当前位置:文档之家› 限制串联谐振过电压的主要措施

限制串联谐振过电压的主要措施

限制串联谐振过电压的主要措施
限制串联谐振过电压的主要措施

限制串联谐振过电压的主要措施

XZB系列变频串联谐振由变频电源、激磁变压器、电抗器和电容分压器组成。被试品的电容与电抗器构成串联谐振连接方式;分压器并联在被试品上,用于测量被试品上的谐振电压,并作过压保护信号;调频功率输出经激励变压器耦合给串联谐振回路,提供串联谐振的激励功率。变频串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L和试品C串联谐振,谐振电压即为加到试品上电压。变频谐振试验装置广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。

(1) 提高开关动作的同期性:由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。

(2) 在并联高压电抗器中性点加装小电抗:用这个措施可以阻断非全相运行时工频电压传递及串联谐振。

(3) 破坏发电机产生自励磁的条件,防止参数谐振过电压。

(4) 严格执行调度规程:在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。(5) 避免操作过电压:在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器,切除回路电容,终止谐振,防止隐患发展形成事故。

(6) 中性接地点:增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压。

(7) 继电保护:针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施 孟繁宏,李学山,张占胜 摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。 关键词:铁路;电力;过电压;抑制措施 Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral point of the voltage transformer or connecting the resonance suppressor. Key words: Railway; power supply system; over-voltage; suppression measure 中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04 0 概述 在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。 1 谐振过电压产生的条件 1.1 内部条件 铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。 母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感 作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电); 李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。 1.2 外界激发条件 激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。 2 过电压种类及特点 2.1 过电压种类 铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。 2.1.1 基波谐振 通常在配电所全所停电作业完成后向带有电 22

浅谈热电厂谐振过电压及抑制措施

浅谈热电厂谐振过电压及抑制措施 在电力系统中性点经消弧线圈接地系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备。本文针对热电厂发生的故障进行了全面的分析论述,并提出解决问题的措施 标签:真空断路器消弧线圈谐振过电压抑制措施 1 问题出现 2008年10月20日15时40分,运行人员启动#3炉磨煤机产生操作过电压,造成已运行的#3炉排粉电机线圈开路,#4炉引风机电缆一相击穿接地,引起运行中高压电压互感器烧毁及一次高压熔丝烧断。#3炉、#4炉、#1机、#3机相继停止运行,终止对外供汽,反送电时间长达六小时之久,造成重大经济损失。 2 事故分析 2.1 我厂磨煤机、排粉电机小车开关是真空断路器。真空断路器由于灭弧能力强、电气寿命長、现场维护方便、技术含量高等优点,在电力系统35kV及以下电压等级中被广泛应用。但是,真空断路器在开断运行过程中出现过电压问题时有发生,已成为不可忽视的重要环节。产生过电压分析如下: 2.1.1 真空断路器由于具有高速灭弧能力,在切断电路时,往往在电流过零前被强行开断,在断弧瞬间储藏在负载内的电感与电容之间的电磁能量转换将在负载上产生过电压,这比一般断路器要突出,尤其在最先断开相触头间,有可能因过电压引起电弧重燃,而产生过电压。 2.1.2 如果由于某种原因引起真空开关真空度降低,将严重影响真空断路器开断过电流的能力,以至承受不住恢复电压发生电弧重燃,回路中出现高频电流,高频电流过零时,出现电弧熄灭、重燃循环过程。由于负载侧存在L-C振荡回路(电机线圈、电缆储能元件),则产生很高过电压。 2.2 消弧线圈运行方式存在问题 我厂共有两组消弧线圈,#1发电机中性点、#2、3发电机中性点各接一组消弧线圈。出现上述事故前是#1、#3发电机,#3、#4炉在运行中,而#1发电机中性点消弧线圈没有投入运行,只有#3发电机中性点投入运行。前述故障发生后,发生过电压,#3发电机循环泵运行中突然停运,备用循环泵联动不成功,汽轮机真空急剧下降,#3发电机被迫停机,也就是说电厂消弧线圈脱离系统,形成谐振,机、炉辅机相继跳闸,全厂停运。

