当前位置:文档之家› 行列式的性质

行列式的性质

行列式的性质
行列式的性质

行列式的性质

基本性质

性质1 行列式与它的转置行列式相等。

性质2 互换行列式的两行(列),行列式变号。

推论 如果行列式有两行(列)完全相同,则此行列式为零。

性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。 性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。

性质5 若行列式的某一行(列)的元素都是两数之和,例如第j 列的元素都是两数之和

性质6 把行列式的某一列(行

)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备.

11

121212221

2

n n n n nn

a a a a a a D a a a =

, 11

2111222212n n T

n

n

nn

a a a a a a D a a a =

称行列式T

D 为D 的转置行列式.T

D 可以看成是D 的元素沿着主对角线旋转180所得,亦可看成是将D 的所有行(列)按序写成所有列(行)所得(即所谓行列互换).

性质1. 1 行列式的值与其转置行列式的值相等,即

11121212221

2

n n n n nn

a a a a a a a a a 112111222212n n n

n

nn

a a a a a a a a a =

.

证明 将等式两端的行列式分别记作D 和T

D ,对行列式的阶数用数学归纳法. 当2n =时,可以直接计算出T

D D =成立,假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义

1111121211n n D a A a A a A =++

+,

1111212111T T T

T

n n D a A a A a A =+++.

根据归纳假设1111T A A =,于是

()

12

32212

133********

131n n T

n

n nn a a a a a a D a A a a a a +=+-+

()

12

2242213

132343331

1241n n n

n n nn a a a a a a a a a a a a a +-++

()

12221211323131

1211n n

n n n

n

n n

a a a a a a a a a a -+---.

由归纳假设,可以把上面1n -个1n -阶行列式都按第1列展开,并将含12a 的项合并在一起,其值恰好等于1212a A ,事实上

()

()

333

23

433

12

13

2112

3112

32411n n n

nn

n

n

nn

a a a a a a a a a a a a a a ++

-+-++

()

23

13

1112

311n n

n n

n n

a a a a a a -+--

()21

311123332343323131232421000000000100

0n n n n n nn n

n

nn

n

n n

a a a a a a a a a a a a a a a a a a +--??????=-+

++

?

??????

?

()

21

31112

2333312

231n n n

n

nn

a a a a a a a a a a +=-.

()

()

12

12

12121212121211T

a M a M a A ++=-=-=,

其中余子式12T

M 是12M 的行、列互换后的行列式,他们都是1n -阶行列式,根据归纳假设

12

T

M 12M =. 类似地,把含13a 的项合并后其值等于1313,a A ,把含1n a 的项合并后其值等于11n n a A ,

因此T

D D =.

由该性质,行列式中关于行所具有的性质,关于列也同样具有.因而,下面关于行列式的性质将仅对行叙述.

性质1.2 对行列式(1.3)中的任一行按下式展开,其值相等,即等于行列式的值.

11

121212221

2

n n n n nn

a a a a a a D a a a =

1122i i i i in in a A a A a A =+++, (1,2,

,i n =) (1.4)

其中(1)i j ij ij A M +=-,ij M 为D 中划掉第i 行和第j 列的全部元素后,按原顺序排成的1n -阶行列式

1111111111111111111111

1

1

j j n i i j i j i

n ij

i i j i j i n n nj nj nn

a a a a a a a a M a a a a a a a a -+----+-++-+++-+=

并称ij M 为元素ij a 的余子式,ij A 为元素ij a 的代数余子式. 证明 对行列式的阶数用数学归纳法.

当2n =时,可以直接计算出结论成立.

假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义

1111121211n n D a A a A a A =++

+

()

22

2322123212

323333133311

12

2

3

1

3

1n n n n n n nn

n n nn

a a a a a a a a a a a a a a a a a a a a +=+-+

()

21

2224213

313234313

1

2

4

1n n n n n nn a a a a a a a a a a a a a +-++

()

212221131323111

2

1

1n n

n n

n n nn a a a a a a a a a a -+---.

