当前位置:文档之家› 计算岩土力学论文

计算岩土力学论文

计算岩土力学论文
计算岩土力学论文

计算岩土力学现有软件及其应用情况

1.简介

岩体是一种具有不连续性、非均质性、各向异性和非线性的天然地质体[1],由于岩体介质的复杂性, 分析边界和工况的多变, 用经典力学求解复杂的岩体工程问题的解析解已经很难, 甚至不可能。随着计算机科学的进步,数值计算方法也不断发展,并且在岩土工程领域得到了广泛的应用。例如,20世纪60年和70年代开始出现用于岩土工程稳定性计算的数值计算方法,主要是有限元法;20世纪80年代有限元、边界元及其混合模型得到广泛应用[2];20世纪90年代以来,离散元法、DDA法等方法层出不穷。随着数值计算方法的百花齐放,计算岩土力学也从无到有发展起来,并且根据不同的计算方法形成了众多的计算软件,本文主要介绍较为常见且使用较广的几款计算软件。

数值计算方法大致分为连续变形分析方法和非连续变形分析方法两大类[3]。连续变形分析方法主要有:有限单元法(FEM)、有限差分法(FDM)、边界单元法(BEM)等,其中以有限单元法应用最为广泛;非连续变形分析方法主要有:离散元法(DEM)、非连续变形分析(DDA)、流形元法(MM)、无单元法(EFM)等。[4]

2.有限单元法

有限元分析中最基本的思想就是单元离散,即将求解区域剖分为若干单元,把一个连续的介质换成为一个离散的结构物,然后就各单元进行分析,最后集成求解整体位移。

通用的有限元软件主要有ABAQUS、ANSYS、COMSOL Multiphysics、ADINA、ALGOR、LS-DYNA、Nastran等,岩土工程专用有限元软件主要有PLAXIS、Midas GTS 、CRISP、Geoslope、GeoStudio、Rocsciences、Z-Soil和SoilVision等,本文仅简单介绍一些常见的有限元软件。

2.1ABAQUS

ABAQUS是一款由达索SIMULIA公司进行开发、维护及售后的有限元分析

软件,在岩土工程数值分析方面,ABAQUS具有以下优点[5]:

1)拥有能够真实反映岩土体实反映土体性状的本构模型,如土体的屈服特性、剪胀特性等。ABAQUS拥有摩尔库仑棋型、Druker-Prager 模型、Cam-Clay 模型(修正剑桥模型)等,可以真实反映岩土体的大部分应力应变特点。

2)ABAQUS 中包含孔压单元,可以进行饱和土和非饱和土的流体渗透/应力耦合分析(如固结、渗透等),可以进行有效应力计算。

3)岩土工程数值分析中必须考虑初始应力的作用,ABAQUS专门提供了相应的分析步,可以灵活、准确地建立初始应力状态。

朱向荣[6]等简单介绍了ABAQUS中的部分土体本构模型和工程算例,徐远杰[7]等成功在ABAQUS中开发实现Duncan-Chang本构模型,李春忠[8]等运用ABAQUS对边坡的稳定性进行分析,费康[9]等应用ABAQUS对土石坝的静、动力进行分析,朱训国[10]等利用ABAQUS模拟NATM隧道施工。凡此种种,表明ABAQUS在岩土工程数值分析的众多方面应用十分广泛。

2.2 ANSYS

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,也是目前国际最为流行的有限元分析软件之一。ANSYS在土木工程行业的应用已扩展到各种结构构件承载力、静、动力特性等的分析,各种建筑结构——高层建筑、厂房结构、空间结构、构筑物等结构的静、动力分析,隧道等地下结构、大坝等水利工程、桥梁等结构的静、动力分析,场地土的地震反应分析,工程结构的可靠度分析,工程结构的优化设计分析等。

李向辉[11]等利用ANSYS对北京地铁天安门西站至复兴门站区间隧道进行地震反应分析,魏际兵[12]用ANSYS模拟岩质高边坡的开挖与加固,俞晓[13]使用ANSYS模拟深基坑的开挖与支护,韩春秀[14]等对使用ANSYS分析岩土工程中遇到的若干问题进行了探讨。相比较ABAQUS,ANSYS在岩土工程中的应用相对较少,但ANSYS的多场耦合分析功能可以处理高速变形和高度非线性问题,可以较好地模拟岩土的力学性能,包括对断层、夹层、节理、裂隙和褶皱等地质情况的模拟,在某些情况下起到很好的分析效果。

2.3 COMSOL Multiphysics

COMSOL Multiphysics是由COMSOL公司研制的一款的多物理场仿真软件,

这款软件的优势在于多物理场耦合方面,是故在岩土工程方面也经常被用于多物理耦合分析。如李利平[15]利用COMSOL计算开挖条件下突水形成过程的动态演变特征,纪佑军[16]等借助COMSOL模拟隧道开挖过程中围岩应力场及渗流场的变化规律,潘俊群[17]用COMSOL对隧道开挖期间的土力学响应进行模拟。

2.4 ADINA

ADINA是目前世界上非线性功能最有效、可靠的分析软件之一,对于解决岩土工程中的各种非线性问题具有明显的优势,特别适用于岩土工程中各种隧道的开挖问题、各种地下空间结构的动力抗震分析和岩土/渗流/温度场耦合问题分析。例如张向东[18]等采用ADINA软件,对鲍家湾隧道的开挖进行数值模拟;顾俊借助ADINA[19]建立地铁隧道三维有限元模型,进行地震非线性动力特性分析;白净钞[20]等利用ADINA对富水破碎围岩隧道的多种开挖工法进行数值模拟。2.5 PLAXIS

PLAXIS 2D/3D程序是由荷兰PLAXIS B.V.公司推出的一系列功能强大的岩土有限元计算软件,现在已广泛应用于各种复杂岩土工程项目的有限元分析中,如:大型基坑与周边环境相互影响、盾构隧道施工与周边既有建筑物相互作用、大型桩筏基础(桥桩基础)与邻近基坑的相互影响、软土地基固结排水分析、基坑降水渗流分析及完全流固耦合分析、建筑物自由振动及地震荷载作用下的动力分析、边坡开挖及加固后稳定性分析等。比如,唐晓松[21]等应用PLAXIS进行渗流作用下的边坡稳定分析,张如林[22]等基于PLAXIS模拟深基坑的支护设计,赵国芳[23]等探讨PLAXIS在砂性土路基填筑变形研究中的应用。

3.有限差分法

有限差分法的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。目前岩土行业使用较为广泛的有限差分软件主要是FLAC2D/3D,在解决大变形问题方面具有有限单元法不可比拟的优势。

FLAC2D/3D是由美国ITASCA公司开发的,FLAC3D是二维的有限差分程序FLAC2D的拓展,研究和应用范围主要集中在以下几个方面:

1)岩土体的渐进破坏和崩塌现象的研究;

2)岩体中断层结构的影响和加固系统的模拟;

3)岩土体材料固结过程的模拟;

4)岩土体材料流变现象的研究;