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

串联谐振系统讲解

在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。 串联谐振的三大应用 高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而 应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。 1.在电缆试验中的应用 城乡电网中电缆的大量使用,其故障时有发生。为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以 避免直流试验的累积效应对电缆造成损伤。

国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。 ①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。 ②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。 ③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。 很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。 通常交流电力电缆的电容量较大,试验电流也很大,调感式设备的体积将非常巨大并且电感调节也很困难,而调频式装置则灵活性更强,更易于实现。因此,电缆现场交流耐压试验多利用变频谐振试验设备。三新可根据客户需求制造10KV、35KV、110KV、220KV、500KV 电压等级的串联谐振试验装置。 2.在GIS设备中的应用 气体绝缘开关设备在工厂整体组装完成以后或分单元进行调整试验,试验合格后以分单元运输的方式运往现场安装。运输过程中的振动、撞击等可能导致GIS元件或组装件内坚固件松动或移位;安装过程中,在联结、密封等工艺处理方面可能失误,导致电极表面刮伤或安装错位引起电极表面缺陷;安装现场可能从空气中进入悬浮尘埃。导电微粒杂质等,这些在安装现场通过常规试验将难以检查出来,对GIS的安全运行将是极大的威胁。 由于试验设备和条件所限,早期的GIS产品多数未进行严格的现场耐压试验。事故统计表明没有进行现场耐压试验的GIS大都发生了事故。因此,GIS必须进行现场耐压试验。 GIS的现场耐压主要包括交流电压、振荡操作冲击电压和振荡雷电冲击电压等3种试验方法。其中交流耐压试验是GIS现场耐压试验最常见的方法,它能够有效地检查异常的电场结构(如电极损坏)。 目前,由于试验设备和条件所限,现场一般只做交流耐压试验。IEC517和GB7674认定对SF6气体绝缘试验电压频率在10~300Hz范围内与工频电压试验基本等效。国内外大多采用调频式串联谐振耐压试验装置进行GIS现场交流耐压试验。