根据归纳假设1j A 可以按照第1i -行展开,于是由归纳假设,把上面n 个1n -阶行列式都按第1i -行展开,并将含1i a 的项合并在一起,其值恰好等于11i i a A ,事实上(不妨取

2i =)

()

()

33332

34312

13

1221

1321

3

2

4

11n

n

n nn

n n nn

a a a a a a a a a a a a a a ++-+-+

+

()

32

31

1121

2

1

1n n

n n nn a a a a a a -+--

()12131123333234332312132

4

2

1

000000000100

0n n n n n nn n n nn

n nn a a a a a a a a a a a a a a a a a a +--??????=-+

++

?

??????

?

()

12

13112

3233321

2

3

1n n n n nn

a a a a a a a a a a +=-.

()

21

212121211a M a A +=-==,

类似地,把含22a 的项合并后其值等于2222,

a A ,把含2n a 的项合并后其值等于

22n n a A ,

因此,1111121211n n D a A a A a A =++

+2121222222n n a A a A a A =+++.

性质1. 5 行列式两行相同值为零,即

11121

1

212ln

1

2

0(1)

n k k kn

l l n n nn

a a a a a a D k l n a a a a a a =

=≤<≤

(1.7)

其中ki li a a =(1,2,

,i n =)

. 证明 利用数学归纳法,对于二阶行列式,(1. 7)式显然成立.

假设(1. 7)式对于1n -阶行列式成立,即如果1n -阶行列式两行相同,则值为零. 在n 阶的情况下,对行列式D 按第j 行展开(,j k l ≠),

11

121212221

2

n n n n nn

a a a a a a D a a a =

1122j j j j jn jn a A a A a A =+++

.

由于(1)

i j

ji ji A M +=- (1,2,

i n =),且ji M 为1n -阶行列式且两行相同,因此0ji A =.

所以,0D =.

例.计算

解:由于该行列式的所有列加到一起得同一个数a +(n -1)x ,我们就根据这一特点,用行列式的性质6,将D n 的第2列,第3列,…,第n 列的1倍同时加到第1列上去,再由性质3的推论,将公因子a +(n -1)x 提出来,得

行列式的性质

行列式的性质 基本性质 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。 性质4 行列式中如果有两行(列)元素成比例,则此行列式等于零。 性质5 若行列式的某一行(列)的元素都是两数之和,例如第j 列的元素都是两数之和 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。 一般利用行列式的定义计算高阶行列式比较繁琐,下面我们将推导出行列式的一些性质,为行列式的计算做准备. 设 111212122212 n n n n nn a a a a a a D a a a = , 112111222212n n T n n nn a a a a a a D a a a = 称行列式T D 为D 的转置行列式.T D 可以看成是D 的元素沿着主对角线旋转180所得,亦可看成是将D 的所有行(列)按序写成所有列(行)所得(即所谓行列互换). 性质1. 1 行列式的值与其转置行列式的值相等,即 111212122212 n n n n nn a a a a a a a a a 112111222212n n n n nn a a a a a a a a a = . 证明 将等式两端的行列式分别记作D 和T D ,对行列式的阶数用数学归纳法. 当2n =时,可以直接计算出T D D =成立,假设结论对小于n 阶的行列式都成立,下面考虑n 阶的情况. 根据定义 1111121211n n D a A a A a A =++ +,

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

行列式的定义及其性质证明

行列式的定义及其性质证明 摘要:本文给出了与原有行列式定义不同的定义,利用此定义和引理导出定理,进一步导出行列式的性质,给出了行列式性质与以往教材不同的完整证明,形成了有关行列式的新的知识体系,通过定理性质的证明过程,重点在培养同学们的逻辑思维能力、推理能力和创新能力。 关键词:行列式;定义;性质;代数余子式;逆序数 1 基本定理与性质的证明 引理设t为行标排列q1q2…qn与列标排列p1p2…p n的逆序数之和,若行标排列与列标排列同时作相应的对换,则t的奇偶性不变。 证明根据对换定理:一个排列中的任意两个元素对换,排列改变奇偶性。若行标排列与列标排列同时作相应的对换,则行标排列的逆序数与列标排列的逆序数的奇偶性同时改变,因而它们的逆序数之和的奇偶性不变。 定理1 n阶行列式也可定义为 证明由定义1和引理即可证得。 性质1 行列式与它的转置行列式相等(由定理1即可证得)。 (根据性质1知对行成立的性质对列也成立) 性质2 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。 证明利用定理1和代数余子式的定义即可证得。 性质3 如果行列式中有两行(两列)元素对应相等,则此行列式等于零。 证明(利用递推方法来证)设行列式中第k行和第j行的元素对应相等,由性质2可知 又A is=(-1)i+s(s=1,2,…,n),根据性质2,M i+s又可以展开成n-1项的和,每一项都是一实数与n-1阶行列式的乘积,以此类推,M i+s 总可以展开成一个实数与一个二阶行列式的乘积之和,即 (mi为实数,Di为含有原行列式中k行和j行的二阶行列式),这个二阶行列式的两行就是原n阶行列式中的k行j行对应的元素,由于这

