当前位置:文档之家› 11结构的稳定计算习题解答

11结构的稳定计算习题解答

11结构的稳定计算习题解答
11结构的稳定计算习题解答

第7章 结构的弹性稳定性分析

ANSYS 入门教程 (9) - 结构的弹性稳定性分析 第 7 章结构弹性稳定分析 7.1 特征值屈曲分析的步骤 7.2 构件的特征值屈曲分析 7.3 结构的特征值屈曲分析 一、结构失稳或结构屈曲: 当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的载荷称为极限载荷或压溃载荷。 ●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析 = 第一类稳定问题 ANSYS 特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍 ANSYS 特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 ①创建模型 ②获得静力解 ③获得特征值屈曲解 ④查看结果 一、创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。 刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲载荷系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生 100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第 1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。 二、获得静力解 注意几个问题: ⑴必须激活预应力效应。

11结构的稳定计算习题解答

第11章 结构的稳定计算习题解答 习题11.1 是非判断题 (1)要提高用能量法计算临界荷载的精确度,不在于提高假设的失稳曲线的近似程度,而在于改进计算工具。( ) (2)对称结构承受对称荷载时总是按对称形式失稳。( ) (3)刚架的稳定问题总是可以简化为具有弹性支座的单根压杆进行计算。( ) (4)结构稳定计算时,叠加原理已不再适用。( ) (5)有限自由度体系用能量法求出的临界荷载是精确解。( ) (6)当结构处于不稳定平衡状态时,可以在原结构位置维持平衡,也可以在新的形式下维持平衡。( ) 【解】(1)错误。能量法计算临界荷载的精确度,直接取决于所假设的失稳曲线的近似程度。 (2)错误。既可按对称形式失稳也可按反对称形式失稳。 (3)错误。在能求出刚度系数的情况下,才可简化为具有弹性支座的单根压杆进行计算。 (4)正确。一般情况下,结构的稳定计算中,既要考虑几何非线性也要考虑材料非线性,因此,不能采用适用于线性弹性理论的叠加原理。 (5)正确。 (6)错误。 习题 12.2 填空题 (1)结构由稳定平衡到不稳定平衡,其临界状态的静力特征是平衡形式的 。 (2)临界荷载与压杆的支承情况有关,支承的刚度越大,则临界荷载越 。 (3)用能量法求无限自由度体系的临界荷载时,所假设的失稳曲线y (x )必须满足 条件,并尽量满足 条件。 (4)利用对称性,求习题11.2(4)图所示结构的临界荷载F Pcr = 。 习题11.2(4)图 (5)习题11.2(5)图(a )所示结构可简化为习题11.2(5)图(b )所示单根压杆计算,则弹簧抗转动刚度系数k = 。 1= l 3EI (a) (b) 习题11.2(5)图 (6)习题11.2(6)图(a )所示结构可简化为习题11.2(6)图(b )计算,则抗移动

第11章结构的弹性稳定_结构力学

第 11 章习 题 11-1 什么叫作结构丧失稳定性?它可以如何分类?其相应的基本特征是什么? 11-2 什么是结构失稳的自由度?它与稳定方程的解之间有何联系?结构丧失第一类稳定性的临界荷载是如何确定的? 11-3 弹性压杆丧失第一类稳定性的临界荷载的大小取决于哪些因素?何为压杆的计算长度? 11-4 试比较用静力法和能量法分析第一类稳定问题的基本原理与方法的异同点。 11-5 试用静力法和能量法求图示各有限自由度体系的临界荷载,并绘制相应的失稳位移形态。图中粗杆(双线示)为无限刚性。 (a) (b) (g) 题11-5图 11-6 试用静力法建立图示各体系的稳定方程。 (a) l 2l EI EI EI l 2 EI l 2 3 EI EI

题11-6图 11-7 试用静力法求图示各体系的稳定方程和临界荷载。 (a) (b) 题11-7图 11-8 试问图示体系左、右柱截面的弯曲刚度之比EI 1又可发生右柱的弯曲失稳? 11-9 试用静力法建立图示体系的稳定方程。 11-10 试用能量法求图示各体系的临界荷载。 (c) (d) 题11-10图 11-11 ) πsin 1(0l x I I +=。 11-12 试用能量法求图11-7a 、b 所示结构的临界荷载。 11-13 试问组合压杆绕虚轴失稳时临界荷载比计算与实腹压杆的稳定性计算有何差别?其原因是什么? 11-14 设图示压杆AB 有轴心压力Pcr P 32F F =作用,试求杆件的转动刚度AB S 和侧移刚度AB k 。 (a) (b) 题11-11 题11-14图 11-15 试说明在作体系稳定性分析时,哪一类刚架可以化为单压杆问题,哪一类却不可以。 P EI F P 3F P EI I 6I q EI F EI F P EI A B EI =∞ EI