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施 发表时间:2019-04-11T13:54:14.127Z 来源:《河南电力》2018年19期作者:唐振华 [导读] 谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中 唐振华 (福建省万维新能源电力有限公司福建福州 350003) 摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。 关键词:谐振过电压;预防;技术措施 1.谐振的危害性 在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。 目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。 2.产生谐振过电压的因素 2.1互感器铁磁谐振过电压的因素 电压互感器伏安特性的影响。铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。考虑到电力系统中运行着的电压.互感器及系统的具体情况总与模拟情况有差异,因此,对于不同型号、不同出厂日期、不同厂家制造的电压互感器,其谐振区域应根据实际试验加以确定。 电压互感器损耗的影响。运行着的互感器,一般损耗较大,例如,35kV的互感器其阻尼系数r/XL为>15/10000.损耗电阻大,可以吸收一部分能量,对谐振有一定的抑制作用,特别是对1/2频谐振,这种抑制作用很明显。 电压互感器结构的影响。现场运行着的电压互感器,既有三台单相电压互感器组,也有三相五柱电压互感器,它们在谐振激发上是不同的。试验研究表明,单相电压互感器组的起振电压较三相五柱电压互感器的低,也就是说,单相电压互感器组容易激发谐振。这主要是由于两者碰路结构的差异,造成零序阻抗不同所致。 单相互感器组零序磁通的磁路和正序磁通的磁路一样,每相都有自己的闭合回路,因而零序阻抗等于正序阻抗。对三芯玉柱电压工感器,由于零序磁通经过两个边往返回,所以其磁路长,而且铁芯截面小,因而其零序磁通磁阻较单相互感器组要大得多。由上所述,谐振是由于零序磁通造成的,三芯五柱互感器零序磁通遇到的磁阻大,谐振就不容易产生。 应当指出,由于磁路的差异,计算和测量这两类电压互感器零序阻抗时所用的电压是不同的。由于电网发生谐振时,作用在电压互感器上的电压是正序电压与零序谐振电压的选加,对于单相互感器组,正序电压和零序电压合成下的服抗值接近干线电压下的阻抗值,因此,XL为额定线电压下的激磁感抗。对于三芯玉柱互感器,零序电压接近于相电压,正序电压对零序电压阻抗影响不大,所以应取相电压下的相应感抗值。 2.2电网零序电容的影响 实践可知,谐振区域与阻抗比XC0/XL有直接关系,对于1/2分频谐振区,阻抗XC0/XL约为0.01~0.08;基波谐振区,XC0/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0.当改变电网零序电容时,XC0/XL 随之改变,回路中可能出现由一种借振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。在现场,一般可以测量出电网的对地电容电流,进而计算出对地电容,由XC0/XL估算该电网是否处于谐振区。若在诸振区,再进一步判定可能是哪一种谐振。除上述情况外,电网零序电容还对谐振过电压、过电流的大小和谐振频率有一定影响。 2.3其他影响因素 激发程度。实际激发试验表明,即使阻抗参数XC0/XL落在诸振区域内,也并不是每次都能激发起稳定的谐振。这是因为谐振的产生不仅与XC0/XL有关,还与电压冲击、涌流大小、合闸相角等激发因素有关。激发程度不同时,互感器饱和程度有异,因此谐振特性就不相同。 回路的阻尼作用。当激发起中性点不稳定过电压后,元论是基波、三次谐波还是1/2分次谐波谐振,总是由电源供给谐振所需的能量。如果输入和输出的能量得以平衡,诸波将维持下去;如果能量平衡关系一旦被破坏,则谐振便会自动消除。根据谐振原理,增大回路电阻可使诸振区域缩小,维持谐振所需的电压提高,从而能阻尼振荡。 电网频率的变动。电网频率的变化,使谐振回路中的阻抗参数发生变化,是导致谐振现象不稳定的重要原因。 电网频率变动可能使谐振现象突然发生;突然消失;也可能使谐振由一种状态转变为另一种状态。 3.采取措施 一是防止电压互感器铁磁谐振措施。选择励磁特性好的电压互感器,使其工作点在伏安特性的线性部分,当有激发因素时,铁芯不饱

串联谐振电路和并联谐振电路的特性

串联谐振电路和并联谐振电路的特性 一..并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频 电路. 2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容. 3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈. 所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真) 二.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波 器. 2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈. 3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容. 并联谐振与串联谐振 2010-03-03 15:49:30| 分类:电子电路| 标签:|字号大中小订阅 1、对于理想的L、C元件,串联谐振发生时,L、C元件上的电压大小相等、方向相反,总电压等于0(谐振阻抗为零)。而并联谐振发生时,L、C元件中的电流大小相等、方向相反,总电流等于0(谐振阻抗为 无穷大)。故有如题的称呼。 2、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。即释放的磁能完全转 换成电场能储存进电容;而在另一时刻电容放电,又转换成磁能由电感储存。 3、在串联谐振电路中,由于串联——L、C流过同一个电流,因此能量的交换以电压极性的变化进行;在 并联电路中,L、C两端是同一个电压,故能量的转换表现为两个元件电流相位相反。 4、谐振时电感和电容还是两个元件,否则不能进行能量交换;但从等效阻抗的角度,是变成了一个元件: 数值为零或无穷大的电阻。 5、串联谐振是电流谐振,一般起电流放大作用。如老式收音机通过串联谐振将微弱电流信号放大。并联谐 振是起电压放大作作。