63、矩阵、行列式的运算及性质

第62课矩阵、行列式的运算及性质 【教学目标】 1. 理解矩阵的概念,掌握矩阵的算法,会利用矩阵解线性方程组。 2. 理解行列式的概念,掌握行列式的算法,会利用行列式判断二元(三元)一次方程组解的情况,了解三阶行列式的性质并能运用于计算。 【教学难点】 1. 会利用矩阵解线性方程组 2. 利用行列式判断二元(三元)一次方程组解的情况。 【教学重点】 1.用矩阵表示实际问题中的相关量,运用矩阵的运算解决实际问题。 2.二阶(三阶)行列式的算法, 利用行列式判断二元(三元)一次方程组解的情 况。 【知识整理】 1.矩阵是一个数表,可以用来表示块状数据; 2.矩阵的运算,如:加法、减法、数乘、乘法等; 3.矩阵的基本变换。 4.行列式是表示特定算式的记号,其结果是一个数; 5.对于给定的方程组,能正确找出D 、x D 、y D ,并根据它们的值判断方程组解的情况,或写出方程组的解。 【例题解析】 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】已知矩阵2 793 1 5A ??= ?--?? ,3 14 026B -?? ?= ? ?-? ?,641 1103C -?? ? = ? ?-? ? ,计算: (1)()A B C +; (2)()B C A +; (3)B A C A +; (4)从上述计算结果中你能得到什么结论? 【解答】(1)11 110()24 13A B C ?? += ?-?? ;(2)15 1842()23 46101311 33B C A ---?? ?+=-- ? ?---? ? ;(3)15 184223 46101311 33BA CA ---?? ?+=-- ? ?---? ? ; (4)矩阵运算不满足交换率,但满足分配率。 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】一家水果店出售5种水果,它们的单价和利润如表1所示。该家水果店的经理要在计算 每笔生意营业额的同时,计算该笔生意的利润额。假设现有3位顾客购买水果,他们的购买量如表2所示。试计算每笔生意的营业额和利润额。 表1: 表2:

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

行列式的性质及应用

题目 (1) 摘要 (1) 正文 (1) 一.问题的提出 (1) 二.排列 (1) 三.行列式 (1) 四.n阶行列式具有的性质 (2) 五.行列式的计算 (3) (一)数字型行列式的计算 (3) (二)行列式的概念与性质的例题 (6) (三)抽象行列式的计算 (6) (四)含参数行列式的计算 (7) A 的证明 (7) (五)关于0 (六)特殊行列式的解法 (8) (七)拉普拉斯定理 (9) 参考文献 (10) 致谢 (11) 外文页 (12) 行列式的性质及计算

王峰 摘 要 在线性代数中,行列式是一个重要的基本工具,直接计算行列式往往是困难和繁琐的,特别当行列式的元素是字母时更加明显,因此熟练地掌握行列式的计算方法是非常重要的。行列式的重点是计算,应当在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶,四阶行列式,也会计算简单的n 阶行列式的值.计算行列式的基本方法是:按行(列)展开公式,通过降阶来实现。但在展开之前往往先通过对行列式的恒等变形,以期新的行列式中能构造出较多的零或有公因式,从而可简化计算,行列式计算的常用技巧有,三角化法,递推法,数学归纳法,公式法。 关键词 三角化法 递推法 数学归纳法 公式法 一.问题的提出 在实践中存在许多解n 元一次方程组的问题,如 ①11112212112222 a x a x b a x a x b +=??+=? ②11112211121222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 对于①我们可以解出,但对于②,我们有什么方法解出呢?我想可以用行列式的知识。 二.排列 定义1 由1.2……n 组成的一个有序数组称为一个n 级排列。n 级排列的总数为 (1)(2)21!n n n n ?-?-?= (n 的阶乘个)。 定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它 们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。 定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 例1 决定以下9级排列的逆序数,从而决定它们的奇偶性 134782695 解 逆序数为10,是偶排列。 三.行列式: 定义(设为n 阶):n 阶行列式 是取自不同行不同列的n 个元素的乘 积的代数和,它由n !项组成,其中带正号与带负号的项各占一半,12()n j j j τ 表示排列 12n j j j 的 12121211 12121222()121 2(1)n n n n n j j j j j nj j j j n n nn a a a a a a A a a a a a a τ= = -∑