5)岩土体的动力稳定性分析、土与结构的相互作用分析以及液化现象的研究

寇晓东[24]等将FLAC3D应用于三峡船闸高边坡开挖过程的应力变形分析和稳定分析,张艳刚[25]利用FLAC程序对广西宁明地区膨胀土边坡进行了稳定性分析计,张宪堂[26]等将FLAC3D应用到对海底隧道涌水量的预测中,周健[27]等提出基于FLAC2D数值方法的地层损失率研究,曹茜[28]借助FLAC3D研究岩溶隧道与溶洞的安全距离。凡此种种,不胜枚举,FLAC程序广泛应用与岩土工程数值分析的方方面面。

4.离散元法

离散元法是专门用来解决不连续介质问题的数值模拟方法。该方法把节理岩体视为由离散的岩块和岩块间的节理面组成,允许岩块平移、转动和变形,而节理面可被压缩、分离或滑动。因此,岩体被看作一种不连续的离散介质。其内部可存在大位移、旋转和滑动乃至块体的分离,从而可以较真实地模拟节理岩体中的非线性大变形特征。目前使用较为广泛的离散元软件是由ITASCA公司开发的二维UDEC、三维3DEC和PFC2D/3D等离散元程序。

4.1 UDEC

UDEC是Universal Distinct Element Code的缩写,即通用离散单元法程序。源于对拉格朗日求解模式FLAC方法的完美沿承,UDEC具备连续介质力学范畴内的普遍性分析能力,而离散单元法的核心思想更是赋予UDEC在处理非连续介质环节上的本质优势,特别适合于固体介质在荷载(力荷载、流体、温度等)作用下静、动态响应问题的分析,如介质运动、大变形、或破坏行为甚至是破坏过程研究。在岩土工程方面,UDEC基本涵盖FLAC程序全部应用行业,但较FLAC更有解决优势。应用范围主要集中在介质的变形、渐进破坏、爆破作用下介质破裂扩展、动力稳定性、岩体结构渗透特征等问题上,例如大型高边坡稳定变形机理、深埋地下工程围岩破坏、矿山崩落开采等。

Rajinder[29]等用UDEC 对喜马拉雅山下的一个大型洞室变形机理进行研究,

探讨了不同输入参数,如节理间距、节理本构模型等对洞室变形行为和位移的影响;刘亚群[30]等运用UDEC模拟爆破荷载作用下黄麦岭磷矿采场岩质边坡的动态响应,并将计算结果与现场监测结果进行了比较;魏东[31]等基于UDEC模拟爆破荷载作用下层状岩质边坡渐进破坏的全过程;陈陆望[32]等通过UDEC模拟厚松散层及超薄覆岩条件下某矿工作面4种工况开采防水煤柱覆岩的破坏特征。

4.2 3DEC

3DEC程序承袭了UDEC的基本核心思想,本质上是对二维空间离散介质力学描述向三维空间延伸的结果。相比其他数值程序,3DEC有如下优点:

1)允许块体产生有限位移、旋转、块体间能完全分离,自动判别各块体之间的接触点;

2)可模拟三维刚体或者可变形岩体的力学行为,可模拟各种岩体介质在动态和静态载荷下的受力和位移;

3)在非连续性节理岩体的行为模拟方面,可使用统计的方法,将岩桥与节理平均分配在非连续性节理面上;

4)3DEC具有三维岩体模型的显示能力,可360°旋转模型,观察岩体受力后的变形情况,并且可以直接显示应力和应变的结果。

王涛[33]等采用3DEC计算地下洞室群的围岩稳定;周家文[34]等分析考虑地震影响下楔体安全系数计算在3DEC中的实现;吴鑫[35]等通过3DEC,针对卸压孔在不同孔径下的围岩变形情况,分析了钻孔卸压在深部巷道中的效果。

在3DEC之外,王泳嘉[36]等研制开发了TRUDEC程序,并对其进行了工程验证。

4.3 PFC2D/3D

PFC系列软件是由ITASCA公司开发的颗粒流分析程序(Particle Flow Code),分为PFC2D、PFC3D两种,特别用于模拟任意性状、大小的二维圆盘或三维球体集合体的运行及其相互作用的强大颗粒分析程序。除了模拟大体积流动和混合材料力学研究,程序更适合于描述固体材料中细观/宏观裂纹扩展、破坏累积并断裂、破坏冲击和微震响应等问题。

PFC与UDEC、3DEC相比,模拟大变形问题时块体可受力破坏分离,而UDEC不能模拟块体的破裂。PFC在岩土工程方面最初研究主要集中在介质力学

特性(如本构)、破裂和破裂扩展问题上,后来逐渐扩展到大型高边坡稳定、深埋地下工程的破裂损伤、高放核废料隔离处置的岩体损伤和多场耦合等方面。比如,丁秀丽[37]等人采用PFC2D软件建立了土石混合体模型并进行双轴压缩试验;张晓平[38]等人采用PFC3D分析了单轴作用下的岩石强度特性,与室内试验结果吻合;胡欣雨[39]等人利用PFC2D模拟泥水盾构隧道掘进全过程,黏土颗粒用二维圆盘单元模拟,形象展示了失稳过程,得到了有效控制失稳关键点;扈世民[40]对大断面黄土隧道破坏模式模拟,形象展示出其破坏过程。

5.结论与展望

考虑到对岩土工程分析对象-岩土材料特性的掌握和分析,同时岩土工程的边界条件和初始条件都非常复杂,岩土工程的分析基本不能够得到有效的解析解,而岩土工程的数值分析主要用于复杂岩土工程问题的定性分析。

目前岩土行业可以使用的数值分析软件种类繁多,但仍有较多的数值方法没有开发出有效的商用软件,应用范围有待拓展。目前绝大部分流行的数值软件都由国外公司开发维护,我国自主开发的计算程序正在逐渐退出岩土工程分析领域,未来我国岩土行业从业者应大力发展国产岩土数值分析软件。

参考文献

[1]夏才初, 孙宗颀. 工程岩体节理力学[M]. 上海: 同济大学出版社, 2002.

[2]孙钧. 世纪之交的岩石力学研究[J]. 中国岩石力学与工程学会第五次学术大会论文

集,1998.

[3]陈景涛. 岩土工程中的数值方法[J]. 科技创业月刊, 2007, 20(12): 190-192.

[4]Jing L, Hudson J A. Numerical methods in rock mechanics[J]. International Journal of Rock

Mechanics and Mining Sciences, 2002, 39(4): 409-427.

[5]费康, 张建伟. ABAQUS 在岩土工程中的应用[J]. 2010.

[6]朱向荣, 王金昌. ABAQUS 软件中部分土模型简介及其工程应用[J]. 岩土力学, 2004, 2.

[7]徐远杰, 王观琪, 李健, 等. 在ABAQUS 中开发实现Duncan-Chang 本构模型[J]. 岩土力

学, 2004, 25(7): 1032-1036.

[8]李春忠, 陈国兴, 樊有维. 基于ABAQUS 的强度折减有限元法边坡稳定性分析[J]. 防灾减

灾工程学报, 2006, 26(2): 207-212.