串联谐振在工作中的几个特点

串联谐振在工作中的几个特点 串联谐振顾名思义就是在电阻、电感和电容的串联电路中,出现电路的端电压和电路总电流同相位的现象,叫做串联谐振。串联谐振的特点是指电路呈纯电阻性,端电压和总电流同相,此时阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。在电力工程上,由于串联谐振会出现过电压、大电流,以致损坏电气设备,所以要避免串联谐振。在电感线圈与电容器并联的电路中,出现并联电路的端电压与电路总电流同相位的现象,叫做并联谐振。并联谐振电路总阻抗最大,因而电路总电流变得最小,但对每一支路而言,其电流都可能比总电流大得多,因此电流谐振又称电流谐振。并联谐振不会产生危及设备安全的谐振过电压,但每一支路会产生过电流。 串联谐振在工作中的五大特点是什么? 特点一:电稳定性、可靠性高。系统采用进口功率元件作为功率变换的核心,电压输出和频率输出稳定,电磁兼容设计合理,保护功能完善,经过多次高压直接对地短路的测试,系统仍然保持完好,同时系统也有很强的过载能力。 特点二:自动调谐功能强大。系统自动调谐时,从30Hz到300Hz自动扫频,显示扫频曲线,用户能直观地看到系统调谐过程;扫频完成后,系统根据扫频初步找到的谐振频点,在其±5Hz范围内以0.01Hz为分辨率进行频率细扫,最后精确锁定谐振频率

特点三:支持多种试验模式。系统支持"自动调谐+手动调压","自动调谐+自动调压","手动调谐+手动调压"等试验模式,推荐使用"自动调谐+手动调压"模式,既能快速找到谐振点,又能通过手动调压控制试验过程,安全性更高。 特点四:系统人机交互界面友好。试验参数设置、试验控制、试验结果等同屏显示,直观清晰,并具有自动计时及操作提示功能。全触摸屏操作及显示,具备试验数据保存和查询功能 特点五:保护功能完善。具备零位保护(电压输出控制旋钮不在零位时,禁止系统启动),过压保护,过流保护,闪络保护等功能,保证了系统的可靠性。 电气装置试验安全措施 电气设备的预防性试验是判断设备能否继续投入运行,预防设备损坏及保证安全运行的重要措施。凡电气的设备,应根据本规程的要求进行预防性试验。本文主要介绍电气装置试验安全措施。 1)电气试验人员应充分了解被试验设备及所用仪器的性能。试验前应对设备及接线进行检查,电流互感器二次回路严防开路,电压互感器二次回路严防短路。 2)高压试验设备的外壳必须可靠接地,未接地前不得进行试验。 3)在现场进行高压试验时,工作区域应设临时遮拦,挂警告牌,并设专人警戒,禁止有人接近被试物体。 4)高压试验设备的操作人员应戴绝缘手套,穿绝缘靴或站在绝缘台上。高压试验时,应有监护人监视操作,无监护人员时,不得进行操作。

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

串联谐振试验常见问题及解决方法

https://www.doczj.com/doc/a51277184.html, 串联谐振试验常见问题及解决方法近年来,采用变频串联谐振原理进行交流耐压试验,是变电站高压设备绝缘检验最常 见的试验方法,这种试验装置(代表型号HZXZ 变频串联谐振耐压装置)得到广泛的应用。 本文希望通过总结串联谐振试验过程中遇到的常见问题,从而分析原因、得到常见问题的解 决方法。 串联谐振试验常见的问题有哪些呢? 1、变频源主机找不到谐振点。 2、变频源主机复位。 3、装置Q值偏低,即电压升不上去,或升不高。 4、供电电源跳闸。 串联谐振试验装置的构成及特点 HZXZ型串联谐振装置是运用串联谐振原理,使回路产生谐振电压加到试品上,串联 谐振装置目前分为变频式和调感式两大类。 HZXZ型串联谐振装置主要由变频源(变频式)、高压电抗器、可调式电抗器(调感 式)、电容分压器、激励变压器等几部分组成。广泛用于电力电缆、电力变压器、水力发电 机、GIS等大容量,高电压的电容性试品的交接和预防性试验! HZXZ型串联谐振装置具有需求电源容量小、设备重量体积小、改善输出波形、防止 短路电流烧伤、不会出现恢复过电压等优点。完全满足GB50150-2006以及 DL/T849.6-2004标准中各项指标的要求。

https://www.doczj.com/doc/a51277184.html, 图1、HZXZ串联谐振成套试验装置 工作中常见的解决方法 1.变频源主机找不到谐振点。 原因: 1)系统谐振点在主机的输出频率范围之外; 2)系统接线错误; 3)系统未可靠接地; 4)高压采样反馈信号开路或连接不可靠; 5)试品有故障。 排除方法: 1)检查接地装置可靠,接地连接线是否有断开点;