2.4 矩阵运算的转置、方阵行列式性质

§2.4 矩阵的转置性质和行列式性质 回顾 乘法:记作.C AB = 11221 s ij i j i j is sj ik kj k c a b a b a b a b ==+++=∑ ()1,2,;1,2,,,i m j n == 不是所有矩阵都可以相乘的,必须左边矩阵的列数=右边矩阵的行数。m l l n m n A B C ???=,它们的积为:左边矩阵的各行与右边矩阵的 各列对应元素积的和。 注:①一般地,.AB BA ≠ ②两个非零矩阵的积可能是零矩阵。(实数中不可能有的) (3)若AB=AC ,不一定有B=C 。 说明矩阵相乘,两个矩阵的顺序非常重要。 (4) 乘方()m A m N +∈,A 是n 阶方阵。 0A E =,,m k m k A A A +=().k m mk A A =().k k k AB A B ≠ 新授:矩阵的乘法运算 一、转置运算及性质 1)();T T A A =();T T T A B A B +=+();T T A A λλ=().T T T AB B A = 例6:已知171201,423,132201A B -??-?? ?== ? ??? ??? ().T AB 求 解法一:171201423132201AB -??-?? ?= ? ??? ??? 0143,171310-??= ??? ()0171413.310T AB ?? ?∴= ? ?-?? 解法二:() T T T AB B A =142217*********???? ???= ??? ???--????0171413.310?? ?= ? ?-?? 练习:

习题1-3 行列式的性质

1、用行列式的性质计算下列行列式: () 134215352152809229092 ; 【分析】可见行列式中1,2两列元素大部分数字是相等的,列差同为1000,易于化为下三角行列式,于是, 【解法一】 3421535215280922909221 c c -34215100028092100012 r r -61230 280921000 下三角6123000。 【解法二】 34215352152809229092 12 r r -6123 6123 2809229092 21 c c -6123 280921000 下三角6123000。 () 2ab ac ae bd cd de bf cf ef ---; 【分析】各行、列都有公因,抽出后再行计算。 【 解 】 ab ac ae bd cd de bf cf ef ---123 a r d r f r ←←← b c e adf b c e b c e ---12 3 b c c c e c ←←←1111 111 1 1 adfbce --- 上三角2(1)2abcdef -?-?4abcdef =。 () 31111111111 1 1 1111 ------; 【分析】将第一行加到以下各行即成为上三角行列式, 【解】 1111111111 1 1 1111 ------213141 r r r r r r +++1111022200220002 上三角3 12 ?8=。 2、把下列行列式化为上三角形行列式,并计算其值:

() 12240 4135 31232 051-----; 【解法一】 224 4 1353 1232 5 1 -----21 c c ?2240 143513230 2 5 1 ------21 r r ?1435 2240 13230 2 5 1 ----- 270=-。 【解法二】 2 240 4 1353 1232 5 1 -----1 2 r ←1120 41352 31232 5 1 -----21 c c ?1120 1435 213230 2 5 1 ------ 上三角221(1)(135)??-?-270=-。 () 21234 234134124123 。 【分析】该行列式属于同行元素之和相等的类型,应将2,3,4列加到第1列: 【解】 1234 234134124123 1234 () c c c c +++10234 103411041210123213141 r r r r r r ---10 234011 3 02 22 111 ------ 3242 2 r r r r -+102 340113004 40 4 --- 上三角2 101(4) ??-160=。 3、设行列式 ij a m =(,1,2,,5)i j =L ,依下列次序对ij a 进行变换后,求其结果: 交换第一行与第五行,再转置,用2乘所有元素,再用(-3)乘以第二列加到第四列,最后用4除第二行各元素。 【解】 ()1交换第一行与第五行,行列式变号,结果为m -; ()2再转置,行列式的值不变,m -;

