, 提出了其整定条件和计算方法。仿真计算证明该方案能可靠、快速地反映各种励磁故障, 动作稳定且整定灵活、方便。关键词:同步发电机; 励磁系统; 失磁保护; ; 中图分类号:TM614; TM772 0 引言 磁, , 。统计数据表明, 励磁故障约占发电机总故障的60%以上[122]。因此, 更深入地研究发电机励磁故障特征, 提高发电机励磁保护与控制水平, 对保证机组本身和电力系统的安全稳定具有十分重要的学术意义与工程实用价值。 在电力系统继电保护中, 发电机失磁保护是最为重要、复杂的保护。目前, 以定子回路参数特征为判据的失磁保护通常在阻抗平面上实现, 用机端测量阻抗来反映励磁故障仍是当前同步发电机失磁保护的主流, 具体可反映励磁故障后出现的如下3种状态:①发电

发电机失磁保护的典型配置方案

发电机失磁保护的典型配置方案 1 引言 励磁系统是同步发电机的重要组成部分,对电力系统及发电机的稳定运行有十分重要的影响。由于励磁系统相对较为复杂,主要包括励磁功率单元和励磁控制部分,因而励磁故障的发生率在发电机故障中是较高的。加强失磁保护的研究,找到一个合理而成熟可靠的失磁保护配置方案是十分必要的。 由于失磁保护的判据较多,闭锁方式和出口方式也较多,因此失磁保护的配置目前在所有发电机保护中最复杂,种类也最多。据国内一发电机保护的大型生产厂家统计,2000年中,该厂所供的失磁保护配置方案就有20多种。如此之多的配置方案对于现场运行是十分不利的。不仅业主和设计部门难以作出选择,而且整定、调试、运行、培训都变得复杂。这样,现场运行经验和运行业绩不易取得,无法形成一个典型方案以提高设计、整定效率和运行水平,也不利于保护的成熟和完善。从电网运行中反映,失磁保护的误动率较高。 湖北襄樊电厂4台300MW汽轮发电机组,首次在300MW发电机组上采用国产WFB-100微机保护,经过近3年的现场运行,其失磁保护在试运行期间发生过误动作,在采取一定措施后,未再误动。近年来,失磁保护先后经过数次严重故障的考验和进相运行实验,都正确动作。本文将分析该厂失磁保护方案的特点,并以此为典型方案,以供同行借鉴参考。 2 失磁保护的主判据 目前失磁保护使用最多的主判据主要有三种,分别是 1)转子低电压判据,即通过测量励磁电压U fd 是否小于动作值; 2)机端低阻抗判据Z<; 3)系统低电压U m <。三种判据分别反映转子侧、定子侧和系统侧的电气量。 2.1转子低电压判据U fd 早期的整流型和集成电路型保护,采用定励磁电压判据,表达式为: U fd <K·U fd0 , U fd0 为空载励磁电压,K为小于1的常数。 目前的微机保护,多采用变励磁电压判据U fd (P),即在发电机带有功P的工况下,根据静稳极限所需的最低励磁电压,来判别是否已失磁。正常运行情况下(包括进相),励磁电压不 会低于空载励磁电压。U fd (P)判据十分灵敏,能反映出低励的情况,但整定计算相对复杂。因 为U fd 是转子系统的电气量,多为直流,而功率P是定子系统的电气量,为交流量,两者在一个判据进行比较。如果整定不当很容易导致误动作。 在襄樊电厂1#机试运行期间就因为该判据整定值偏大而误动2次。经检查并结合进相运行 试验数据进行分析发现,整定值K偏大的主要原因是在整定计算中,发电机空载励磁电压U fd0 、 同步电抗X d ,均采用的是设计值,而设计值与实测值有较大的差别[1]。如襄樊电厂1#机的设计 值U fd0=160V,X d =1.997(标么值),而实测值U fd0 =140V,X d =1.68(标么值)。由此造成 发电机在无功功率较小或进相运行时,U fd (P)判据落入动作区而误动。这种情况,在全国其他 地区也屡有发生,人们往往因此害怕用此判据。对于水轮机组,由于X d 与X q 的不同,整定计算 就更繁琐一些[2]。 但是勿容置疑的是,该判据灵敏度最高,动作很快。如果掌握好其整定计算方法,在整定 计算上充分考虑空载励磁电压U fd0和同步电抗X d 等参数的影响,或在试运行期间加以实验调整, 不仅可以避免误动作,而且是一个十分有效的判据。能防止事故扩大而被迫停机,特别适用于