[9]费康, 刘汉龙. ABAQUS 的二次开发及在土石坝静, 动力分析中的应用[J]. 岩土力学, 2010,

31(3): 881-890.

[10]朱训国, 杨庆, 栾茂田. 利用ABAQUS 模拟NATM 隧道施工过程[J]. 岩土力学S, 2006,

1.

[11]李向辉. 浅谈地下结构的抗震设计及ANSYS 软件在其中的应用[J]. 矿产勘查, 2004 (5):

55-57.

[12]魏际兵. 岩质高边坡开挖与加固的ANSYS 模拟[D]. 贵阳: 贵州大学, 2007.

[13]俞晓. 深基坑开挖与支护的模型试验与ANSYS 分析研究[D][D]. 武汉理工大学, 2005.

[14]韩春秀, 董羽蕙. 用ANSYS 软件分析不同岩土工程问题的若干思考[J]. 四川建筑科学研

究, 2007, 33(1): 129-133.

[15]李利平. 高风险岩溶隧道突水灾变演化机理及其应用研究[D][D]. 山东: 山东大学, 2009.

[16]纪佑军, 刘建军, 程林松. 考虑流-固耦合的隧道开挖数值模拟[J]. 岩土力学, 2011, 32(4):

1229-1233.

[17]潘俊群. 基于COMSOL Multiphysics 的隧洞开挖数值模拟[J]. 中国水运: 下半月, 2015

(7): 94-96.

[18]张向东, 周军霞, 单春雨. ADINA 在隧道开挖中的数值模拟应用[J]. 科学技术与工程, 2007,

7(17): 30-31.

[19]顾俊. 地铁隧道结构地震非线性动力响应分析[D]. 南京: 河海大学, 2007.

[20]白净钞, 马德芹, 巫明健. 富水破碎围岩隧道施工工法ADINA 数值模拟[J]. 科技视界,

2013 (28): 5-6.

[21]唐晓松, 郑颖人, 邬爱清. 应用PLAXIS 有限元程序进行渗流作用下的边坡稳定性分析[J].

长江科学院院报, 2006, 23(4): 13-16.

[22]张如林, 徐奴文. 基于PLAXIS 的深基坑支护设计的数值模拟[J]. 結構工程師, 2010,

26(2): 131-136.

[23]赵国芳, 严战友, 卜建清. PLAXIS 软件在砂性土路基填筑变形研究中的应用[J]. 铁道建筑,

2009 (8): 100-102.

[24]寇晓东, 周维垣, 杨若琼. FLAC-3D 进行三峡船闸高边坡稳定分析[J]. 岩石力学与工程学

报, 2001, 20(1): 6-10.

[25]张艳刚. 膨胀土边坡稳定性的FLAC 分析——南友高速公路宁明段膨胀土边坡稳定性研究

[D]. 广西大学, 2005.

[26]张宪堂, 王洪立, 周红敏, 等. FLAC 3D 在海底隧道涌水量预测中的应用[J]. 岩土力学,

2008, 1.

[27]周健, 陆丽君, 贾敏才. 基于FLAC2D 数值方法的盾构隧道地层损失率研究[J]. 地下空间

与工程学报, 2014, 10(4): 902-907.

[28]曹茜. 岩溶隧道与溶洞的安全距离研究[D][D]. 北京: 北京交通大学, 2010.

[29]Bhasin R, H?eg K. Parametric study for a large cavern in jointed rock using a distinct

element model (UDEC—BB)[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 17-29.

[30]刘亚群, 李海波, 李俊如, 等. 爆破荷载作用下黄麦岭磷矿岩质边坡动态响应的UDEC 模

拟研究[J]. 岩石力学与工程学报, 2004, 23(21): 3659-3663.

[31]魏东, 苗现国, 阴飞. 爆破荷载作用下边坡渐进破坏模式的UDEC 模拟研究[J]. 土工基础,

2009, 23(5): 59-61.

[32]陈陆望, 桂和荣, 李一帆. UDEC 模拟厚松散层及超薄覆岩条件下开采防水煤柱覆岩突水可

能性[J]. 水文地质工程地质, 2007, 1(1).

[33]王涛, 陈晓玲, 于利宏. 地下洞室群围岩稳定的离散元计算[J]. 岩土力学, 2005, 26(12):

1936-1940.

[34]周家文, 徐卫亚, 石崇. 基于3DEC 的节理岩体边坡地震影响下的楔体稳定性分析[J].

Chinese Journal of Rock Mechanics and Engineering, 2007.

[35]吴鑫, 张东升, 王旭锋, 等. 深部高应力巷道钻孔卸压的3DEC 模拟分析[J]. 煤礦安全,

2008, 39(10): 51-53.

[36]王泳嘉, 刘连峰. 三维离散单元法程序TRUDEC 及其工程验证[J]. 面向21 世纪的岩石

力学与工程: 中国岩石力学与工程学会第四次学术大会论文集, 1996.

[37]丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与

工程学报, 2010, 29(3): 477-484.

[38]张晓平, 吴顺川, 张志增, 等. 含软弱夹层土样变形破坏过程细观数值模拟及分析[J]. 岩土

力学, 2008, 29(5): 1200-1204.

[39]胡欣雨, 张子新. 不同地层条件泥水盾构开挖面失稳状态颗粒流模拟方法研究[J]. 岩石力学

与工程学报, 2013, 32(11): 2258-2267.

[40]扈世民, 张顶立. 大断面黄土隧道破坏模式离散元分析[J]. 北京交通大学学报, 2013, 37(4):

13-18.

中国石油大学流体力学实验报告

中国石油大学(流体力学)实验报告 实验日期:2012-2-15 成绩: 班级:学号:姓名:教师: 同组者: 实验一、流体静力学实验 一、实验目的 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7 截止阀.;8. U形测压管;9.油柱;

10.水柱;11.减压放气阀 图1-1-1流体静力学实验装置图 2、说明 1.所有测管液面标高均以测压管2标尺零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均以顺管轴线为开。 三、实验原理在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p =+ γ z (1-1-1a ) 形式之二: h p p γ+=0(1-1b ) 式中z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ==(1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=-(1-1-3)

岩土力学试题2答案

一、填空题(本大题共5小题,每小题3分,总计15分) 1、土的三相组成是指: 固相 、 液相 、 气相 。 2、土层中的毛细水带分:正常毛细水带、毛细网状水带、毛细悬挂水带三种。 3、土的三轴试验方法分:不固结不排水剪、固结不排水剪、固结排水剪。 4、均质粘性土圆弧滑动面的形式有:坡脚圆、坡面圆、中点圆。 5、地基剪切破坏的形式有:整体剪切破坏、局部剪切破坏、刺入剪切破坏 二、选择题(在每个小题四个备选答案中选出一个正确答案,填在下面表格中) (本大题共5小题,每小题3分,总计15分)) 1、已知土的重度γ,土颗粒重度γS 、土的含水量ω、水的容重γW ,则浮重度r '为 (A ) ω +1r w γ+ (B ) () 11-+r S ωγ (C ) ) 1()(ωγγγ +-S W S r -w γ (D ) w S W S r γωγγγ++-) 1()( 2、已知某粘性土的液限为42%,塑限为22%,含水量为52%,则其液性指数、塑性指数分别为: (A ) 20、1.5 (B ) 20、30 (C ) 1.5、20 (D ) 1.5、30 3、某土层厚度为3m ,重度为193 /m KN ,则该土层深2m 处的自重应力为: (A ) 5.7 KPa (B ) 3.8 KPa (C ) 57 KPa (D ) 38 KPa 4、已知土层的前期固结压力c p 为0.2MPa ,土层自重应力0p (即自重作用下固结稳定的有效竖向应力)为0.3 MPa ,则该土层属于: (A ) 超固结土 (B ) 欠固结土 (C ) 正常固结土 (D ) 不能确定 5已知某土样内摩擦角0 26=φ,粘聚力为KPa c 20=,承受最大主应力和最小主应力分别为 KPa 4501=σ,KPa 1503=σ,则该土体:

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

岩土力学作业形成性考核册标准答案

岩土力学作业形成性考核册标准答案

————————————————————————————————作者:————————————————————————————————日期: 2

岩土力学 作业一 说明:本次作业对应于文字教材1至3章,应按相应教学进度完成。 一、填空题 (每空1分,共计25分) 1.工程上常用的土的密度有湿密度、饱和密度、浮密度和干密度。 2.土是由 固相 、 气相 、和 液相 三部分组成。 3.土体的应力按引起的原因分为 自重应力 和 附加应力 两种。 4.对于天然土,OCR>1时的土是 超固结土 ,OCR=1的土属于 正常固结土 ,而 OCR<1的土是 欠固结土 。 5.土的颗粒分析试验最常用的室内试验方法有 筛析法 和 比重计法 。 6. 土体的变形可分为由正应力引起的 体积变形 和由剪应力引起的 形状变形 。 7.按照土颗粒的大小、粒组颗粒含量把地基土分成碎石土、砂土、粉土、粘性土和人工填土。 8.根据渗透破坏的机理,渗透破坏的形式主要有流土、管涌、接触流失和接触冲刷。 9.控制坝基及地基的渗流,其主要任务可归结为三点:一是尽量减少渗漏量;二是提早释放渗透压力,保证地基与水工建筑物有足够的静力稳定性;三是防止渗透破坏,保证渗透稳定性。 二、问答题 (每小题5分,共计35分) 1.什么是孔隙比e 、孔隙率n ,二者的关系。 孔隙比为土中孔隙的体积与土粒的体积之比;孔隙率为土中孔隙的体积与土的体积之比;关系为:n=e/(1+e),或e=n/(1-n) 。 2.固结度指:在某一固结应力作用下,经某一时间t 后,土体发生固结或孔隙水应力消散 的程度。 3. 在压力作用下,饱和土体固结的力学本质是什么? 在某一压力作用下,饱和土体的固结过程就是土体中的超孔隙水应力不断消散、附加有效应力不断增加的过程,即超孔隙水应力逐渐转化为附加有效应力的过程。 4. 土的级配曲线的特征可用哪两个系数来表示?这两个系数是怎样定义的? 答:不均匀系数u C 和曲率系数c C 1060d d C u = , ()60 102 30d d d C c = 10d ,30d ,60d 为粒径分布曲线上小于某粒径的土粒含量分别为10%,30%,60%时所 对应的粒径。

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

流体力学实践报告

黑龙江科技大学建筑工程二学历实践报告 流体力学实践报告 一、实践概述 在此次实践中,老师给我演示了雷诺试验与伯努利方程试验。下面我就实践的主要内容进行一下总结。 二、雷诺实验 (一)、实验目的 1、观察液体流动时的层流与紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。 2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失与断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律就是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。 3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。 (二)、实验原理 1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层

的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 液体运动的层流与紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断: Re=Vd/ν Re 称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。 在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。 2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知: f 2222221111h g 2V a p z g 2V a p z ++γ+=+γ+ 因为管径不变V 1=V 2 ∴=γ +-γ+=)p z ()p z (h 2211f △h 所以,压差计两测压管水面高差△h 即为1-1与1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速A Q V =,作为lgh f 与lgv 关系曲线,如下图所示,曲线上EC 段与BD 段均可用直线关系式表示,由斜截式方程得: lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线的斜率

岩土力学复习题

土木复习题 一、名词解释 土的干密度 临界水力坡降 附加应力 附加应力 欠固结土 天然休止角 岩石的软化性 临塑荷载 土的构造 . 灵敏度 . 极限承载力 先期固结压力 二、填空题 1、三相比例指标及其测量方法 2.实际工程如何评判土的压缩性类别?土的压缩性指标有哪些? 3. 直接剪切试验和三轴试验种类 4. 采用单向压缩分层总和法计算地基沉降时,如何确定压缩性指标。 5.什么是有效应力原理? 6.十字板剪切试验测定的抗剪强度与三轴剪力仪的哪种试验类似? 7.室内测定渗透系数方法有哪些?现场测定渗透系数方法有哪些?各适合何种土? 8.无侧限抗压试验有何特点 9.浅基础的地基破坏模式及适用条件? 10.粘性土坡与无粘性土坡的滑动方式有何不同?为什么? 11.什么是达西定律? 什么是渗透力、渗透变形 12. 什么是静止土压力、主动土压力、被动土压力 13.毕肖普公式假定有哪些? 14. 典型的载荷试验p-s 曲线有哪几个阶段?各有何特点? 15、什么是极限荷载,它由哪几部分组成 16. 土的现场十字板剪切试验的适用条件及应用 17.如何根据摩尔—库伦强度理论确定剪切破坏面方向?根据摩尔—库伦强度理论,抗剪强度与哪些因素有关? 18.饱和土地基在局部荷载作用下的总沉降由哪几个部分组成? 三、选择题 1.应用弹性理论计算地基中应力时,地基土的假定不包括 。 (1)均匀的; (2)连续的;(3)各向同性的; (4)各向异性的。 2.对基底压力公式A Ad F p G γ+= 参数的解释,不正确的是 。 (1) G γ为基础及回填土的平均重度; (2)d 为基础埋深; (3) G γ为基础的重度; (4)A 为基础底面积。 3.简化毕肖普公式忽略了 。 (1)土条间的作用力 (2)土条间的法向作用力 (3)土条间的切向作用力 4.路堤旁边一侧的自由水面突然下降时,边坡的安全系数将_______。 (1)有所降低 (2)保持不变 (3)有所提高 5. 土体的压缩变形主要是由下述哪种变形造成的?________ A. 土孔隙体积的压缩变形 B 土颗粒的体积压缩变形 C 土孔隙和土颗粒的体积压缩变形之和 6.不均匀系数的表达式为__________。 A. 1060d d C u = B. 6010d d C u = C. 103060d d d C u = D. 60 102 30 d d d C u = 7.在荷载作用下, 饱和粘土如有条件排水固结, 则其抗剪强度将随时间而_______ 。 A. 减小 B .增大 C. 保持不变

国开《岩土力学》2022期末试题及答案(试卷号:1181)

