当前位置:文档之家› 发动机原理复习要点汇编

发动机原理复习要点汇编

发动机原理复习要点汇编
发动机原理复习要点汇编

第一章 工程热力学基础

1) 工质(重点)

在工程热力学中,把实现热能与机械功相互转换的工作物质称为工质。

2) 热能的传递方式

热能可由工质通过传导、对流或辐射等方式来进行传递。

3) 热力学第一、第二定律-能量平衡方程(重点)

热力学第一定律:热和功可以相互转换,转换前、后的能量保持不变。

热力学第二定律:实现热功转换的条件以及自发过程进行的方向性和不可逆性

4) 理想气体状态方程。

在气体平衡状态下,理想气体的压力、温度和比容三者之间的关系式称为理想气体状态方程式,它是根据分子运动学说导出的。

对于1kg 理想气体,状态方程式为: pv=RT

对于mkg 理想气体,状态方程式为: pV=mRT

式中:V=mv ,它是mkg 气体所占的总容积。

5) 气体的热力过程主要有哪几种? (重点)

定容、定温、定压、绝热

第二章 发动机工作循环和性能指标

1) 理论循环分为哪几种形式? (重点)

理论循环包括三种形式:

a )定容循环;

b )定压循环;

c )混合循环

2) 发动机实际工作循环哪几个过程组成,哪几个行程组成? (重点)

实际工作循环则是由进气、压缩、燃烧、膨胀、排气五个过程所组成的,进气、压缩、供气、排气四个行程组成。

3) 发动机的指示性能指标、有效性能指标(有效功率、有效转矩、有效燃油消耗率)和强化指标(重点)

发动机的指示性能指标是以工质对活塞所做之功为计算基准的指标。指示指标不受动力输出过程中机械摩擦和附件消耗等各种外来因素的影响,直接反映由燃烧到热功转换工作循环进行的好坏。

指示功率:发动机单位时间内所做的指示功,用

P i 表示

发动机的指示功率(每秒所做的指示功)为: 10330260-??=??=in i n V p W P s i i i ττ

式中:τ ——行程数(四行程τ =4,二行程τ =2)。

指示燃油消耗率:指单位指示功的耗油量,也就是发动机每小时发出1kW 指示功率时所消耗的燃油量,用g i 表示

指示热效率:指实际循环指示功与所消耗的燃油热量的比值,用ηi 表示。

效率之间的关系:g i 高则 ηi 小,反之g i 低则ηi 大。

有效性能指标是以曲轴输出功为计算基准的指标称为有效性能指标。

有效功率:从发动机功率输出轴上得到的净功率

有效转矩:发动机工作时,由功率输出轴输出的转矩,用T e 表示

有效燃油消耗率:指单位有效功的耗油量,也就是发动机每有效千瓦小时的耗油量,用g e 表示。

有效热效率:指实际循环有效功(W e )与所消耗的燃油热量的比值,用ηe 表示。

强化指标:1.转速和活塞平均速度; 2.升功率; 3.比质量

4) 发动机机械损失功率的组成部分?课本19页

机械损失由进排气损失(活塞与活塞环的摩擦损失、轴承与气门机构的摩擦损失)驱动附属机构的功率消耗、流体摩擦损失、驱动扫气泵及增压器的损失组成

5) 影响机械效率的主要因素有哪些

1、转速(活塞平均速度)的影响:机械效率随发动机转速或活塞平均速度的上升而下降;

2、负荷的影响:负荷愈小,机械效率愈低;

3、润滑油温和冷却水温的影响:润滑油温度升高,其粘度将下降,粘性阻力减小,机械损失功率也减少,机械损失功率随油温的增加而降低,一般水冷式发动机,其水温应控制在 80℃~95℃范围内,其机油温度则在85℃~110℃范围内为宜。

第三章 发动机的换气过程

1) 换气过程(重点)

发动机的换气过程包含排气过程和进气过程。换气过程的任务是:将气缸内上一循环的废气排除干净,为下一循环充入尽可能多的新鲜工质,保证发动机动力周而复始地输出。

2) 四行程发动机换气过程的阶段划分。

四行程发动机的换气过程始于排气门开启,止于进气门关闭,约占400°~500°曲轴转角。根据气体流动特点,一般将此过程分成五个阶段:1、自由排气阶段;2、强制排气阶段;3、扫气阶段;4、充气阶段;5、后充气阶段。

3) 充气效率(重点)

充气效率ηv :是实际进入气缸的新鲜工质质量m 与进气状态下整个气缸容积充满了新鲜

工质的质量m 0之比值。m m v 0

充气效率高,说明发动机每循环进入气缸的新鲜工质多,发动机输出的功率和转矩增大,动力性也就提高了。

4) 提高充气效率的措施有哪些? (重点)

影响充气效率的因素很多,主要因素有:

(1)进排气系统的流动阻力:进排气系统截面变化越急剧、管道越细长、管壁越粗糙、气体流速越高、初始压力越低、则压降(率)越大。充气效率也就越低。

(2)气缸内的残余废气量:气缸内残余的废气量越多,充气效率就越低。因为:1、残余废气要占用部分容积,自然会减少新鲜工质的空间,吸入新鲜工质的量也同样会减少;2、残

余废气多,则排气终了压力相对就高,气缸内负压小,吸入新鲜工质的量也会减少。

(3)进气系统和机件对新鲜工质的加热状况:新鲜工质经过进气系统时,对于节气门体有预热装置的发动机,进气将被加热。新鲜工质进入气缸后,缸壁、活塞、缸盖等高温机件也 会使工质升温(部分增压发动机除外)。 工质被加温后密度将降低,充气效率也会降低。

(4)配气相位:增加排气门开启持续角能降低排气终了压力,增加进气门开启持续角能提 高进气终了压力,均能提高充气效率。但是,在发动机实际工作中,它们是相互制约的。

(5)进排气系统的动态效应:惯性效应:通过设计长度合适的进气管道,使膨胀波发出到压缩波反射回到气缸内所经历的时间,正好与进气门开启到关闭所需的时间相互配合,当压缩波到达气缸时,进气门恰好关闭,将较高压力的新鲜工质关在气缸中,从而提高充气效率 实验表明,进气管道长度越长,惯性效应越明显。

提高充气效率的措施:1、减小进气系统的阻力:减少空气滤清器、节气门体、进气管道、进气门(增大气门直径,增加气门数量,增加气门升程,改善气门处流劢阻力)等部位的气流阻力是提高充气效率的主要措施;