线性代数性质公式整理

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 这里表示对所有n阶排列求和。式称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代

数余子式,记为,即。 6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如, 称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则

几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()123231111001 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000000 n n n a a a a D a a ?? --- ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

第一讲A 行列式的基本内容和行列式的几种形式

第一讲 行列式 一、内容提要 (一)n 阶行列式的定义 ∑-=????? ? ??????= n n j j j njn j j j j j nn n n n n a a a a a a a a a a a a D 21212211) (2 1 2222111211) 1(τ (二)行列式的性质 1.行列式与它的转置行列式相等,即T D D =; 2.交换行列式的两行(列),行列式变号; 3.行列式中某行(列)元素的公因子可提到行列式外面来; 4.行列式中有两行(列)元素相同,则此行列式的值为零; 5.行列式中有两行(列)元素对应成比例,则此行列式的值为零; 6.若行列式中某行(列)的元素是两数之和,即 nm n n in in i i i i n a a a b a b a b a a a a D 212 21 111211+++=, 则 nn n n in i n nn n n in i n a a a b b b a a a a a a a a a a a a D 2 1 121112112 1 121 11211+= 7.将行列式某行(列)的k 倍加到另一行(列)上去,行列式的值不变。 (三)行列式依行(列)展开 1.余子式与代数余子式 (1)余子式的定义 去掉n 阶行列式D 中元素ij a 所在的第i 行和第j 列元素,剩下的元素按原位置次序所构成的n-1阶行列式称为元素ij a 的余子式,记为ij M (2)代数余子式的定义 ij a 的代数余子式的记为ij j i ij ij M A A +-=) 1(, 2.n 阶行列式D 依行(列)展开 (1)按行展开公式 ∑ =?? ?≠==n j kj ij k i k i D A a 1 (2)按列展开公式

行列式的性质

教学单元教案设计

教学单元讲稿 一、复习提问与上次课作业典型问题答疑 1. 二、三阶行列式的定义及计算法则 2. n 阶行列式的定义,并讲解P23 T1(1)(2) P23 T2 T3 二、教学单元名称 第三节 行列式的性质 三、课程导入 复习导入 四、分析思路 首先给出对换的概念及对换如何改变排列的奇偶性,再推导出出行列式的6条性质,最后通过讲解几个例题让学生掌握行列式的性 质。 五、讲授内容 第三节 行列式的性质 对换 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换. 将相邻两个元素对调,叫做相邻对换. 例:b b b a a a l ΛΛ11 ——b b a b a a l ΛΛ11. 定理1 一个排列中的任意两个元素对换,排列改变奇偶性. 推论

奇排列调成标准排列的对换次数为奇数, 偶排列调成标准排列的对换次数为偶数. 证明 : 由定理1知对换的次数就是排列奇偶性的 变化次数,而标准排列是偶排列(逆序数为0),因此知推论成立 定理2 :n 阶行列式为: .)1(211 21 2322211312 112 1 n p p p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中t 为n p p p Λ21的逆序数. (以4阶行列式为例,对证明过程作以说明) (补充)定理3 n 阶行列式也可定义为 .)1(1 2 121 11 21 2322211312 11n q p q p q p t n n n n a a a a a a a a a a a a ΛΛ ΛΛΛΛΛΛ -∑= 其中n p p p Λ21和 n q q q Λ21是两个n 级排列,t 为行标排列逆序数与列标排列逆序数的和.