https://www.doczj.com/doc/a51277184.html, 2)检查励磁变压器的高低压线圈的通断; 3)检查每一只电抗器的通断; 4)检查分压器的信号线的通断; 5)检查分压器的高低压电容臂的通断; 6)装置自身升压时没有谐振点,还需要检查补偿电容器的通断; 2.主机复位 原因:主机供电电源波动;外界强磁场干扰;主机未可靠接地; 3.装置Q值偏低,即电压升不上去,或升不高。 现象: 1)调谐曲线是一条曲线,有较低的尖峰; 2)试验时一次电压较高,高压却较低,甚至在没有升到试验电压时,一次电压已经到达额定电压,回路自动降压; 原因: 1)电抗器与试品电容量不匹配,没有准确找到谐振点; 2)试品损耗较高,系统Q值太低; 3)励磁变压器高压输出电压较低; 4)高压连接线过长或没有采用高压放晕线。 图2、HAXZ型串联谐振木森电气研发生产制造中心 排除方法: 1)将补偿电容器并接入试验回路,加大回路电容量;

电网谐振过电压的防治

电网谐振过电压的防治 刘志清山东诸城市供电公司(262200)电网谐振过电压与系统结构、容量、参数、运行方式及各种自动装置的特性有关。谐振过电压,一般因操作或故障引起系统元件参数出现不利组合而产生。诸城市电网10~35kV系统为不接地或经消弧线圈接地系统,电网中存在大量星形接线的电压互感器,其一次绕组直接接地,成为电网对地电容电流、高次谐波电流的充放电途径,此电流必然通过电压互感器一次绕组,使电压互感器铁心深度饱和,在电网接地、倒闸操作、运行方式变化等情况下,将出现电网电压不稳定,甚至出现谐振。另外,近年来热电厂联网数量不断增多,发电机电感参数周期性变化将引起发电机自励磁(参数谐振)过电压。 谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加强对其防治非常必要。 诸城金安热电厂并网发电后,数月时间在其并网的35kV系统内连续发生3次谐振过电压。谐振时,相电压最高达到41kV、最低16kV,持续时间15min左右。谐振期间,采用切除电容器等操作电网手段改变电网参数后,只能使谐振暂时消除几分钟,然后再次谐振,所幸未导致电网设备损坏。 谐振发生后,经过分析论证热电厂联网发电机是该区域35kV电网谐振源,该区域35kV电压互感器一次绕组中性点接地点多达9

个,电网抗谐振过电压能力薄弱且无任何防治措施,致使电网具备了发生谐振过电压的条件。为此,应从技术上采取措施。 为防止并网运行发电机电感参数周期性变化引起的自励磁过电压,要求并网发电热电厂必须采取如下措施: ·尽量避免发电机直接空充线路,无法避免时应确保发电机容量大于并网空载线路的充电功率; ·避免发电机带空载线路启动,或避免以全电压向空载线路合闸; ·要求并网运行的热电厂发电机采用快速励磁自动调节器,限制发电机同步励磁过电压; ·并网发电的热电厂35、10kV母线上的星形接线电压互感器,其中性点一次侧加装消谐器。二次侧开口三角加装二次消谐器或合适消谐电阻。 为防止不接地系统或经消弧线圈接地系统中,因合闸充电或在运行时接地故障消除等原因的激发,使中性点接地的电压互感器过饱和可能产生的谐振过电压,采取如下措施: ·优先选用励磁特性饱和点较高的抗谐振型电压互感器; ·减少同一系统中电压互感器高压侧中性点接地数量,除电源侧电压互感器高压侧中性点接地外,其它电压互感器中性点尽可能不接地; ·在电压互感器开口三角绕组装设二次消谐器或消谐电阻; ·在电压互感器一次绕组中性点装设一次消谐器。 采用性能良好的设备,提高运行维护水平,避免下列条件下的铁