2、进气管道部分:降低进气管道的流动阻力能提高充气效率。要减小进气管道内气流阻力,措施有:(1)尽量增加管道的截面积;(2)降低管道内壁的粗糙度;(3)采用圆形管道;(4)避免急弯,拐弯处圆弧过渡;(5)避免截面积急剧变化,利用圆弧过渡;(6)利用气道形成扫气涡流。

3、空气滤清器部分:(1)加大气流通过截面;(2)采用高效低阻的滤芯结构和材料;(3)及时清洁和更换滤芯。

4、节气门体部分:该部分除了降低节气门体和节气门的气流阻力外,还要注意对空气流量计的选择。 如热丝式、热膜式流量计的流动阻力相对就小些

5) 配气相位——4+1角度(重点)

要提高充气效率,除了选择合理的配气相位外,还要根据发动机转速和负荷的变化情况,适时地对配气相位进行微调,实现配气相位的优化控制。 1.可变凸轮轴相位:让整根凸轮轴相对于正时皮带轮旋转一个角度,从而改变开启提前角和关闭延迟角。但气门开启持续角不变,对充气效率影响较小;2.可变配气相位及气门升程:由2个以上的凸轮控制一个气门,因此气门的开闭角度、开闭的快慢、气门升程均可调节,能明显提高充气效率。如丰田的VVT-i ,本田的VTEC ,现代的CVVT 发动机都具有该功能。

第四章 燃料与燃烧

1) 过量空气系数和空燃比(重点)

过量空气系数:燃烧1kg 燃料实际提供的空气量L 与理论上所需的空气量L 0之比,称为过量空气系数α。L L 0

=α 空燃比:将燃烧时空气量与燃料的比例值是用空燃比A/F 表示。

kg

kg F A 11燃料质量量燃料实际供给的空气质燃烧燃料量空气量== 2) 汽油(挥发性、抗爆性)和柴油(低温流动性、自燃性)的基本特性?

汽油对发动机性能有重要影响的特性有:挥发性、抗爆性、燃烧热值、化学稳定性和安 全性。(1)挥发性:汽油的挥发性常用蒸馏曲线相对地评定。在汽油规格中,以10%,50%,90%等馏分的馏出温度作为汽油挥发性的主要指标,1、汽油机的最低起动温度、气阻和蒸发

损耗等方面的相对性能可根据10%馏出温度来预测;2、挥发性、暖车时间、加速性以及工作稳定性可根据汽油的50%馏出温度评估;3、重质成分的数量、燃烧冒烟、对机油的稀释程度可根据90%的馏出温度来评估。(2)抗爆性:燃料的抗爆性是指燃料对于发动机发生爆燃的抵抗能力。燃料的抗爆性好,有利于提高发动机的压缩比,改善发动机的经济性,评定汽油的抗爆性指标是辛烷值。辛烷值高,则抗爆震能力强。国产汽油就是用研究法辛烷值来标号的,分为90、93和97三个牌号。

柴油的使用性能:(1)低温流动性;(2) 挥发性;(3)自燃性;

3)汽油和柴油的选用?(重点)

在选用时,根据发动机的压缩比来选择其相应使用的汽油:

90号的汽油适用于压缩比小于9.0的发动机;

93号汽油适用于压缩比9.0~10.0的发动机;

97号汽油则适用于压缩比高于10.0发动机。

选用柴油时,应按最低环境温度来选用。

10号轻柴油——适合于有预热设备的高速柴油机上使用;

0号轻柴油——适合于最低气温在4℃以上的地区使用;

-10号轻柴油——适合于最低气温在-5℃以上的地区使用;

-20号轻柴油——适合于最低气温在-14℃以上的地区使用;

-35号轻柴油——适合于最低气温在-29℃以上的地区使用;

-50号轻柴油——适合于最低气温在-44℃以上的地区使用。

第五章柴油机混合气的形成和燃烧

1)柴油机和汽油机相比,混合气形成有哪些特点?(重点)

汽油机的均质可燃混合气的形成方法主要有3种:

(1)化油器式:利用化油器在气缸外部形成大致均匀的可燃混合气,依靠控制节气门开度的变化来调节混合气数量。

(2)缸外汽油喷射式(电控汽油喷射式)在一定压力下利用喷油器直接向进气管或进气道内喷射汽油,入的空气相混合形成可燃混合气。

(3)缸内直喷式汽油机,其在节能方面具有很大优势。

柴油机的混合气形成与汽油机相比有两个显著特点。其一是混合气的形成在气缸内部进行,其二是混合气形成时间较短,从喷油到结束,约占15°~30°曲轴转角。

2)柴油机的两种混合气形成方式。

柴油机混合气形成依靠两方面作用:一是燃料喷雾;是组织空气运动。组织必要的空气运动可以促使柴油很快在整个燃烧室空间得到均匀分布,加速混合气形成。

3)柴油机常见燃烧室类型及主要性能比较?

?直喷式燃烧室:

(l)开式燃烧室

(2)半开式燃烧室

(3)半开式燃烧室中的空气运动

?分隔式燃烧室

(1)涡流室燃烧室:①进气涡流②挤压涡流

(2)预燃室燃烧室

4)柴油机的燃烧过程可以分哪几个阶段?

柴油机的燃烧过程:

?着火延迟期:从喷油始点A到由于开始燃烧而引起压力升高使压力脱离压缩线开始急剧上升的B点(着火点)。

?速燃期:又称预混合燃烧期,即从压力脱离压缩线开始急剧上升(B点)至燃烧放热率变缓的突变点(C点)。

汽车发动机电控系统检修实训指导书

《发动机电控系统检修》实训指导书

实训一汽车电子控制系统认识 一、目的和要求: 1.掌握发动机电子控制系统总体组成; 2.区分与识别发动机电子控制系统的主要传感器、执行器; 3.掌握发动机电子控制系统的工作原理。 二、实训课时: 2课时 三、实训器材 1、工具:常用工具1套。 2、设备:桑塔纳2000轿车AJR型发动机、别克电喷发动机故障实训台各一台,桑塔纳2000和丰田皇冠轿车整车各一辆。 四、原理与应用 发动机电子控制系统示意图 1.电动燃油泵 2.燃油滤清器 3.活性炭罐电磁阀 4.活性炭罐 5.带输出驱动级的点火线圈 6.凸轮轴位置传感器 7.喷油器 8.燃油压力调节器 9.节气门控制组件10.空气流量计11.氧传感器12.冷却液温度传感器13.爆震传感器14.曲轴位置传感器15.进气温度传感器16.发动机控制单元 电喷汽车的发动机控制,是由发动机电子控制系统来完成的,其主要功能