国家开放大学电大本科《岩土力学》2022 期末试题及答案(试卷号:1181) 一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正确的或最好的作为答案,将选项号填入各题的括号中) 1.若土的压缩曲线(e-p 曲线)较陡,则表明( )。 A.土的密实度较大 B.土的空隙比较小 C.土的压缩性较高 D.土的压缩性较低 2.控制坝基的渗流变形,以下哪个说法正确?( ) A.尽量缩短渗流途径 B.尽量提高水力坡降 C.尽量减少渗透量 D.尽量采取蓄水增压措施 3.前期固结压力小于现有覆盖土层自重应力的土称为( )。 A.欠固结 B.次固结 C.正常固结 D.超固结 4.当土体中某个方向上的剪应力达到土的抗剪强度时,称该点处于( )状态。 A.允许承载 B.剪切破坏 C.稳定 D.极限平衡 5.用库仑土压力理论计算挡土墙土压力时,基本假设之一是( )。 A.墙后填土必须是干燥的 B.墙背直立 C.填土为无黏性土 D.墙背光滑 6.地基土发生剪切破坏而失去整体稳定时的基底最小压力为( )。 A.允许承载力 B.极限承载力

C.承载力特征值 D.原始土压力 7.围岩变形破坏的形式与特点,除了与岩体内的初始应力状态和洞形有关外,主要取决于( )。A. 围岩的岩性 B.围岩的岩性及结构 C.围岩的结构 D.围岩的大小 8.岩石在破坏之前的变形较大,没有明显的破坏荷载,表现出显著的塑性变形、流动或挤出,这种 破坏即为( )。 A.脆性破坏 B.弱面剪切破坏 C.塑性破坏 D.受压破坏 9.下面关于地应力的描述正确的是( )。 A.地层中由于过去地质构造运动产生和现在正在活动与变化的力或地质作用残存的应力 B.岩体在天然状态下所存在的内应力 C.由上覆岩体的自重所引起的应力 D.岩体在外部载荷作用下所产生的应力 10.弹性抗力系数不仅与岩石性质有关,而且与隧洞的尺寸也有关系,隧洞的半径越大,则岩体的弹 性抗力系数将( )。 A.越大 B.越小 C.稍微增大 D.不变 二、判断题(每小题 2 分,共 20 分。判断以下说法的正误,并在各题后的括号内进行标注。正确的标注√,错误的标注×) 11.岩石浸水饱和后强度降低的性质称为岩石的软化性,用软化系数表示。( ) 12.达西定律只适用于层流的情况,对于粗砂、砾石等粗颗粒土不适用。( ) 13.根据有效应力原理,外力作用于饱和土体后,由土的骨架承担的部分称为孔隙压力,由水承担的 部分称为有效应力。( ) 14.砂土在振动荷载作用下,从固体状态变为液体状态的现象,称为砂土液化。( )

【完整版】理论与应用力学毕业设计

理论与应用力学 学科:理学 门类:力学 专业名称:理论与应用力学 业务培养目标:本专业培养掌握力学的基本理论、基本知识和基本技能,能在力学及相关科学领域从事科研、教学、技术和管理工作的高级专门人才。 业务培养要求:本专业学生主要学习必需的数学、物理的基础知识,学习力学基础理论及某一专业方向的专门知识,加强实验能力和计算机应用能力的训练,注意培养理论分析能力和力学应用的能力。受到科学研究和工程技术应用的初步训练,具有良好的科学素养。 毕业生应获得以下几方面的知识和能力: 1.掌握数学、物理的基础知识,具有较强的分析和演算能力; 2.掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法; 3.了解相近专业的一般原理和知识; 4.对本专业范围内科学技术的新发展有所了解; 5.了解国家科技、产业政策、知识产权等有关政策和法规; 6.掌握资料查询、文献检索以及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件、归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 主干学科:力学 主要课程:数学分析、高等代数、数学物理方法、计算方法、程序设计、普通物理学、理论力学、材料力学、弹性力学、流体力学等。 主要实践性教学环节:包括生产实习、科研训练或毕业论文(设计)等,一般安排10--20周。 修业年限:四年 授予学位:理学或工学学士 理论与应用力学复旦大学637637河南理科2009本科一批 理论与应用力学中山大学626627河南理科2009本科一批 理论与应用力学哈尔滨工业大学622622河南理科2009本科一批 理论与应用力学吉林大学619623河南理科2009本科提前批 理论与应用力学西北工业大学601610河南理科2009本科一批 理论与应用力学兰州大学599604河南理科2009本科一批 理论与应用力学辽宁工程技术大学586603河南理科2009本科一批 理论与应用力学兰州理工大学552552河南理科2009本科二批 理论与应用力学内蒙古工业大学543567河南理科2009本科二批 10理论与应用力学河南理工大学539553河南理科2009本科二批

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

岩土力学作业四

作业四 说明:本次作业对应于文字教材10至12章,应按相应教学进度完成。 一、填空题(每空1分,共计30分) 1.把由于洞室围岩的变形和破坏作用而作用在支护或衬砌上的压力称为 2.山岩压力的影响因素除岩石性质外,还应考虑、、 、、、等因素。 3.地下工程岩体稳定性影响因素主要有、、 、等。 4.岩基的极限承载力,就是指岩基所能负担的。 5.脆性围岩的变形破坏类型有、、、 和。 6.大坝失稳的形式主要有:、、。 7. 由于岩体变形而对支护或衬砌的压力,称为;将由于岩体而对支护或衬砌的压力,称为。 8. 在中等质量的岩石中,洞室围岩的变形。由于洞室围岩的需要一定的时间,所以在进行支护或衬砌以后围岩的受支护或衬砌的约束,于是产生山岩压力。 9. 在整体性良好,裂隙节理不发育的坚硬岩石中开挖洞室,开挖结束后,围岩的弹性变形就完成。若在此后进行支护,支护山岩压力。这种支护主要是用来。 10.无裂隙围岩的应力计算方法有和。 二、判断题(每小题2分,共计10分) 1 .求解山岩压力的计算理论中,太沙基理论把岩体假定为散粒体。() 2.由于洞室围岩的变形和破坏而作用于支护或衬砌上的压力称为围岩压力() 3.围岩处于塑性变形状态时,洞室埋置愈深,山岩压力愈大。() 4.开挖洞室的影响范围是6倍洞直径。() 5. 洞室的形状相同时,围岩压力与洞室的尺寸无关。() 三、问答题(每小题5分,共计20分) 1.简述地下洞室开挖引起的围岩应力重分布及其规律 2.何为山岩压力?按其成因可分为哪几类?各自用什么方法确定? 3.不同质量状况的围岩变形破坏特别如何? 4.简述高压固结灌浆的施工方法。 四、计算题(每题10分,共计40分) 1.埋深200m处的岩体内开挖一硐径为2a=2m圆形断面隧道,如果岩体中初始地应力为静水压力式,并且上覆岩层的平均容重为g/cm3,若隧道周岩的抗剪强度指标MPa,,试用莫尔-库仑强度条件评价其洞壁的稳定性。 2.在地下50m深度处开挖一地下洞室,其断面尺寸为5m×5m。岩石性质指标为:凝聚力c=200kPa,内摩擦角,容重=25kN/m3,侧压力系数。已知侧壁岩石不稳,试用太沙基公式计算洞顶垂直山岩压力及侧墙的总的侧向山岩压力。 3.某圆形洞室围岩kN/m3,埋置深度H=160m,洞的半径r0=7m。设折减后的凝聚力c=0.02MPa,,求松动压力。 系数k1曲线系数k2曲线