RLC串联谐振电路

RLC 串联谐振电路 一、知识要求: 理解RLC 串联电路谐振的含义;理解谐振的条件、谐振角频率、频率;理解谐振电路的特点,会画矢量图。 二、知识提要: 在RLC 串联电路中,当总电压与总电流同相位时,电路呈阻性的状态称为串联谐振。 (1)、串联谐振的条件:C L C L X X U U ==即 (2)、谐振角频率与频率:由LC f LC :C L πωωω21 1 10= == 谐振频率得 (3)、谐振时的相量图: (4)、串联谐振电路的特点: ①.电路阻抗最小:Z=R ②、电路中电流电大:I 0=U/R ③、总电压与总电流同相位,电路呈阻性 ④、电阻两端电压等于总电压,电感与电容两端电压相等,相位相反,且为总电压的Q 倍,。即:U L =U C =I 0X L =I 0X C = L X R U =U R X L =QU 式中:Q 叫做电路的品质因数,其值为: CR f R L f R X R X Q C L 0021 2ππ= === >>1(由于一般串联谐振电路中的R 很小,所以Q 值总大于1,其数值约为几十,有的可达几百。所以串联谐振时,电感和电容元件两端可能会产生比总电压高出Q 倍的高电压,又因为U L =U C ,所以串联谐振又叫电压谐振。) (5)、串联谐振电路的应用: 适用于信号源内阻较低的交流电路。常被用来做选频电路。 三、例题解析: 1、在RLC 串联回路中,电源电压为5mV ,试求回路谐振时的频率、谐振时元件L 和C 上的电压以及回路的品质因数。 解:RLC 串联回路的谐振频率为 Uc ?

LC f π210= 谐振回路的品质因数为 R L f Q 02π= 谐振时元件L 和C 上的电压为 mV 5mV 5C L C L R Q U U = == 2、 在RLC 串联电路中,已知L =100mH ,R =3.4Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数。 解:电容C 的电容量为 F 58.14 .6310141 )2(12 0μπ≈== L f C 回路的品质因数为 744 .31 .040028.620≈??== R L f Q π 3、已知某收音机输入回路的电感L=260μH,当电容调到100PF 时发生串联谐振,求电路的谐振频率,若要收听频率为640KHz 的电台广播,电容C 应为多大。(设L 不变) 解:LC f π210= = 12 6 10 101026014.321 --X X X X X ≈KHZ 6 23210260)1064014.32(1 )2(1-= = X X X X X L f C π≈238PF 四、练习题: (一)、填空题 1、串联正弦交流电路发生谐振的条件是 ,谐振时的谐振频率品质因数Q= ,串联谐振又称为 。 2、在发生串联谐振时,电路中的感抗与容抗 ;此时电路中的阻抗最 ,电流最 ,总阻抗Z= 。 3、在一RLC 串联正弦交流电路中,用电压表测得电阻、电感、电容上电压均为10V ,用电流表测得电流为10A ,此电路中R= ,P= ,Q= ,S= 。 4、在含有L 、C 的电路中,出现总电压、电流同相位,这种现象称为 。这种现象若发生在串联电路中,则电路中阻抗 ,电压一定时电流 ,且在电感和电容两端将出现 。 5、谐振发生时,电路中的角频率=0ω ,=0f 。 (二)、判断题

串联谐振和并联谐振区别

串联谐振和并联谐振区别1 1.从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特 点及其比较: 串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。 (1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。当逆变失败时,浪涌电流大,保护困难。 并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。 串联谐振和并联谐振区别2 (2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。 并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。这就是说,两者都是工作在容性负载状态。 (3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适的器件的浪涌电压吸收电路。此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器上高电压的影响,必须在晶闸管两端反并联快速二极管。并联逆变器是恒流源供电,为避免滤波电抗Ld上产生大的感生电势,电流必须连续。也就是说,必须保证逆变器上、下桥臂晶闸管在换流时,是先开通后关断,也即在换流期间(tγ)内所有晶闸管都处于导通状态。这时,虽然逆变桥臂直通,由于Ld足够大,也不会造成直流电源短路,但换流时间长,会使系统效率降低,因而需缩短tγ,即减小Lk值。 串联谐振和并联谐振区别3 (4)串联逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t 时间,否则会因逆变器上、下桥臂直通而导致换流的失败。 并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t ,否则会导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。 (5)串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。 (6)串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。在换流时,关断的晶闸管受反压的时间(t +tγ)较长。 串联谐振和并联谐振区别4