是控制进气量与喷油量的空燃比、喷油时刻与点火时刻。除此之外,还控制发动机的冷热车起动、怠速转速、最大转速、废气再循环、二次空气喷射、爆震、电动燃油泵、故障自诊断以及给其它电控系统发送状态信号等功能。其工作性质是采集发动机各部位的工况信号,根据采集到的信号计算确定最佳喷油量、最佳喷油时刻和最佳点火时刻。发动机电子控制系统的组成:由传感器、电控单元和执行器三部分组成。传感器是一种信号检测与转换装置,安装在发动机的各个部位,其功能是:检测发动机运行状态的各种电量参数、物理量和化学量等,并将这些参量转换成计算机能够识别的电量信号输入电控单元。电子控制单元俗称电脑,简称ECU,是发动机电子控制系统的核心部件,其功能是:根据各种传感器和控制开关输入的信号参数,对喷油量、喷油时刻和点火时刻等进行实时控制。执行器是控制系统的执行机构,其功能是:接受电控单元的控制指令,完成具体的控制动作,从而使发动机处于最佳的运行状态。

斯特林发动机原理图解

斯特林发动机原理图解 如图1 把橡皮绑在容器口上,我们能容易瞭解到受热时橡皮会膨胀(图2),冷却时橡皮会缩收(图3),这是加热时,内部气体压力作用在橡皮上(图2),当然人的眼睛是无法看到气体压力的。 A2移气器 如果我们放入一个移气器(Displacer)到容器内(图4),而这个移气器的直径比容器的内径小一些,当移气器自由上下移动时,即可以把容器内的气体挤下或挤上。这个时候,如果我们在容器底端加热,而在容器上端冷却,使上下两端具有足够的温差,即可看见此时橡皮会不断膨胀及收缩。其原理如下: 当移气器上移,容器内的气体被挤至容器底端,此时由於容器底端加热,因此气体受热,压力变大,此压力经由活塞与容器间的空隙传到橡皮,使得橡皮会膨胀(图5)。 相反的,若施以适当的力量把移气器下移,则容器内的气体被挤至容器上端,此时由於容器上端為冷却区,因此气体被冷却,使气体温度降低,压力变小,而使得橡皮会缩收(图5)。 如此,不断使移气器自由上下移动,即可看见此时橡皮会不断膨胀及收缩。 由此,可知移气器的功用主要在於移动气体,使气体在冷热两端之间来回流动。国立成功大学航太系郑金祥教授把 Displacer 命名為”移气器”,实在更為贴切,也比较不容易混淆,比较不会使人误以為它的作用跟输出功率的动力活塞一样。

A3 曲柄机构 要让移气器上下移动,只要将移气器与一曲轴连结(图6) 。当曲轴旋转时,移气器就会被带上及带下。将移气器与曲轴连结完毕之后,在容器底端加热上端冷却,只要用手转动曲轴,使得移气器移上及移下,此时橡皮便会重复膨胀及收缩(图7)。 A4 动力活塞 橡皮的膨胀及收缩运动,可以转换為动力输出,此时,橡皮的作用即如同一动力活塞。我们可以另加一根连桿接到上述的曲轴上,便可将橡皮的膨胀及收缩运动转换為曲轴的旋转运动。连接到移气器的曲轴部位与连接到动力活塞的曲轴部位必须呈固定的角度差,一般是90度(图8,9)。橡皮的膨胀及缩收所產生的曲轴的旋转运动提供了移气器上下移动的力量,多餘的力量则可以输出。必须注意的是,移气器本身不会动,而是被曲轴带动,动力来源是动力活塞。

《发动机原理》课程实验报告

《发动机原理》课程 实验报告 系别: 专业: 班级: 学号: 姓名: 华南理工大学广州学院 汽车工程学院教学实验中心

学生实验须知 1、实验前必须预习实验指导书中相关的内容,了解本次试验的目的、要求及注 意事项。 2、按预约试验时间准时进入实验室,不得迟到、早退、缺席。 3、不得带食物、饮料等进入实验室,不准穿背心、拖鞋进入实验室。 4、进入实验室后,不得高声喧哗和擅自乱动仪器设备,损坏要赔偿。 5、保持实验室整洁,不准在仪器和桌面上涂写,不准乱丢纸屑,不准随地吐痰。 6、实验室应严格遵守操作步骤和注意事项。实验中,若遇仪器设备发生故障, 应立即向指导老师报告,待排除故障后,方能继续实验。 7、实验过程中,若未按照操作规程操作仪器设备,导致仪器设备损坏者,将按 学校有关规定进行处理。 8、实验过程中,同组同学要相互配合,认真测取和准确记录实验数据。 9、实验结束后,将仪器、工具清理复位摆正,并清扫工作场地。不得将实验室 的工具、仪器、材料等物品携带出实验室。 10、实验完毕,实验数据经指导老师认可并签名后方能离开实验室。 11、实验报告要求字迹端正、绘图清晰、表格简明、实验结果准确。

实验报告一 专业:学号:姓名:实验日期:指导老师:成绩: 一、实验名称: 二、实验目的 三、实验设备 四、实验数据处理

2、根据实验测量数据,在同一坐标图上绘制速度特性曲线:M e-n,P e-n,g e-n。

五、根据实验,结合理论知识,思考并回答以下问题: 1.当节气门开度变化后,实验测得的数据会发生变化吗?请分析,并设计实验步骤验证。 2.测定及计算发动机的升功率、最大功率、最大扭矩以及转速和扭矩储备系数后,对发动机的动力性能进行评价。 3. 分析充气系数与扭矩特性曲线的相互关系,进一步比较对影响扭矩特性的各种主要因素。

涡扇发动机工作原理

动力原理: 涡轮喷气发动机涡轮风扇发动机冲压喷气发动机涡轮轴发动机 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快 (V1=S1/T >V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。 飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:

单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。 现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

轮胎动平衡机操作规程实用版

YF-ED-J7378 可按资料类型定义编号 轮胎动平衡机操作规程实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

轮胎动平衡机操作规程实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、安装车轮时,首先将弹簧和选择好的与被平衡车轮钢圈孔相对的锥体装到匹配器上,再将车轮装到锥体上,装好后盖,然后用快速螺母锁紧; 二、操作时,严格按规定程序进行操作,一定要注意保护匹配器及轴部,装卸车轮时,要轻拿轻放; 三、用卡规测量钢圈到机箱的距离,旋转对立的旋钮,使之对应于测量值; 四、打开机箱前右上方的电源开关,当显示板显示GB-10后,可按下“START”键,此时