《岩土力学(本科必修)》2017期末试题及答案

《岩土力学(本科)》2017期末试题及答案 一、判断题(每题3分,共30分) 1.不均匀系数C。愈大,说明土粒愈不均匀。( ) 2.同一种土的抗剪强度是一定值,不随试验方法和排水条件不同而变化。( ) 3·根据莫尔一库伦准则可证明均质岩石的破坏面法线与大主应力方向间夹角为45。一号。( ) 4.由于洞室围岩的变形和破坏而作用于支护或衬砌上的压力称为围岩压力。( ) 5.洞室的形状相同时,围岩压力与洞室的尺寸无关。( ) 6·土的颗粒分析试验最常用的室内试验方法有筛析法和比重计法。( ) 7·岩石的破坏形式可分为脆性破坏、延(塑)性破坏和弱面剪切破坏三种。( ) 8.岩石的饱水系数对于判别岩石的抗冻性有重要意义。( ) 9.土的抗剪强度试验的目的是测定土的最大主应力。( ) 10·库仑土压力理论的计算公式是根据滑动土体各点的应力均处于极限平衡状态而导出的。 ( ) 二、简答题(每题l0分,共40分) 1.土的级配曲线的特征可用哪两个系数来表示?这两个系数是怎样定义的? 2.什么叫土的抗剪强度?常用的试验方法有哪些? 3.确定地基承载力的方法有哪些? t 4.什么叫滑坡?滑坡滑动面的形式有几种? ’’ 三、计算题(每题l5分,共30分) 1.某试样,在天然状态下的体积为140cm3,质量为240g,烘干后的质量重为190g,设土粒比重为2.67,试求该试样的天然容重、含水量、孔隙比、饱和度。 2.有一8m厚的饱和粘土层,上下两面均可排永,现从粘土层中心处取得2cm厚的试样做固结试验(试样上下均有透水石)。试样在某级压力下达到60%的固结度需要8分钟,则该粘土层在同样的固结压力作用下达到60%的固结度需要多少时间?若该粘土层单面排水,所需时间为多少? 试题答案及评分标准

(讲稿)毕业设计论文指之国内外设计研究现状的写法和范文

[讲稿]毕业论文指之国内外研究现状的写法与范文 毕业论文指之“国内外研究现状”的撰写 一、写国内外研究现状的意义 通过写国内外研究现状,考察学生对自己课题目前研究范围和深度的理 解与把握,间接考察学生是否阅读了一定的参考文献。这不仅是毕业论文 撰写不可缺少的组成部分,而而且是为了让学生了解相关领域理论研究前沿,从而开拓思路,在他人成果的基础上展开更加深入的研究,避免不必 要的重复劳动或避免研究重复。 二、国内外研究现状写法 在撰写之前,要先把从网络上和图书馆收集和阅读过的与所写毕业论文 选题有关的专著和论文中的主要观点归类整理,找出课题的研究开始、发 展和现在研究的主要方向,并从中选择最具有代表性的作者。 1. 在写毕业论文时,简写课题的研究开始、发展和现在研究的主要方向, 最重要的是对一些现行的研究主要观点进行概要阐述,并指明具有代表 性的作者和其发表观点的年份。 2. 再者简单撰写国内外研究现状评述研究的不足之处,可分技术不足和研 究不足。即还有哪方面没有涉及,是否有研究空白;或者研究不深入; 还有哪些理论或技术问题没有解决;或者在研究方法上还有什么缺陷等 等。 3. 最后简略介绍发展趋势。 三、写国内外研究现状应注意的问题 1.注意写的是把研究现状,而不是写课题物本身现状,重要体现研究。例如,写算法的可视化研究现状,应该写有哪些专著或论文、哪位作者、有什

么观点等;而不是大量算法的可视化研究何时产生、有哪些交易品种、 如何演变,此只需一笔带过,也是对研究的一种把握。 2.要写最新研究成果和历史意义重大的研究成功,主要写最新成果。 3(不要写得太少或写的太多。如果写的少,说明你查阅的材料少;如果太 多则说明你没有归纳,只是机械的罗列。一般2-3 页A4 纸即可。 4.如果没有与毕业论文选题直接相关的文献,就选择一些与毕业论文选题比较靠近的内容来写。多从网络上找资料,学习和练习。 “国内外研究现状”的撰写范文 在计算机图形学领域,三维可视化是一个重要的研究方向,许多研 究人员己经进行了大量卓有成效的研究,并有许多成熟的技术己经应用 到实际中,出现了大量的优秀的可视化软件产品,如3DMAX、MAYA、EVS、AVS 等。这些产品主要应用于游戏、电影动画、工业设计以及其它专业领域的研究,而与GIS 联系较少。 可视化理论与技术用于地图学与GIS 始于90 年代初。1993 年,国际 地图学协会(ICA)在德国科隆召开的第16 届学术讨论会上宣告成立可视化委员会(CommissionOnVisualization),其主要任务是定期交流可视化技术在地图学领域中的发展状况和研究热点,并加强与计算机领域的协作。1996 年该委员会与美国计算机协会图形学专业组(ACMSIGGAPH)进行了跨 学科的协作,制订了一项称为“CartoProiect"的行动计划,旨在探索计算机图形学领域的理论和技术如何有效地应用于空间数据可视化中,同时 也探讨怎样从地图学的观点和方法来促进计算机图形学的发展。1998 年 2 月由B(H(Mccormick 等根据美国国家科学基金会召开的“科学计算可 视化研讨会"的内容撰写的一份报告中正式提出了“科学计算可视化