防止谐振过电压的措施

防止谐振过电压的措施 电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。 谐振过电压分为以下几种: 1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。 限制谐振过电压的主要措施有: 1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非

全相运行时工频电压传递及串联谐振。 3、破坏发电机产生自励磁的条件,防止参数谐振过电压。 4、严格执行调度规程 在运行方式上和倒闸操作过程中,防止断路器断口电容器与空 载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。它包括两个方面: ①应避免用带断口电容器的断路器切带电磁式电压互感器的 空载母线。 ②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的 空载母线进行合闸操作。 具体可采用下述方式来实现:在切空母线时,先拉开电压互 感器,对母线断电;在投空母线时,先断开被送电母线PT, 对母线送电,再合母线电压互感器。 5、避免操作过电压 在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振 时,应立即合上带断口电容器的断路器,切除回路电容,终止 谐振,防止隐患发展形成事故。 6、中性接地点 增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用

电网谐振过电压的限制方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电网谐振过电压的限制方 法(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6145-39 电网谐振过电压的限制方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 电力供电系统或者说在电力供电电网上,过电压现象十分普遍。如果没有防范措施,随时都可能发生,也随时都可以发现。引起电网过电压的原因很多。主要可分为谐振过电压、操作过电压和雷电过电压;其中谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。 为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以避免

形成严重的串联谐振回路;或采取适当的防止谐振的措施。 在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。 目前,我国35kV及以下配电网,仍大部分采用中性点不接地方式运行,一部分采用老式的消弧(消谐)线圈接地。从电网的运行实践证明,中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上得到解决,TV烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时

串联和并联电路的谐振

串联和并联电路的谐振 1、谐振 正弦稳态电路中,电流与电压一般相位不同,若电压超前电流,电路呈感性,若电流超前电压,电路呈容性。一定条件下,如电路参数配合适当,或频率选择合适,也可以使电压与电流同相位,称电路发生谐振。此时电路的输入阻抗中,,电路表现为电阻性,阻抗角。这时的频率称为谐振频率,用表示。 处在谐振状态的电路称为谐振电路 2、RLC串联谐振电路 输入阻抗

谐振条件 谐振角频率 串联谐振电路的电路参量 串联谐振电路的谐振特点: 1)电压与电流同相位,,电路输入阻抗具有最小值,则等效一条短路线。 2)当输入电压一定时,此时电流最大, 3)电感电压与电容电压大小相等,相位相反。

串联谐振亦称电压谐振。<?xml:namespace prefix = o /> RLC并联电路与RLC串联电路是对偶电路,利用对偶关系,可以很方便得到RLC谐振并联谐振电路的特点。 3、并联谐振 如图1所示并联谐振电路,输入导纳 图1

4、串、并联谐振电路的频率特性 正弦电流电路中电流、电压、阻抗、导纳等物理量随频率变化的特性称为频率特性。这些量的模和辐角与频率的关系又分别称为幅频特性和相频特性。 为了通用性和分析比较不同的电路频率特性问题的方便,一般采用归一化处理,得到归一化幅频特性等。如RLC串联电路中电流 式中为谐振电路中的电流。图19-2给出不同Q值电路的幅频特性曲线,亦称通用谐曲线。可见,回路Q值越高,曲线在谐

振点附近形状越尖锐,稍微偏离谐振频率,电流就急剧下降,说明电路读非谐振频率具有较强烈的抑制能力,这时选择性能好。我们用通频带来说明信号衰减不低于规定值的条件下,电路允许信号通过的频 率范围。当的值不小于时,所对应的频率区间 由此可见,谐振电路的通频带与Q值成反比。

相关主题
文本预览
相关文档 最新文档