平衡采样开始,传动部分带动车轮旋转,自动停稳后,其结果显示在显示板上; 五、用手缓慢转动车轮,其不平衡位置字符“∧”或“∨”会移动,如测量显示出现“点陈符”,同时会听到制动的声音,即停止转动车轮,这时垂直于轴线上方的外测钢圈位置,即是外侧应配重的位置,同样方法对于左侧,找出相对应配重的平衡位置,先在失重大的一侧进行平衡; 六、经过几次的配重,当不平衡量小于5克时,显示OK,说明已达满意效果; 七、试验结束时,关掉电源。

汽车构造实验指导书

实验基本情况简介 1、课程名称:汽车实验学 2、开课单位:华侨大学机电及自动化学院车辆工程实验室 3、实验依据:《汽车构造》 4、课程性质:必修 5、成绩考核:课堂出勤、动手拆装过程、预习报告和试验报告。 (1) 实验目的:了解典型汽车及相关部件的基本结构,掌握汽车及相关部件的工作原理,熟悉实验汽车相关部件的拆卸,装配顺序,能够绘制装配路线图及使用测量工具对相应零件进行测绘,最后绘制拆装产品的装配图或部件图,达到专业认识、学习和训练的目的。 (2) 实验工具:测量工具:游标卡尺、钢板尺、卷尺等。拆装工具:活动手板、板扳手、套筒扳手、铜棒、橡皮锤、螺丝刀等。 6、实验报告的撰写:按照给定的表格格式填写实验报告,若实验环节中没有出现项目,可以省略。(3) 安全注意事项: 实验时请时刻注意安全,防止意外事故的发生。对体积、质量较大的零部件,防止其倒、掉翻,避免砸、压事故发生;对空间狭小部件的拆、装,应防止夹、碰手指;拿、搬零件时,防止毛刺刺伤。 使用工具时请正确使用,防止夹、压、磕、砸等伤害事故发生。尤其对具有锋利、尖锐突出部位工具的使用,在注意自我防护的同时,请时刻注意避免伤害他人。 实验室内设置的电力系统开关、触头及其他电力设备,在未经实验指导教师同意情况下,为自身安全及他人人身安全考虑,请勿动。 实验室内其他设备,为自身安全及他人人身安全考虑,请勿动。 为自身安全考虑,进入实验室,请按照学校的实习规章穿戴服装。 实习期间,请严格遵守学校的相关规定。

实验一 汽车总体认识 1.1 实验目的及要求 1.通过对汽车参观与观察,对汽车的组成有一个感性认识,了解汽车结构特点。 2.了解汽车的组成部分,每一部分包括哪些零部件。 3.了解各种汽车的编号规则、主要用途和区别。 4.在预习报告中回答简单题的第一题。 1.2 实验设备 1. 各种汽车样车。 2. 汽车整车解剖模型。 3. CAI课件演示。 1.3 实验内容 1. 参观并观察汽车车样。 2. 观察汽车解剖模型。 3. 观察CAI课件的演示。 1.4 实验要求 1.了解汽车的类型、结构特点及其组成。 2.了解汽车的编号规则。 3.了解各种汽车的型号、名称、牌号、功率、用途及操纵与驾驶。 4.4x2汽车的总体构造。 5.发动机前置后轮驱动汽车总体构造的基本特征。 6.发动机后置后轮驱动汽车总体构造的基本特征。 7.发动机前置前轮驱动汽车总体构造的基本特征。 8.汽车传动系统、汽车行驶系统、汽车转向和制动系统及车身的一般认识。 9.了解车用内燃机的类型。 10.了解各类运输汽车的特殊要求。

喷气发动机原理简介

喷气发动机原理简介

分类 涡轮喷气式发动机 完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。这种发动机的推力和油耗都很高。适合于高速飞行。也是最早的喷气发动机。离心式涡轮喷气发动机 使用离心叶轮作为压气机。这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。 轴流式涡轮喷气发动机 使用扇叶作为压气机。这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。缺点是制造工艺苛刻。现在的高空高速飞机依然在使用轴流式涡喷发动机。 涡轮风扇发动机 一台涡扇发动机的一级压气机 主条目:涡轮风扇发动机

在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。 涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。 涡轮轴发动机 主条目:涡轮轴发动机 涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。所以他更类似于飞机上用的燃气轮机。 涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。它的结构和车用燃气轮机区别不大。 涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力。油耗比涡轮风扇发动机高。 涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的

飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。 相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。当今的涡喷发动机均为轴流式。 一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口

动平衡机操作规程汇总

动平衡机操作规程 水泵的转子部件的动不平衡量对整台泵稳定运行有很大的影响。水泵叶轮由于材料组织不均匀及零件加工后产生的形状、尺寸等误差,致使恒态<刚性>转子在对应的工作转速频率下旋转时产生离心力,所引起的振动或运动作用于轴承时该转子所处状态称为该转子的动不平衡。根据GB/T9239.1-2006/ISO 国标。对恒态(刚性)转子平衡品质分级指南,具体到泵类叶轮为G6.3级。为在动平衡机上求得小于转子允许的剩余不平衡量,特制定叶轮动平衡作业指导规程: 一、使用前的准备工作: 1、根据叶轮实际重量选择适合该机允许试验范围的动平衡机。 2、使用前一定要做好清洁工作,特别是轴颈,滚轮摆架底部与轨道之间,都要进行擦试清洁,并在滚轮上加少许清洁的机油,严禁转子与联轴节未接好就开车。 3、根据转子和联轴节尺寸配好接头,其要求是形状对称,在强度允许的情况下,重量要轻;各挡内外园同心,工件和联轴节凹孔配合精度为D1/d要保证同心和端面垂直。 4、为减少示值晃动,工件轴颈和滚轮外R应避开相同或接近以免干扰,其比例最好在0.8以下或1.2以上。 二、电气控制部分:(控制原理见说明书附图) 1.本机电动机电源采用380V/50HZ。 2.电机通电后“停止”按钮红灯亮,如联轴节与转子联接好,则行程开关2XK闭合,将转速转换开关拨到高速或低速档(中间为停车档),即可启动。停车时可按停止按钮或车头箱右侧的制动手柄,制动后应将制动手柄抬起,为下次开车接通电路。 3.本机规定转子转动方向为:由车尾向车头看,转子应顺时针方向旋转。 三、操作程序: 1.将叶轮过动平衡心轴(或转子轴)上定位装夹。 2.调整好两摆架间距离。 3.放置转子部件. 4.连接好适合的联轴节接头。 5.放下安全架压紧转子(或心轴)。 6.从低速位启动,由低速至中速和高速逐渐调整提速,最后达到该叶轮在工况时最大转速。7.观察显示屏上显示的左右两处不平衡量G左、G右及测量点半径值R左、R右,G左、G右不计相位角只计量值。 8.按(G左×R左)+(G右×R右)≤U许用g.mm 根据U左= G左×R左U右= G右×R右 U许用值为设计允许不平衡值为:U许用=D2/2?G(g.mm) 其中:D2——叶轮最大外径(mm) G——设计允许不平衡重量(g) 注意:U左和U右比值应尽可能接近分别为:0.3U许用<U左<0.7U许用 0.3U许用<U右<0.7U许用 9、对显示的不平衡量作在相应位去除金属层处理。 10、反复进行上述工步试验和处理,直至合格。 四、维护与保养注意事项: 1.经常保持机器清洁,导轨面上应经常涂油防锈,非常用导规面上涂油后应加贴油纸保护。2.滚轮表面更不准粘有任何灰尘杂物,每次使用前应仔细清洁滚轮表面,移动摆架时应同