第7章 结构弹性稳定分析

第7章结构弹性稳定分析 结构失稳或结构屈曲:当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的荷载可称为屈曲荷载、临界荷载、压屈荷载或平衡分枝荷载。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的荷载称为极限荷载或压溃荷载。 ●跳跃失稳:当荷载达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析=第一类稳定问题 ANSYS特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍ANSYS特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 7.1.1 创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲荷载系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生100%的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第1阶屈曲模态及其屈曲荷载系数时,每个自然杆应不少于3个单元。 7.1.2 获得静力解 注意几个问题: ⑴必须激活预应力效应。 命令PSTRES设为ON便可考虑预应力效应。 ⑵由屈曲分析所得到的特征值是屈曲荷载系数,而屈曲荷载等于该系数乘以所施加的荷载。若施加单位荷载,则该屈曲荷载系数就是屈曲荷载;若施加了多种不同类型的荷载,则将所有荷载按该系数缩放即为屈曲荷载。

11弹性力学试题及答案解析

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

结构力学习题集——结构弹性稳定计算

第十章 结构弹性稳定计算 一、判断题: 1、稳定方程即是根据稳定平衡状态建立的平衡方程。 2、压弯杆件和承受非结点荷载作用的刚架丧失稳定都属于第一类失稳。 3、在稳定分析中,有n 个稳定自由度的结构具有n 个临界荷载。 4、两类稳定问题的主要区别是:荷载—位移曲线上是否出现分支点。 5、静力法确定临界荷载的依据是结构失稳时的静力平衡条件。 6、能量法确定临界荷载的依据是势能驻值原理。 二、计算题: 7、用静力法推导求临界荷载cr P 的稳定方程。 8、写出图示体系失稳时的特征方程。 l 9、求刚架在反对称失稳时的稳定方程。 n 为常数。 l 10、求图示完善体系的临界荷载cr P 。转动刚度kl k r 2=,k 为弹簧刚度。 P l l

11、求图示刚架的临界荷载cr P 。已知弹簧刚度l EI k 33= 。 l 12、求图示中心受压杆的临界荷载cr P 。 l 13、用静力法求图示结构的临界荷载cr P ,欲使 B 铰不发生水平移动,求弹性支承的最小刚度k 值。 14、用静力法确定图示具有下端固定铰,上端滑动支承压杆的临界荷载cr P 。 l 15、用能量法求图示结构的临界荷载参数cr P 。设失稳时两柱的变形曲线均为余弦曲线: y x h =-δπ(cos ).12提示:cos d sin22u u u u a b a b ?=+??????214。

16、用能量法求中心受压杆的临界荷载cr P 与计算长度,BC 段为刚性杆,AB 段失稳时变形曲 线设为:()y x a x x l =-().3 2 EI 0 17、用能量法求图示体系的临界荷载cr P 。 18、用能量法求图示中心压杆的临界荷载cr P ,设变形曲线为正弦曲线。提示: Sin d Sin2 2u u u u a b a b ?=-??????214 l 2 l 2 19、设y Ax l x =-22(),用能量法求临界荷载cr P 。

ANSYS_入门教程_-_结构的弹性稳定性分析

ANSYS 入门教程- 结构的弹性稳定性分析 2011-01-09 15:06:42| 分类:默认分类| 标签:|字号大中小订阅 第7 章结构弹性稳定分析 7.1 特征值屈曲分析的步骤 7.2 构件的特征值屈曲分析 7.3 结构的特征值屈曲分析 一、结构失稳或结构屈曲: 当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。 结构稳定问题一般分为两类: ★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。 ★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。结构失稳时相应的载荷称为极限载荷或压溃载荷。 ●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。可归入第二类失稳。 ★结构弹性稳定分析= 第一类稳定问题 ANSYS 特征值屈曲分析(Buckling Analysis)。 ★第二类稳定问题 ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。 这里介绍ANSYS 特征值屈曲分析的相关技术。在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。 7.1 特征值屈曲分析的步骤 ①创建模型 ②获得静力解 ③获得特征值屈曲解 ④查看结果 一、创建模型 注意三点: ⑴仅考虑线性行为。若定义了非线性单元将按线性单元处理。 刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。 ⑵必须定义材料的弹性模量或某种形式的刚度。非线性性质即便定义了也将被忽略。 ⑶单元网格密度对屈曲载荷系数影响很大。例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。经验表明,仅关注第 1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。 二、获得静力解 注意几个问题: ⑴必须激活预应力效应。

相关主题
文本预览
相关文档 最新文档