1-5-2 行列式的性质

1-5-2 行列式的性质及计算 一、行列式的基本性质 对方阵A,称AT 的行列式为A 的转置行列式。 1、T A =A ,即)det(T A =)det(A 。 如: d c b a = d b c a =ad-bc。 作用:凡对行列式行成立的性质,对列也成立。 2、每次对换两行(列)的位置,行列式反号。 如: b a d c =- d c b a =bc-ad。 若方阵A?? ???→?) (列对换一次行B,则A=-B。 若方阵A?????→?) (t列次对换行作B,则A=(-1)t B。 3、若方阵A中有两行(列)相同,则A=0。 证明:设A中第i行与第j行相同,对换i,j两行得:A=-A,所 以2A=0,得A=0。 4、 (i)nn n n in i i n a a a ka ka ka a a a 21 21 112 11 =knn n n in i i n a a a a a a a a a 21 2111211(i) 例如: d c b a 22=2 d c b a = d c b a 22。 即:若方阵A?? →?i r k )(B,则B=kA,其中,数k≠0。 注意:数乘行列式kA,与数乘矩阵kA的区别。如:

?? ????d c b a k =kd kc kb ka =k2 d c b a ≠kd c b a 。 推论1:对n阶方阵A,有kA =A k n 。 作业:P76 1(2) 推论2:若A中有零行(列),则det (A )=0。 证明:据行列式定义知,A中每一项均为0,故代数和为0。 推论3:有两行(列)成比例的行列式值为零。 例如:9 2136202 3 191=0 [第1列和第3列成比例] 5、单行(列)可分性:[P42 6-19行] (i)nn n n in in i i i i n a a a c b c b c b a a a 2 1 221 1112 11 +++ =(i)nn n n in i i n a a a b b b a a a 21 21 11211+nn n n in i i n a a a c c c a a a 21 2111211(i) 注意:行列式相加与矩阵相加的不同。如: ???? ??++++2121212 1d d c c b b a a =??????1111 d c b a +?? ? ???22 22 d c b a 。但是 2 12 12121d d c c b b a a ++++= 211211d d c b b a +++ 2 12 212d d c b b a ++ = 1 1 11d c b a + 2 1 21d c b a + 1 2 12d c b a + 2 2 22d c b a ≠ 1 1 11d c b a + 2 2 22d c b a 。 作业:P53 思考题3 P73 16(1) P78 3(3)

线性代数之行列式的性质及计算讲解学习

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即

111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 11121112212 n i i i i in in n n nn a a a a b a b a b a a a +++=L L L L L L L L L L L 1112112 12 n i i in n n nn a a a a a a a a a +L L L L L L L L L L L 111211212 n i i in n n nn a a a b b b a a a L L L L L L L L L L L . 证: 由行列式定义 1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑L L L 12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑L L L L L L 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 111211212 i j n r kr i i in n n nn a a a a a a a a a +=L L L L L L L L L L L 11121112212 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++L L L L L L L L L L L 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值.

工程数学教案1-1行列式的定义与性质

教案头 教学详案 一、回顾导入(20分钟) ——在中学里,通过代入消元法和加减消元法求解二元、三元一产供销线性方程组。例如方程组 ???=+=+22221 211 212111b x a x a b x a x a 中,未知量1x 、2 x 的系数可以用以下的记号来表示:22 211211a a a a ,从而引入新课。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、二阶与三阶行列式 1. 二阶行列式 定义 由四个数排成二行二列(横排称行、竖排称列)的数表 ) 1(, 22 2112 11a a a a 表达式21122211a a a a -称为数表(1)所确定的二阶行列式,并记作 ) 2(,22 21 12 11a a a a 即 2112221122 2112 11a a a a a a a a D -== 计算方法 对角线法则 21 12221122 2112 11a a a a a a a a D -== 。 2. 三阶行列式 定义 由九个数排成三行三列的数表 ) 3(,33 3231232221121211a a a a a a a a a

表达式 (4)称为由(3)所确定的三阶行列式,并记作 ) 3(.33 3231 232221121211a a a a a a a a a 即 计算方法 1)对角线法则 2)沙路法 二、全排列及其逆序数 定义 把n 个不同的元素排成一列,叫做这n 个元素的全排列(也简称为排列)。 定义 对n 个不同的元素,先规定各元素之间有一个标准次序,于是在这n 个元素的任一全排列中,当某 两个元素的先后次序与标准次序不同时,就说有一个逆序。 定义 一个排列中的所有逆序的总数叫做这个排列的逆序数。 定义 若一个排列中的所有元素按标准次序排列,则称之为标准排列(自然排列)。 定义 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。 三、 n 阶行列式的定义 定义 由2 n 个数组成的n 阶行列式等于所有取自不同行不同列的n 个元素的乘积的代数和 ∑-n np p p t a a a 2121)1(。记作 ) 4(, 312213332112322311322113312312332211a a a a a a a a a a a a a a a a a a ---++.31221333211232231132 2113312312332211a a a a a a a a a a a a a a a a a a ---++=33 3231 232221 13 1211 a a a a a a a a a .312213332112322311a a a a a a a a a ---32 2113312312332211a a a a a a a a a ++=3222211211a a a ++-31211211a a a a a a . 2122221 11211 nn n n n n a a a a a a a a a D =33 32 31 232221131211a a a a a a a a a 332211a a a =.322311a a a -322113a a a +312312a a a +312213a a a -332112a a a -