201209级《发动机原理》实验指导书.

《发动机原理》课程实验指导书彭辅明袁守利编 汽车工程学院 2012年4月

前言 1.实验总体目标、任务与要求 1、巩固所学的理论知识、加深对内燃机性能实验的认识和了解。 2、掌物内燃机性能试验和某些专项试验的试验方法。 3、了解内燃机试验台架的基本组成和常用测试仪表的结构及其工作原理,并掌物其使用方法。 4、掌物对实验数据进行处理以及对实验结果进行分析的基本方法。 2.适用专业 热能与动力工程、车辆工程、汽车服务工程 3.先修课程 《发动机构造》、《热能与动力机械测试技术》。 4.实验项目与学时分配(见表一) 5. 实验改革与特色 通过学生在实验过程中的实际操作,培养学生的实验技能和实际动手的能力,进一步加深对理论知识的掌物和理解。

实验一发动机速度特性 1、掌物发动机速度特性的试验方法。 2、学会对实验数据进行处理,对实验结果进行分析;并绘制发动机速度特性曲线图。 二、实验条件 1、东南4A91电控汽油发动机机(Pemax=77Kw/6000r/min)一台 2、CW150型电涡流测功机一台 3、FST2S发动机数控试验台一台 3、FCM-D转速油耗测量仪一台 4、温度计一只 5、大气压力计一只 6、93#车汽油 20升 三、实验原理 发动机速度特性:在发动机油门开度一定(部分开度或全开)的情况下,研究其功率Pe、扭矩Ttq、耗油量B及燃油消耗率be与转速n之间的关系。 四、实验内容和要求 1、调整测功机负荷及指挥全组协调动作,一人;测功机负荷的调整应均匀、准确,尽量避免大幅度增加或减小测功机负荷,造成发动机的转速剧烈波动。 2、调节、监视发动机油门,一人;当发动机出现异常情况时应立即减小或关闭发动机油门。 3、测量发动机转速和油耗,一人;测量转速时,应注意转速的上下波动情况,当转速的波动值超过±20r/min,该组实验数据应视为无效并重做。 4、调节,监视发动机冷却水出水温度,一人;保持发动机冷却水出水温度稳定在80±5℃范围内,出现气阻现象(无冷却水排除或冷却水出水温度超过100℃),应立即报告,以便及时停机。 5、监视发动机机油压力、温度,一人;出现异常情况应及时报告。 6、记录发动机扭矩(测功机读数)Ttq、发动机转速n、耗油质量△m和耗油时间△t, 一人;实验数据记录应准确无误。 7、绘制实验监督曲线,一人;当发现实验过程中因某些特殊原因而引起误差过大的点,应及时指出,以便补测校正。 五、实验方法与步骤 1、按照附录一《发动机台架试验安全操作规范》,作好试验前的准备工作。确认发

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

动平衡机安全操作规程

动平衡机安全操作规程 1、每一个和机器一起工作的人都应熟悉技术资料的内容。操作者必须熟悉掌握安全守则,本工种专业技术及操作规程,并在工作中严格遵守执行,工作前必须按设备“巡回检查内容”检查设备,并按润滑图规定注油。 2、操作者应充分认识到安全和危险,遵守操作指令。危及安全的疏忽必须立即消除。 3、有充分的个人保护措施,用加重进行不平衡量校正的过程中必须带上工作手套,避免穿戴领带、宽松的衣服、首饰和留有长发。 4、在机器操作过程中,任何人不可以停留在危险区内。只有经适当指导过的人员才可以停留在机器的工作区内。 5、在平衡操作时,未知转子的平衡量,应先选择可以测量的最低速度测得不平衡量,然后再用较高的速度来检查。 6、核实定期定标机器的资料。发现设备运行异常如高消耗、速度不稳定、温度升高或振动,反常的噪声或臭味,测量装置的差错,可能会直接或间接的导致人员伤害或财产损失应立即关掉机器,通知负责的保养或维修人员。 巡回检查内容: 1机器在打开主开关和控制电压之前检查所有人员都离开了机器的危险区域,所有部件固定,正确设置位于初始位置,夹紧装置、工件支持部件、工具已装配;2保护和安全装置已经安装到位; 3关闭安全区之前,确认所有人都已经离开; 4所有的平衡及不平衡校正螺纹和驱动装置已经牢固安装; 5皮带和驱动已经正确张紧并没有老化现象; 6在调速驱动的情况下,不要超过预期转速; 7机器的转速和负载按照规定参数选择,不允许过载; 8压缩空气管道,润滑和液压油没有泄漏,管道接头松动,磨擦点危险情况; 9所有电缆都要充分绝缘并完整。

电机转子作动平衡时要遵守“动平衡机安全操作规程” 电机装配工的一般操作规程如下: 1、工作前,整理场地,放稳各零、部件,并检查装配使用工具和工作环境是否安全良好。 2、吊放电机机座、底板、定子、转子、轴承等大型部件时必须放好方箱或垫木。严禁在悬吊物下操作,应与行车工、挂钩工密切配合。 3、电机转子作动平衡时要遵守“动平衡机安全操作规程”。 4、套装电机转子前定子必须放置平稳、垫牢,严防倾倒。 5、在定子和轴承座装底板时不准边放边垫垫片。 6、使用手锤和大锤时必须用装有金属倒楔的坚固木把。打锤时严禁戴手套,并注意前后方是否有人。 7、钻定位孔时要遵守“钻床安全操作规程”。用可移式钻床必须垫放平稳。 8、配合试验时要与试验人员紧密联系,并遵守“电气试验安全操作规程”。试验平台及电机周围油污要擦净。跨坑跳板、登高架子及上下梯子均要安装牢固。 9、使用手持电动工具时必须遵守有关安全规定。 10、易燃易爆物品要妥善保管,不要乱扔乱放,严禁接近烟火或高温。 11、电机装配时,手指不能放入端盖与机座空隙中,防止合拢时扎伤。装配