发电机运行中失磁对发电机本身的影响

发电机运行中失磁对发电机本身的影响 一、发电机的失磁:同步发电机失去直流励磁,称为失磁。发电机失磁后,经过同步振荡进入异步运行状态,发电机在异步运行状态下,以低滑差s与电网并列运行,从系统吸取无功功率建立磁场,向系统输送一定的有功功率,是一种特殊的运行方式。 二、发电机失磁的原因。引起发电机失磁的原因有励磁回路开路,如自动励磁开关误跳闸,励磁调节装置的自动开关误动;转子回路断线,励磁机电枢回路断线,励磁机励磁绕组断线;励磁机或励磁回路元件故障,如励磁装置中元件损坏,励磁调节器故障,转子滑环电刷环火或烧断;转子绕组短路;失磁保护误动和运行人员误操作等。 三、发电机失磁运行的现象。发电机失磁运行有如下现象: 1)中央音响信号动作,“发电机失磁”光字牌亮。 2)转子电流表的指示等于零或接近于零。转子电流表的指示与励磁回路的通断情况及失磁原因有关,若励磁回路开路,转子电流表指示为零;若励磁绕组经灭磁电阻或励磁机电枢绕组闭路,或AVR、励磁机、硅整流装置故障,转子电流表有指示。但由于励磁绕组回路流过的是交流(失磁后,转子绕组感应出转差频率的交流),故直流电流表有很小的指示值。 3)转子电压表指示异常。在发电机失磁瞬间,转子绕组两端可能产生过电压(励磁回路高电感而致);若励磁回路开路,则转子电压降至零;若转子绕组两点接地短路,则转子电压指示降低;转子绕组开路,转子电压指示升高。 4)定子电流表指示升高并摆动。升高的原因是由于发电机失磁运行时,既向系统送出一定的有功功率,又要从系统吸收无功功率以建立机内磁场,且吸收的无功功率比原来送出的无功功率要大,使定子电流加大。摆动的原因是因为力矩的交变

发电机失磁的原因和影响

发电机失磁的原因和影响 发电机失磁故障是指发电机的励磁突然消失或部分消失。对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。 当发电机完全失去励磁时,励磁电流将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳定极限角时,发电机与系统失去同步。发电机失磁后将从系统中吸取感性无功供给转子励磁电流,在定子绕组中感应出电势。在发电机超过同步转速后,转子回路中将感应出频率为ff-fs (fs为系统频率、ff为发电机频率)的电流,此电流产生异步制动转矩,当异步转矩与原动机转矩达到平衡时,即进入稳定的异步运行。当发电机异步运行时,将对发电机及电力系统产生巨大的应影响。⑴需要从系统中吸收很大的无功功率以建立发电机磁场。⑵由于从电力系统中吸收无功功率将引起电力系统的电压下降,如果电力系统的容量较小或无功储备不足,则可能使失磁的发电机端电压、升压变压器高压侧的母线电压、及其它的临近点的电压低于允许值,从而破坏了负荷与电源间的稳定运行,甚至引起电压崩溃而使系统瓦解。⑶由于失磁发电机吸收了大量的无功功率,因此为了防止其定子绕组的过电流,发电机所发的有功功率将减少。⑷失磁发电机的转速超过同步转速,因此,在转子及励磁回路中将产生频率为ff-fs的交流电流,因而形成附加的损耗,使发电机转子和励磁回路过热。对于水轮机,

①其异步功率较小,必须在较大的转差下运行,才能发出较大的功率。 ②由于水轮机的调速器不够灵敏,时滞大,乃至可能在功率未达到平衡时就以超速,使发电机与系统解列。③其同步电抗较小,异步运行时,则需要从电网吸收大量的无功功率。④其纵轴和横轴不对称,异步运行时,机组震动较大等因素的影响,因此发电机不允许失磁。因此必须加装失磁保护。

相关主题
文本预览
相关文档 最新文档