关于-行列式一般定义和计算方法

关于行列式的一般定义和计算方法 n 阶行列式的定义 n 阶行列式 nn n n n n a a a a a a a a a 2 122221112 11= ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ 2 N 阶行列式是 N ! 项的代数和; 3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积; 特点:(1)(项数)它是3!项的代数和; (2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为: (3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. § 行列式的性质 性质1:行列式和它的转置行列式的值相同。 即 nn n n n n a a a a a a a a a 2 122221112 11= nn n n n n a a a a a a a a a 212221212111; 行列式对行满足的性质对列也同样满足。 32 2311332112312213a a a a a a a a a ---32 21133123123322113332 31 232221 13 1211 a a a a a a a a a a a a a a a a a a D ++==(1

性质2 互换行列式的两行(列),行列式的值变号. 如: D=d c b a =ad-bc , b a d c =bc-ad= -D 以r i 表第i 行,C j 表第j 列。交换 i ,j 两行记为r j i r ?,交换i,j 两列记作C i ?C j 。 性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值 等于零。 性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k 的结果等于用这个常数k 乘这个行列式。(第i 行乘以k ,记作r i k ?) 推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行 列式符号的前面。 推论2:如果一个行列式的某一行(或某一列)的所有元素都为零,那么行 列式值等于零。 推论3:如果一个行列式的某二行(或某二列)的对应元素成比例,那么行列 式值等于零。

行列式的定义和性质及若干应用论文

行列式及其在初等数学中的应用 【摘 要】行列式是数学研究中的一类重要的工具之一, 它的应用非常广泛. 本文从以下四个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式;综述了行列式在解析几何中的若干应用,最后列举三阶行列式在高中数学的应用 【关键词】: 行列式; 矩阵; 线性方程组; 秩; 因式分解; 平面组; 点组 引言 行列式是研究数学的重要工具之一. 例如线性方程组、多元一次方程组的解、三维空间中多个平面组或多个点组的相关位置、初等代数、解析几何、n 维空间的投影变换、线性微分方程组等, 用行列式来计算是很便利的. 本文进一步研究探讨了行列式在线性方程组、初等代数、解析几何及高中数学四个方面的应用。 1 行列式的定义和性质 1.1行列式的定义 行列式与矩阵不同,行列式是一个值,它是所有不同行不同列的数的积的和,那些数的乘积符号由他们的逆序数之和有关,逆序数为偶数,符号为正,逆序数为奇数,符号为负。 例1 n n D n 000 00010020 0100 计算行列式 . 解: n D 不为零的项一般表示为!1n-1n a a a a nn n n 1122 ,故!) 1(2 ) 2)(1(n D n n n 1.2行列式的性质 行列式有如下基本性质:1、行列式的行列互换,行列式不变;2、互换行列式中的两行或者两列,行列式反号;3、行列式中某行乘以一个数等于行列式乘以这个数;4、行列式中某行或者某列乘以一个不为零的数,加到另外一行或者列上,行列式不变;5、行列式的某两行或者某两列成比例,行列式为零; 6、行列式的某一列或者某一行可以看成两列或两行的和时,行列式可拆另两个行列式的和。 例 2 一个n 阶行列式ij n a D 的元素满足,,,2,1,,n j i a a ji ij 则称反对称行列式,证明:奇阶数行列式为零. 证明: 由 ji ij a a 知ii ii a a ,即n i a ii ,2,1,0 .故行列式可表示为

相关主题
文本预览
相关文档 最新文档