电喷发动机工作原理

电喷发动机工作原理 现在的电喷车在行驶过程中,当司机突然松开油门踏板(使节气门完全关闭)时,发动机不需要输出转矩,而是由汽车的动能拖动。这一工况被称为拖动工况或滑行工况。 在拖动工况为了减少废弃排放和降低燃油消耗以及改善行驶特性,电控系统中央控制器识别出发动机处于拖动工况后,首先立即推迟当时的点火角,然后全部切断向发动机喷油,这样可使工况的过度过程较为平稳。 当发动机转速超过规定转速界限(转速界限2)并且节气门关闭时,喷嘴将不再喷油,发动机的供油被切断;而发动机转速一旦低于下个转速界限(转速界限3),则喷嘴又重新开始喷油。如果在拖动工况出现发动机转速急剧下降,如在紧急刹车时,则喷嘴将在较高转速(转速界限1)恢复喷油,以防止低于发动机怠速转速或发动机完全熄火。 一、简介 电子燃油喷射控制系统(简称EFI或EGI系统),以一个电子控制装置(又称电脑或ECU)为控制中心,利用安装在发动机不同部位上的各种传感器,测得发动机的各种工作参数,按照在电脑中设定的控制程序,通过控制喷油器,精确地控制喷油量,使发动机在各种工况下都能获得最佳浓度的混合气。 此外,电子控制燃油喷射系统通过电脑中的控制程序,还能实现起动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制断油、自动怠速控制等功能,满足发动机特殊工况对混合气的要求,使发动机获得良好的燃料经济性和排放性,也提高了汽车的使用性能。 电子控制燃油喷射系统的喷油压力是由电动燃油泵提供的,电动燃油泵装在油箱内,

浸在燃油中。油箱内的燃油被电动燃油泵吸出并加压,压力燃油经燃油滤清器滤去杂质后,被送至发动机上方的分配油管。分配油管与安装在各缸进气歧管上的喷油器相通。喷油器是一种电磁阀,由电脑控制。通电时电磁阀开启,压力燃油以雾状喷入进气歧管内,与空气混合,在进气行程中被吸进气缸。分配油管的末端装有燃油压力调节器,用来调整分配油管中燃油的压力,使燃油压力保持某一定值,多余的燃油从燃油压力调节器上的回油口返回燃油箱。 进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量成一定的比例关系。进气管压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给电脑,电脑根据进气歧管真空度的大小计算出发动机进气量,再根据曲轴位置传感器测得信号计算出发动机转速。根据进气量和转速计算出相应的基本喷油量。电脑根据进气压力和发动机转速控制各缸喷油器,通过控制每次喷油的持续时间来控制喷油量。喷油持续时间愈长,喷油量就愈大。一般每次喷油的持续时间为2~10ms。各缸喷油器每次喷油的开始时刻则由电脑根据安装于离合器壳体上的发动机转速(曲轴位置)传感器测得某一位置信号来控制。这种类型的燃油喷射系统的每个喷油器在发动机每个工作循环中喷油两次,喷油是间断进行的,属于间歇喷射方式 二、电子燃油喷射控制的原理 (一)各种工况控制简介

斯特林发动机的工作原理及应用前景

斯特林发动机的工作原理及应用前景 【摘要】随着全球能源危机的发展与环境的恶化,传统的化石燃料日益枯竭,且燃烧的排放物造成了温室效应、雾霾天气及极端的气候等人为的灾害,为了地球的可持续发展和人类生活水平的改善,人们清楚地认识到开发利用新能源的重要性。其中,可再生能源的利用越来越广泛,可再生能源对环境无害或危害极小,且资源分布广泛。越来越多的国家采取鼓励生产和使用可再生能源的政策和措施,中国也确立了到2020年可再生能源占总能源比重15%的目标。外部燃烧系统的作用是给闭式循环系统提供能源,闭式循环系统由冷腔、冷却器、回热器、加热器和热腔组成,工质在闭式循环系统中来回流动一次,完成一个斯特林循环。 【关键词】发动机;原理;前景 1 斯特林发动机闭式循环系统的组件简介 (1)冷腔处于循环的低温部分,和冷却器联接,压缩热量由冷却器导至外界,在压缩过程中有相当一部分工质居于冷腔。 (2)冷却器位于回热器和冷腔之间,功能是将压缩热传到外界,保证工质在较低的温度下进行压缩。 (3)回热器串联在加热器和冷却器之间,是循环系统的一个内部换热器,它交替从工质吸热和向工质放热,使工质反复地受到冷却和加热。回热器并不是必需装置,但它对发动机的效率影响极大。在往复式斯特林发动机中,回热器的使用既使斯特林循环的热效率明显提高,但又增加了工质的阻力和压力损失,工质吸热、散热交替进行,限制了斯特林发动机的转速,影响了功率的输出。因此,优化回热器的设计是斯特林发动机的核心技术问题。 (4)加热器加热器是将外部热源的热能传给工质,使其受热膨胀。加热器的一端与热腔联接,另一端与回热器联接。 (5)热腔始终处于循环的高温部分,连续地将外部热源传给工质,在膨胀时相当部分的工质居于热腔。因此其必须能承受高温和高压,大量的热损失是由热腔散失的。 2 斯特林发动机的基本结构 根据工作空间和回热器的布置方式,斯特林发动机可以分为α、β和γ三种基本类型。 α型斯特林发动机的结构最简单,具有两个汽缸,两个汽缸中间通过加热器、回热器、冷却器连通,热活塞和冷活塞分别位于各自的汽缸内,热活塞负责工质

动平衡机操作规程

动平衡机操作规程

————————————————————————————————作者: ————————————————————————————————日期:

动平衡机操作规程 水泵的转子部件的动不平衡量对整台泵稳定运行有很大的影响。水泵叶轮由于材料组织不均匀及零件加工后产生的形状、尺寸等误差,致使恒态<刚性>转子在对应的工作转速频率下旋转时产生离心力,所引起的振动或运动作用于轴承时该转子所处状态称为该转子的动不平衡。根据GB/T9239.1-2006/ISO国标。对恒态(刚性)转子平衡品质分级指南,具体到泵类叶轮为G6.3级。为在动平衡机上求得小于转子允许的剩余不平衡量,特制定叶轮动平衡作业指导规程: 一、使用前的准备工作: 1、根据叶轮实际重量选择适合该机允许试验范围的动平衡机。 2、使用前一定要做好清洁工作,特别是轴颈,滚轮摆架底部与轨道之间,都要进行擦试清洁,并在滚轮上加少许清洁的机油,严禁转子与联轴节未接好就开车。 3、根据转子和联轴节尺寸配好接头,其要求是形状对称,在强度允许的情况下,重量要轻;各挡内外园同心,工件和联轴节凹孔配合精度为D1/d要保证同心和端面垂直。 4、为减少示值晃动,工件轴颈和滚轮外R应避开相同或接近以免干扰,其比例最好在0.8以下或1.2以上。 二、电气控制部分:(控制原理见说明书附图) 1. 本机电动机电源采用380V/50HZ。 2. 电机通电后“停止”按钮红灯亮,如联轴节与转子联接好,则行程开关2XK闭合,将转速转换开关拨到高速或低速档(中间为停车档),即可启动。停车时可按停止按钮或车头箱右侧的制动手柄,制动后应将制动手柄抬起,为下次开车接通电路。 3.本机规定转子转动方向为:由车尾向车头看,转子应顺时针方向旋转。 三、操作程序: 1.将叶轮过动平衡心轴(或转子轴)上定位装夹。 2.调整好两摆架间距离。 3. 放置转子部件. 4. 连接好适合的联轴节接头。 5. 放下安全架压紧转子(或心轴)。 6. 从低速位启动,由低速至中速和高速逐渐调整提速,最后达到该叶轮在工况时最大转速。7.观察显示屏上显示的左右两处不平衡量G左、G右及测量点半径值R左、R右,G左、G右不计相位角只计量值。 8.按(G左×R左)+(G右×R右)≤U许用g.mm 根据U左=G左×R左U右= G右×R右 U许用值为设计允许不平衡值为:U许用=D2/2?G(g.mm) 其中:D2——叶轮最大外径(mm) G——设计允许不平衡重量(g) 注意:U左和U右比值应尽可能接近分别为:0.3U许用

DIY斯特林发动机设计制作原理

动手制做动手制做------斯特林发动机模型 斯特林发动机模型什么是斯特林热机? 热气机(即斯特林发动机)的理想热力循环,为19世纪苏格兰人R.斯特林所提出,因而得名。它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循 环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。热机在定温(T (T1) 1)膨胀过程中从高温热源吸热,而在定温(T2)压缩过程中向低温热源放热。斯特林循环的热效率为 公式中W 为输出的净功;Q1为输入的热量。根据这个公式,只取决于T1和T2,T1越高、T2越低时,则越高,而且等于相同温度范围内的卡诺循环热效率。因此,斯特林发动机是一种很有前途的热力发动机。斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。 斯特林循环可以分为4个过程: ①定温压缩过程:配气活塞停留在上止点附近,动力活塞从它的下止点向上压缩工质,工质流经冷却器时将压缩产生的热量散掉,当动力活塞到达它的上止点时压缩过程结束。 ②定容回热过程:动力活塞仍停留在它的上止点附近,配气活塞下行,迫使冷腔内的工质经回热器流入配气活塞上方的热腔,低温工质流经回热器时吸收热量,使温度升高。

③定温膨胀过程:配气活塞继续下行,工质经加热器加热,在热腔中膨胀,推动动力活塞向下并对外作功。 ④定容储热过程:动力活塞保持在下止点附近,配气活塞上行,工质从热腔经回热器返回冷腔,回热器吸收工质的热量,工质温度下降至冷腔温度。 在理论上,定容储热量等于回热量,其循环效率等于卡诺循环效率。两个活塞的运动规律是由菱形传动机构来保证的。 —1878) 斯特林(Robert Stirling,1790 1790— 英国物理学家,热力学研究专家。 斯特林对于热力学的发展有很大贡献。他的科学研究工作主要是热机。热机的研制工作,是18世纪物理学和机械学的中心课题,各种各样的热机殊涌而出,不断互相借鉴,取长补短,热机制造业兴旺起来,工业革命处于高潮时期。 随着热机发展,热力学理论研究提到了重要位置,不少科学家致力于热机理论的研究工作,斯特林便是其中著名的一位。他所提出的斯特林循环,是重要的热机循环之一,亦称“斯特林热气机循环”。这种循环,是封闭式的,采用定容下吸热的气体循环方式。循环过程是:①等容吸热加热;②由外热源等温加热;③等容放热,供吸热用;④向冷体等温放热,完成一个循环。在理想吸热的条件下,这种循环的热效率,等于温度上下限相同的卡诺循环。利用这种循环的“斯特林热机”,具有很多特点,如采用外燃,或外热源供热等。由于这种循环是封闭式循环,可采用传热性能好的工质,同时,工质的腐蚀性也可以很小,如氮气、氢气等气体。充入的气体工质,还可以加大压力,视封闭系统的情况,能够采用远远大于大气压力的高压气体工作,这样可以提高发动机的单位重量的功率,减小发动机的体积和重量。斯特林热机在逆向运转时,可以作为制冷机或热泵机,这种设想在现代已进入了实用研究阶段。 斯特林循环热空气发动机不排废气,除燃烧室内原有的空气外,不需要其他空气,所以适用于都市环境和外层空间。 18世纪末和19世纪初,热机普遍为蒸汽机,它的效率是很低的,只有3%一

汽车及发动机的总体构造实验指导书

汽车及发动机的总体 构造 实验指导书 太原理工大学机械工程学院

前言 在《汽车工程概论》课程的教学中安排相应的实验内容,是学习汽车构造不可缺少的重要教学环节。实验环节与课堂讲授环节密切配合,能够帮助学生进一步掌握汽车的基本构造以及工作原理等有关内容,共同完成教学大纲所规定的教学内容。 实验环节主要是针对各种典型汽车底盘、发动机等机构的实物和模型进行现场教学。通过实验教学,使学生对汽车整体、汽车发动机以及汽车上的各大系统、机构、装置、部件建立起较强的立体感;使学生更深刻地掌握其工作原理。此外还可以培养学生的动手能力的目的。为学生进行后续课程的学习打下良好的基础。 实验前,学生应认真阅读实验指导书,了解实验的目的、内容、安排及要求,完成报告中的预习部分。实验中,学生应按照实验计划编组固定,在实验过程中认真执行实验任务。 实验结束时,按要求完成一份实验报告,实验报告应反映实验过程中的学习内容和体会,并于交于指导教师。