东北大学岩土力学考试答案

东北大学继续教育学院 岩石力学试卷(作业考核线上2) B 卷(共 6 页) 一、 1、岩石与岩体的关系是( B )。 (A)岩石就是岩体(B)岩体是由岩石和结构面组成的 (C)岩石是岩体的主要组成部分 2、流变性质指材料的应力应变关系与( B )因素有关系的性质。 (A)强度(B)时间(C)载荷大小(D)材料属性 3、比较岩石抗压强度、抗剪强度和抗拉强度的大小为( C )。 (A)抗压强度<抗剪强度<抗拉强度(B)抗压强度>抗拉强度>抗剪强度 (C)抗压强度>抗剪强度>抗拉强度 4、影响岩体力学性质各向异性的主要因素为( B )。 (A)地下水(B)结构面(C)构造应力场 5、巴西试验是一种间接测定岩石( B )强度的试验方法。 (A)抗压(B)抗拉(C)抗剪 6、蠕变是指介质在大小和方向均不改变的外力作用下,介质的(B )随时间的变化而 增大的现象。 (A)应力(B)应变(C)粘性 7、下列参数不是岩石强度指标的为( A )。 (A)弹性模量(B)内聚力(C)摩擦角 8、在地应力测量中以下那种方法不属于直接测量法(D ) (A)扁千斤顶法(B)声发射法(C)水力劈裂法(D)全应力解除法 9、按照库仑—莫尔强度理论,若岩石强度曲线是一条直线,则岩石破坏时破裂面与最大 主应力作用方向的夹角为( C )。 (A)45°(B)(C)(D)60° 10、岩石质量指标RQD是(A)以上岩芯累计长度和钻孔长度的百分比。 (A)10cm(B)20cm(C)30cm 11、下列关于岩石长期强度S∞和瞬间强度S0的关系正确的是(D)。 (A)S∞>S0 (B)S∞≤S0 (C)S∞≥S0 (D)S∞<S0 12、下列关于库伦强度理论论述不正确的是(B) (A) 库伦准则是摩尔强度理论的一个特例(B)适用于受拉破坏 (C) 适用于岩石压剪破坏(D)适用于结构面压剪破坏 13、关于格里菲斯强度理论论述不正确的是(C) (A)岩石抗压强度为抗拉强度的8倍

室外风环境模拟计算报告123

新项目 室外风环境模拟计算报告 计算软件:风模拟分析软件PKPM-CFD 开发单位:中国建筑科学研究院 建研科技股份 合作单位:Software Cradle Co., Ltd. 韵能建筑科技 应用版本:Ver1.00 2015.10.19

室外风环境模拟分析报告 项目名称:新项目 项目地址: 建设单位: 设计单位: 参与单位: 规标准参考依据: 1、《绿色建筑评价标准》(GB/T 50378-2014) 2、《民用建筑设计通则》(GB 50352-2005) 3、《绿色建筑评价技术细则》

一、项目概述 1.1计算模型概况 1.2建筑物概况 图 1 建筑群平面图,红线建筑为目标建筑

二、指标要求 针对室外风环境评价依据为《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的条目要求。 2.1规的评价要求 《绿色建筑评价标准》(GB/T 50378-2014)中有关室外风环境的具体要求如下: 4.2.6 场地风环境有利于室外行走、活动舒适和建筑的自然通风。评分规则如下: 1 冬季典型风速和风向条件下,建筑物周围人行区风速低于5m/s,且室外风速放大系数小于2,得2分;除迎风第一排建筑外,建筑迎风面与背风面表面风压差不超过5Pa,再得1分。 2 过渡季、夏季典型风速和风向条件下,场地人活动区不出现涡旋或无风区,得2分;50%以上可开启外窗室外表面的风压差大于0.5Pa,得1分。 2.2模拟条件设置要求 1、室外风环境模拟的边界条件和基本设置需满足以下规定: 1)计算区域:建筑覆盖区域小于整个计算域面积3%;以目标建筑为中心,半径5H围为水平计算域。建筑上方计算区域要大于3H;H为建筑主体高度; 2)网格划分:建筑的每一边人行高度区1.5m或2m高度应划分10个网格或以上; 3)湍流模型选择:标准k-ε模型。高精度要求时采用Durbin模型或MMK模型。

流体力学l论文

流体力学原理在煤矿通风系统分析与风机选择中的应用 院系 专业 班级 姓名 学号 指导教师

流体力学原理在煤矿通风系统分析与风机选择中的应用 摘要矿井的通风就是流体在井下巷道中的流动,通过应用流体力学原理同时结合煤矿井下的环境。针对各巷道的特点对局部阻力成因进行分析,对各种参数进行计算,用科学的方式选择合理的通风方式和通风设备,同时得出解决井下通风过程中出现的一系列的问题的方法。 关键词流体力学参数计算通风设备涡漩 由于煤矿井下在生产的过程中会产生有毒、有害、有爆炸性的气体、粉尘等物质,但为了保证工作场所人员的安全、健康的工作《煤矿安全规程》规定这些气体、粉尘不得超过规定值。基于此就需要对井下各工作地点创造良好的通风环境,保证有足够的新鲜空气,使气温适宜。煤矿井下巷道风流运动过程中。由于巷道两帮条件的变化。均匀流在局部地区受到局部阻力物(如巷道断面突然变化、风流分叉与交汇、巷道转弯等)的影响而破坏,引起风流流速的大小、方向或分布的变化,产生涡漩等.造成风流的能量损失,同时又有可能引起瓦斯等有害气体的积聚,从而给安全带来隐患。为了解决这些问题就需要对矿井的通风过程中的一些参数进行计算选择合理的通风方式和通风设备就显得尤为重要。矿井局部通风机是煤矿采掘中不可缺少的通风安全设备,其性能特性的优劣直接与煤矿生产安全紧密相关。从流体力学原理出发.以风机为例,给出合理选择风机的科学依据和方法,这对实现节能、安全、高效生产具有积极意义。 1 煤矿井下风流流动状态 风流在同一巷道中,因流速的不同,形成质不同的流动状态。通过实验表明,流体在直巷内流动时,在一般情况下,当Re < 2000-3000流体状态为层流,当Re > 4000时流动状态为紊流,在Re = 2000-4000的区域内时,流动状态可能能是层流.也可能是紊流。随着巷道的粗糙程度,风流根据进入巷道的情况等外部条件而定。而层流流动时,只存在南黏性引起的各流层间的滑动摩擦力;紊流流动时,则有大小不同的涡体动荡于各流层之间,除了黏性阻力外,还存在由于质点掺混、互相碰撞所造成的惯性阻力。 巷道风流流态与巷道平均风速、断面及巷道周界长有关,具体表示为: 根据此公式可以计算出风流在巷道中的流动状态。 2 巷道通风阻力流体力学原理 2.1局部阻力的分析

计算流体力学螺旋管分析报告

重庆大学《计算流体力学与计算传热学基础》上机实验水平螺旋管内的对流换热过程 学生:刘伟文 学号:20123000 指导教师:李隆键 专业:热能与动力工程 重庆大学动力工程学院 二O一五年六月

一、前言 螺旋管在热力、化工、石油及核工业等领域得到了广泛应用,螺旋管换热器也具有结构简单、传热系数高等优点。它的传热系数比直管高,在相同空间里可得到更大的传热面积,布置更长的管道,减少了焊缝,提高了安全性。尽管螺旋管的流体阻力增大,压降增大,但是其传热效率的提高导致能量的节约要高于因阻力增大而消耗的能量。因此,螺旋管在许多行业得到普遍应用而倍受青睐。在工程应用中,由于工艺要求,往往需将流体加热至规定的温度范围,传热是其中的基本单元操作,所以有必要对螺旋管的传热与流动特性进行研究。从理论知识我们知道由于向心力的作用,流体从管中心部分由螺旋管内侧流向外侧壁面,因而造成了螺旋管内侧的低压区。在压差作用下,流体从外侧沿着圆管的上部和下部壁面流回内侧。这种流动是与管的轴向垂直的,也就是与流体的主体流动相垂直,称为二次流。流体的这种二次流与轴向主流复合成螺旋式的前进运动。这样,对于流体的传热传质,不仅可依靠流体的径向扩散,还有径向二次流的作用,相当于边界层进行了破坏,增强了流体传质。 二、GAMBIT建模