目录 实验一整车认识实验 (1) 实验二发动机曲柄连杆机构的构造 (1) 实验三发动机配气机构的构造 (2) 实验四汽油机、柴油机供给系的构造 (2) 实验五进、排气系统的构造 (3) 实验六发动机冷却系的构造 (4) 实验七发动机润滑系的构造 (4)

实验一整车认识实验 一.实验目的 对典型汽车进行观察与分析,初步掌握汽车的基本组成,并熟悉各部件的组成与结构特点。从而对汽车有个整体认识。 二.实验设备 解放汽车CA10B。 三.实验内容、步骤 1)了解汽车的组成、工作原理、结构特点及主要性能。 2)观察研究由教师讲解各种车辆的组成、性能。 四.实验报告 1)简述汽车由哪几部分组成。 2)目前,我国汽车是如何分类的。 实验二发动机曲柄连杆机构的构造 一.实验目的 对典型发动机的曲柄连杆机构和发动机机体零件进行观察、分析与研究,熟悉曲柄连杆机构的组成与结构特点。 二.实验设备 典型汽油机;各种类型曲柄连杆机构的总成、零部件实物。 三. 实验内容、步骤 1)了解汽油发动机曲柄连杆机构和配气机构的组成、工作原理、结构特点及其机件的性能。 2)观察发动机的曲柄连杆机构。 3)观察并分析不同型号汽油机的曲柄连杆机构的组成与各零部件的结构特点。 (1)机体组零件的总体布置、结构特点。 (2)气不缸体结构形式的种类和结构特点。 (3)不同类型燃烧室的组成和结构特点。

涡喷发动机的工作原理

1.涡喷发动机的工作原理? 涡喷发动机以空气为介质,进气道将所需的的外界空气以最小的流动损失送到压气机;压气机通过高速旋转的叶片对空气压缩做功,提高空气的压力;空气在燃烧室内和燃油混合燃烧,将燃料化学能转变成热能,生成高温高压燃气;燃气在涡轮内膨胀,将热能转为机械能,驱动涡轮旋转,带动压气机;燃气在喷管内继续膨胀,加速燃气,燃气以较高速度排出,产生推力。 2.涡轮发动机的特征,什么是燃气涡轮发动机的特性?发动机特性分哪几种? 特征:发动机作为一个热机,它将燃料的热能转变为机械能,同时作为一个推进器,它利用所产生的机械能使发动机获得推力。 发动机的特性:燃气涡轮发动机的推力和燃油消耗率随发动机转速、飞行高度和飞行速度的变化规律叫发动机特性。发动机特性分为:保持飞机高度和飞机速度不变的情况下,发动机推力和燃油消耗率随发动机转速的变化规律叫发动机转速特性。在给定的调节规律下,保持发动机的转速和飞机速度不变时,发动机的推力和燃油消耗率随飞机的高度的变化规律叫高度特性。在给定的调节规律下,保持发动机的转速和飞行高度不变时,发动机的推力和燃油消耗量随飞机速度(或马赫数)的变化规律叫速度特性。 3.净推力和总推力 根据牛顿第2,第3定律,气流进入发动机和离开发动机的动量发生变化,产生推力。 净推力:取决于离开发动机的燃气动量与进来的空气动量加进来的燃油动量。净推力还包括喷管出口的静压超过周围空气的静压产生的推力。Fn=Qma(Vj-Va)+Aj(Pj-Pam) 总推力:是指当飞机静止时发动机排气产生的推力,包括排气动量产生的推力和喷口静压和环境空气静压之差产生的附加推力。Fg=Qma(Vj)+Aj(Pj-Pam)。 正常飞行时,压气机、扩压器、燃烧室、排气锥产生向前推力,涡轮、尾喷口产生向后的推力。 4.影响热效率的因素? 热效率表明,在循环中加入的热量有多少变为机械功。影响因素有:加热比(涡轮前燃气总温),压气机增压比,压气机效率和涡轮效率。加热比、压气机效率和涡轮效率增大,热效率也增大。压气机增压比提高,热效率增大,当增压比等于最经济增压比时,热效率最大,继续提高增压比,热效率反而下降。热效率也称做内效率。 5.进气道的作用?什么是进气道总压恢复系数? 一是尽可能多的恢复自由气流的总压并输送该压力到压气机,这就是冲压恢复或压力恢复;二是提供均匀的气流到压气机使压气机有效地工作。进气道出口截面的总压与进气道前方来流的总压比值,叫做进气道总压恢复系数,该系数是小于1的数值,表示进气道的流动损失。 6.进气道冲压比的定义,影响冲压比的因素? 进气道的冲压比是:进气道出口处的总压与远方气流静压的比值。冲压比越大,说明空气在压气机前的冲压压缩程度越大,影响冲压比因素:流动损失,飞行速度和大气温度。(大气密度、高度、发动机转速):当大气温度和飞行速度一定时,流动损失大,则冲压比下降;当大气温度和流动损失一定时,飞行速度越大,则冲压比增加;当飞行速度和流动损失一定时,大气温度上升,则冲压比下降。 7.压气机分哪两种?目前燃气涡轮发动机中常采用哪一种,为什么? 离心式和轴流式。目前燃气涡轮发动机中常采用轴流式压气机。这是因为轴流式压气机具有下述优点:总的增压比高,压气机效率高,单位面积的流通能力高,迎风面积小,阻力小。缺点:单级增压比低,结构复杂 离心式优点:单级增压比高,压气机稳定工作范围宽,结构简单可靠,重量轻,长度短,起动功率小,缺点:流动损失大,效率低,单位面积的流通能力低,迎风面积大,阻力大 8.进口导向叶片的功能是什么?决定进入压气机叶片气流攻角的因素是什么? 为了保证压气机工作稳定,有的在第1级工作叶轮前还有一排不动的叶片称为进口导向叶片。其功能是引导气流的流动方向产生预旋,使气流以合适的方向流入第1级工作叶轮。决定因素是:工作叶轮进口处的绝对速度(包括大小和方向),压气机的转速。 9.简要说明空气在多级压气机中的流动。 基元级的叶栅通道均是扩张形的。在叶轮内,绝对速度增大,相对速度减小。同时,总压、静压和总温、静温都升高;在整流器内,绝对速度减小;静压和静温升高,总压略有下降,总温保持不变。由此可见,空气流过基元级时,不仅在叶轮内受到压缩,而且在整流器内也受到压缩。

相关主题
文本预览
相关文档 最新文档