1、先建立一个半径为6的圆面。 2、将该圆面向X轴正方向移动120。 3、用圆面sweep形成螺旋柱体。(绕Y轴正方向)

4、重复以上操作,得到如图所示几何体弯管。 5、设置边界层。

并应用至每个截面:

6、设置圆面的网格,选择pave方式,interval size 选择0.6,这样边界层网格与圆面中心网格过渡较平缓。 7、依次建立体网格。 8、检查网格质量。 最差网格为0.41,满足要求。 8、输出网格。

精选国家开放大学电大本科《岩土力学》2022期末试题及答案(试卷号:1181)

国家开放大学电大本科《岩土力学》2022期末试题及答案(试卷号:1181) 一、单项选择题(每小题3分,共30分。在所列备选项中,选1项正确的或最好的作为答案,将选项号填入各题的括号中) 1.若土的压缩曲线(e-p曲线)较陡,则表明()。 A.土的密实度较大 B.土的空隙比较小 C.土的压缩性较高 D.土的压缩性较低 2.控制坝基的渗流变形,以下哪个说法正确?() A.尽量缩短渗流途径 B.尽量提高水力坡降 C.尽量减少渗透量 D.尽量采取蓄水增压措施 3.前期固结压力小于现有覆盖土层自重应力的土称为() A.欠固结 B.次固结 C.正常固结 D.超固结 4.当土体中某个方向上的剪应力达到土的抗剪强度时,称该点处于()状态。 A.允许承载 B.剪切破坏 C.稳定 D.极限平衡 5.用库仑土压力理论计算挡土墙土压力时,基木假设之一是()o A.墙后填土必须是干燥的 B.墙背直立 C.填土为无黏性土 D.墙背光滑 6.地基土发生剪切破坏而失去整体稳定时的基底最小压力为()。

A.允许承载力 B.极限承载力 C.承载力特征值 D.原始土压力 7.围岩变形破坏的形式与特点,除了与岩体内的初始应力状态和洞形有关外,主要取决于()。 A.围岩的岩性 B.围岩的岩性及结构 C.围岩的结构 D.围岩的大小 8.岩石在破坏之前的变形较大,没有明显的破坏荷载,表现出显著的塑性变形、流动或挤出,这种破坏即为()。 A.脆性破坏 B.弱而剪切破坏 C.塑性破坏 D.受压破坏 9.下面关于地应力的描述正确的是()o A.地层中由于过去地质构造运动产生和现在正在活动与变化的力或地质作用残存的应力 B.岩体在天然状态下所存在的内应力 C.由上覆岩体的自重所引起的应力 D.岩体在外部载荷作用下所产生的应力 10.弹性抗力系数不仅与岩石性质有关,而且与隧洞的尺寸也有关系,隧洞的半径越大,则岩体的弹性抗力系数将()。 A.越大 B.越小 C.稍微增大 D.不变 二、判断题(每小题2分,共20分。判断以下说法的正误,并在各题后的括号内进行标注。正确的标注J 9错误的标注X ) H.岩石浸水饱和后强度降低的性质称为岩石的软化性,用软化系数表示。() 12.达西定律只适用于层流的情况,对于粗砂、砾石等粗颗粒土不适用。()

岩土力学综合练习及解析

综合练习 一、填空题 1、土的塑性指数是指 减去 ,塑性指数 土性越粘。 2. 评价砂土密实度的指标有 、 、 。 3. 根据前期固结压力与目前土层所受的自重压力之比将土层分为 、 和 三种 4.土的渗透系数是指单位水力坡降的 ,它是表示土的 的指标,一般由渗透试验确定。 5.土的抗剪强度试验的目的,是测定土的抗剪强度指标 和 。 6. 为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快慢将直剪试验划分为 、 和 三种类型。 7.地基土的固结度是指地基土在固结过程中 的变形量与 变形量之比。 8.岩石的破坏形式可分为 、 和弱面剪切破坏三种。 二、判断题 1. 不均匀系数C u 愈大,说明土粒愈不均匀。 ( ) 2 . 同一种土的抗剪强度是一定值,不随试验方法和排水条件不同而变化。 ( ) 3.根据莫尔-库伦准则可证明均质岩石的破坏面法线与大应力方向间夹角为2 45φ - o ( ) 4. 由于洞室围岩的变形和破坏而作用于支护或衬砌上的压力称为围岩压力。 ( ) 5. 洞室的形状相同时,围岩压力与洞室的尺寸无关。 ( ) 三、简答题

1. 土的级配曲线的特征可用哪两个系数来表示?这两个系数是怎样定义的? 2. 试述莫尔---库伦破坏准则,什么是极限平衡条件? 3. 确定地基承载力的方法有那些? 4. 简述坝基表层滑动稳定性的分析计算方法。 5. 简述挡土墙后土压力的类型。

四、计算题 1. 某地基土试验中,测得土的干重度15.7kN/m3,含水量19.3%,土粒比重 2.71,液限28.3%,塑限16.7%,求(1)该土的孔隙比,孔隙度及饱和度; (2)该土的塑性指数,液性指数,并定出该种土的名称和状态。 2. 有一8m厚的饱和粘土层,上下两面均可排水,现从粘土层中心处取得2cm厚的试样做固结试验(试样上下均有透水石)。试样在某级压力下达到60%的固结度需要8分钟,则该粘土层在同样的固结压力作用下达到60%的固结度需要多少时间?若该粘土层单面排水,所需时间为多少?

流体力学报告

流体力学报告 每一门力学学科的建立,都需要建立模型,也就是把实际的问题抽象化,而抽象过程就是把现实中对所研究问题不重要的因素忽略掉,也就是模型假设,从而建立于这个问题相适应的模型进行研究,如果有意义有价值,也就慢慢深入研究,从而形成一门学科,它们都是随社会的发展而发展形成的.比如现如今最前沿的力学学科"纳米力学"就是如此。我们土木工程常说的三大力学有:1.理论力学---分析力学,振动力学,水力学或称为流体力学(这些研究对材料都不太侧重 )2.材料力学---弹性力学,塑性力学(都是又材料特性而分的) 3.结构力学:就是分析复杂的结构的情形。在此我重点叙述我对流体力学这门课学科的学习和认知。 一·流体的基本信息解释: 流体,是与固体相对应的一种物体形态,是液体和气体的总称. 由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。是液压传动和气压传动的介质。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体的研究内容。

二·流体力学的阐述: 流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同"力学模型"的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 三·对流体的研究假设: 连续体假设 物质都由分子构成,尽管分子都是离散分布的,做无规则的热运动.但理论和实验都表明,在很小的范围内,做热运动的流体分子微团的统计平均值是稳定的.因此可以近似的认为流体是由连续物质构成,其中的温度,密度,压力等物理量都是连续分布的标量场。 质量守恒 质量守恒目的是建立描述流体运动的方程组。欧拉法描述为:流进

相关主题
文本预览
相关文档 最新文档